• Nenhum resultado encontrado

6. CONCLUSÃO

6.1 PERSPECTIVAS FUTURAS

Considerando os resultados encontrados, pretende-se avaliar o efeito neuroprotetor da BBR por adminsitração direta na prole exposta ao LPS no DG 9,5, com doses de administração diferentes, duração do tratamento (tratamento agudo X tratamento crônico.

REFERÊNCIAS

1. American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders. 5th edition. Washington, DC: American Psychiatric Association; 2013. 2. Brentani H, Silvestre de PC, Bordini D, Rolim D, Sato F, Portolese J, et al.

Autism spectrum disorders: an overview on diagnosis and treatment. Bras. Psiquiatr. 2013;(35):62-72.

3. Center for Disease Control and Prevention (United States), Departament od Health and Human Services. Prevalence of Autism Spectrum Disorder Among Children Aged 8 Years — Autism and Developmental Disabilities Monitoring Network, 11 Sites, United States, 2010. Morbidity and Mortality Weekly Report, 2014.

4. Center for Disease Control and Prevention (United States), Departament od Health and Human Services. Prevalence of Autism Spectrum Disorder — Autism and Developmental Disabilities Monitoring Network, 14 Sites, United States, 2008. Morbidity and Mortality Weekly Report, 2012.

5. Boukhris T, Bérard A. Selective Serotonin Reuptake Inhibitor Use during Pregnancy and the Risk of Autism Spectrum Disorders: A Review. J Pediatr Genet. 2015;4(2):84-93

6. Liu H, Talalay P, Fahey JW. Biomarker-Guided Strategy for Treatment of Autism Spectrum Disorder (ASD). CNS Neurol Disord Drug

Targets. 2016;15(5):602-613.

7. Herbert MR. Contributions of the environment and environmentally vulnerable physiology to autism spectrum disorders. Curr Opin Neurol. 2010;23:103-110. 8. Wink LK, Plawecki MH, Erickson CA, Stigler KA, Mcdougle CJ. Emerging drugs

for the treatment of symptoms associated with autism spectrum disorders. Expert. Opin. Emerg. Dr. 2010;15(3):481- 494.

9. Bambini-Junior V, Rodrigues L, Behr GA, Moreira JC, Riesgo R, Gottfried C. Animal model of autism induced by prenatal exposure to valproate: behavioral changes and liver parameters. Brain Res. 2011;1408:8-16.

10. Gadad BS, Hewitson L, Young KA, German DC. Neuropathology and Animal Models of Autism: Genetic and Environmental Factors. Autism Res Treat. 2013;1-12.

11. Tordjman S, Somogyi E, Coulon N, Kermarrec S, Colhen D, Gronsard G, et al. Gene X Environment interactions in autism spectrum disorders: role of epigenetic mechanisms. Front Psychiatry. 2014;5:1-17.

12. Rinaldi T, Perrodin C, Markram H. Hyper-connectivity and hiper-plasticity in the medial prefrontal cortex in the valproic Acid animal model of autism. Front Neural Circuits. 2008;2:1-7.

13. Kern JK, Geier DA, Sykes LK, Geier MR. Relevance of Neuroinflammation and Encephalitis in Autism. Front Cell Neurosci. 2016;9:1-10

14. Castejon AM, Spaw JA. Autism and oxidative stress interventions: impact on autistic behavior. Austin J Pharmacol Ther. 2014;2(2):1-6.

15. Zhang Z, Li X, Li F, An L. Berberine postoperative cognitive dysfunction by suppressing neuroinflammation in aged mice. Int Immunopharmacol. 2006;38:426-433.

16. DeFilippis M. The Use of Complementary Alternative Medicine in Children and Adolescents with Autism Spectrum Disorder. Psychopharmacology Bulletin. 2018;48(1):40-63.

17. Pirillo A, Catapano AL. Berberine, a plant alkaloid with lipid- and glucose- lowering properties: From in vitro evidence to clinicalstudies. Atherosclerosis. 2015;243(2):449-461.

18. Chen CC, Hung TH, Lee CY, Wang LF, Wu CH, Ke CH, et al. Berberine protects against neuronal damage via suppression of glia-mediated inflammation

in traumatic braininjury. PLoS One. 2014;9(12): e115694.

19. Lu J, Cao Y, Cheng K, Xu B, Wang T, Yang Q, et al. Berberine regulates neurite outgrowth through AMPK-dependent pathways by lowering energy status. Exp Cell Res. 2015;334(2):194-206.

20. Domitrović R, Jakovac H, Blagojević G. Hepatoprotective activity of berberine is mediated by inhibition of TNF-α, COX-2, and iNOS expression in CCl(4)-

intoxicated mice. Toxicology. 2011 Feb 4;280(1-2):33-43.

21. Ajuriahuerra J. Las Psicosis Infantiles. In Manual de Psiquiatría Infantil. 4ed. Barcelona: Toray-Masson; 1977. 984 p.

22. Crespi BJ. Revisiting Bleuler: relationship between autism and schizophrenia. Br J Psychiatry. 2010;196(6):495-497.

23. Gadia CA, Tuchman R, Rotta NT. Autism and pervasive developmental disorders. J. Pediatr. 2004;80:83-94.

24. Kanner L. Autistic disturbances of affective contact. Nerv Child. 1943;(2):217- 250.

25. Harris J. Leo Kanner and autism: a 75-year perspective. International Review of Psychiatry. 2018;30(1):3-17.

26. Rutter M, Schopler E. Classification of pervasive developmental disorders: some concepts and practical considerations. J Autism Dev Disord. 1992;22:459-482. 27. Sugranyes G, Kyriakopoulos M, Corrigall R, Taylor E, Frangou S. Autism

spectrum disorders and schizophrenia: meta-analysis of the neural correlates of social cognition. PLoS One. 2011;6(10):1-13.

28. Rumsey JM, Andreasen NC, Rapoport JL. Thought, language, communication, and affective flattening in autistic adults. Arch Gen Psychiatry. 1986;43:771-777. 29. Charman T, Jones C, Pickles A, Simonoff E, Baird G, Happé F. Defining the

cognitive phenotype of autism. Brain Res. 2011;1380:10-21.

30. Tager-Flusberg H. Defining language phenotypes in autism. Clin Neurosci Res. 2006;6:219-224.

31. American Psychiatric Association. Manual Diagnóstico e Estatística de Transtornos Mentais (DSM-III-R). 3 ed. São Paulo:Manole;1989.

32. American Psychiatric Association. Manual de Diagnóstico e Estatística de Transtornos Mentais DSM-IV. 4 ed. São Paulo:Manole; 1994.

33. Walker D, Thompson A, Zwaigenbaum L, Goldberg J, Bryson S, Mahoney W, et al. Specifying PDD-NOS: a comparison of PDD-NOS, Asperger syndrome, and autism. J Am Acad Child Adolesc Psychiatry. 2004;43:172-180.

34. Lord C, Petkova E, Hus V, Gan W, Lu F, Martin D, et al. A multisite study of the clinical diagnosis of different autism spectrum disorders. Arch Gen Psychiatry. 2011;69:306-313.

35. Organização Mundial da Saúde (OMS). Classificação de transtornos mentais e de comportamento da CID-10: descrições clínicas e diretrizes diagnósticas. Porto Alegre: Artes Médicas: 1993.

36. American Psychiatric Association. Manual Diagnóstico e Estatístico de Transtornos Mentais (DSM-IV-TR). 4 ed. Porto Alegre: Artes Médicas; 2000. 37. Nemeroff CB, Weinberger D, Rutter M, MacMillan HL, Bryant RA, Wessely S, et

al. DSM-5: a collection of psychiatrist views on the changes, controversies, and future directions. BMC Med. 2013;11:1-19.

38. Brigandi SA, Shao H, Qian SY, Shen Y, Wu BL, Kang JX. Autistic children exhibit decreased levels of essential Fatty acids in red blood cells. Int J Mol Sci. 2015;16(5):10061-10076.

39. Huerta M, Bishop SL, Duncan A, Hus V, Lord C. Application of DSM-5 criteria for autismo spectrum disorder to three samples of children with DSM-IV diagnoses of pervasive developmental disorders. Am J Psychiatry. 2012;169:1056-1064.

40. Blumberg SJ, Bramlett MD, Kogan MD, Schieve LA, Jones JR, Lu MC. Changes in prevalence of parent-reported autism spectrum disorder in schoolaged U.S. children: 2007 to 2011–2012. Natl Health Stat Report 2013;20(65):1-11. 41. Elsabbagh M, Divan G Koh YJ, Kim YS, Kauchali S, Marci´n C, et al. Global

prevalence of autism and other pervasive developmental disorders. Autism Res. 2012;5:160-179.

42. Cannell JJ. Autism, will vitamin D treat core symptoms? Med Hypotheses. 2013;81(2):195-198.

43. Zablotsky B, Black LI, Maenner MJ, Schieve LA, Blumberg SJ. Estimed

Prevalence of autism and other developmental disabilities fllowung questionnaire changes in the 2014 National Health Interview Survey. Natl Health Stat

Report. 2015;(87):1-20.

44. Gomes PTM, Lima LHL, Bueno MKG, Araújo LA, Souza NM. Autism in Brazil: a systematic review of family challenges and coping strategies. J Pediatr.

2015;91(2):111-121.

45. Ferreira ECV. Prevalência de autismo em Santa Catarina: uma visão

epidemiológica contribuindo para a inclusão social [dissertação]. Florianópolis: Universidade Federal de Santa Catarina; 2008.

46. Teixeira MCTV, Mecca TP, Velloso RI, Bravo RB, Ribeiro SHB, Mercadante MT, et al. Literatura científica brasileira sobre transtornos do espectro autista. Rev Assoc Med Bras. 2010;56(5):607-614.

47. Rios C, Ortega F, Zorzanelli R, Nascimento LF. From invisibility to epidemic: the narrative construction of autism in the Brazilian press. Interface (Botucatu). 2015;19(53):325-335.

48. Davidovitch M, Hemo B, Manning-Courtney P, Fombonne E. Prevalence and Incidence of Autism Spectrum Disorder in an Israeli Population J Autism Dev Disord. 2013;43:785-493.

49. Elsabbagh M, Divan G, Koh YJ, Kim YS, Kauchali S, Marcín C, et al. Global prevalence of autism and other pervasive developmental disorders. Autism Res. 2012;5(3):160-179.

50. Khalil R, Tindle R, Boraud T, Moustafa AA, Karim AA. Social decision making in autism: On the impact of mirror neurons, motor control, and imitative behaviors. CNS Neurosci Ther. 2018;24(8):669-676.

51. Careaga M, Murai T, Bauman MD. Maternal Immune Activation and Autism Spectrum Disorder: From Rodents to Nonhuman and Human Primates. Biol Psychiatry. 2016;81(5):391-401.

52. Abrahams BS, Geschwind DH. Advances in autism genetics: on the threshold of a new neurobiology. Nat Rev Genet. 2008;9:341-355.

53. Pardo CA, Vargas DL, Zimmerman AW. Immunity, neuroglia and neuroinflammation in autism. Int Rev Psychiatry 2005;17:485-495.

54. Supekar K, Menon V. Sex differences in structural organization of motor systems and their dissociable links with repetitive/restricted behaviors in children with autism. Mol Autism. 2015;6:1-13.

55. Schendel DE, Gronborg TK, Parner ET. The genetic and environmental

contributions to autism: looking beyond twins. JAMA. 2014;311(17):1738-1739. 56. Onore CE, Schwartzer JJ, Careaga M, Berman RF, Ashwood P. Maternal

immune activation leads to activated inflammatory macrophages in offspring. Brain Behav Immun. 2014;38:220-226.

57. Jyonouchi H, Geng L, Streck DL, Dermody JJ, Toruner GA. MicroRNA

expression changes in association with changes in interleukin-1ß/interleukin10 ratios produced by monocytes in autism spectrum disorders: their association with neuropsychiatric symptoms and comorbid conditions (observational study). J Neuroinflammation. 2017;14(1):229.

58. Prata J, Santos SG, Almeida MI, Coelho R, Barbosa MA. Bridging Autism Spectrum Disorders and Schizophrenia through inflammation and biomarkers - pre-clinical and clinical investigations. J Neuroinflammation. 2017;14(1):179. 59. Bhandari R, Kuhad A. Resveratrol suppresses neuroinflammation in the

experimental paradigm of autism spectrum disorders. Neurochemistry International. 2017;103:8-23.

60. Zhang Y, Yi B, Ma J, Zhang L, Zhang H, Yang Y, et al. Quercetin promotes neuronal and behavioral recovery by suppressing inflammatory response and apoptosis in a rat model of intracerebral hemorrhage. Neurochemical Research. 2015;40(1):195-203.

61. Rangarajan P, Karthikevan A, Dheen ST. Role of dietary phenols in mitigating microglia-mediated neuroinflammation. Neuromolecular Med. 2016;18(3):453- 464.

62. Hong H, Kim BS, Im HI. Pathophysiological Role of Neuroinflammation in Neurodegenerative Diseases and Psychiatric Disorders. Int Neurourol J. 2016;20(1):S2-7.

63. Theoharides TC, Zhang B, Conti P. Decreased mitochondrial function and increased brain inflammation in bipolar disorder and other neuropsychiatric diseases. J Clin Psychopharmacol. 2011;31(6):685-687.

64. Hadjkacem I, Avadi H, Turki M, Yaich S, Khemekhem K, Walha A, et al. Prenatal, perinatal and postnatal factors associated wuth autism spectrum disorder. J Pediatr (Rio J). 2016;92(6):595-601.

65. Bauer AZ, Kriebel D. Prenatal and perinatal analgesic exposure and autism: an ecological link. Environ Health. 2013;12(41):1-13.

66. Depino AM. Peripheral and central inflammation in autism spectrum disorders.

Mol Cell Neurosci. 2013;53:69-76.

67. Patterson, P.H. Maternal infection: window on neuroimmune interactions in fetal brain development and mental illness. Curr. Opin. Neurobiol. 2002;12, 115– 118.

68. Estes ML, McAllister AK. Maternal immune activation: implications for nerupsychiatric disorders. Science. 2016; 353(6301)772-777.

69. Hsiao EY. Immune dysregulation in autism spectrum disorder. Int Rev Neurobiol. 2013;113:269-302.

70. Giovanoli S, Notter T, Richello J, Labouesse MA, Vuillermot S, Riva MA, et al. Neuroglial activação and neuroinflammation in the brain of patiens. J

Neuroinflammation. 2015;12:221.

71. Atladóttir HÓ, Henriksen TB, Schendel DE, Parner ET. Autism after infection, febrile episodes, and antibiotic use during pregnancy: an exploratory study. Pediatrics. 2012;130(6):e1447–1454.

72. Patterson PH. Maternal infection and immune involvement in autism. Trends Mol Med. 2011;17(7):389–394.

73. Zerbo O, Jsif AM, Walker C, Ozonoff S, Hansen RL, Hertz-Picciotto I. Is maternal influenza or fever during pregnancy associated with autism or developmental

delays? Results from the CHARGE (Childhood Autism Risks from Genetics and Environment) study. J Autism Dev Disord. 2013;43(1):25-33

74. Vorhees VC, Graham DL, Braun AA, Schaefer TL, Skelton MR, Richtand NM, et al. Prenatal immune challenge in rats: Altered responses to dopaminergic and glutamatergic agents, prepulse inhibition of acoustic startle, and reduced route- based learning as a function of maternal body weight gain after prenatal

exposure to Poly IC. Synapse. 2012;66(8):725–737.

75. Bernardi MM, Kirsten TB, Trindade MO. Sobre o Autismo, Neuroinflamação e Modelos Animais para o Estudo de Autismo: Uma Revisão. Rev Neurocienc. 2012;20:117-27.

76. Rodriguez JI, Kern JK. Evidence of microglial activation in autism and its possible role in brain underconnectivity. Neuron Glia Biology. 2011;7(2-4):205-2.

77. Kirsten TB, Taricano M, Maiorka PC, Palermo-Neto J, Bernardi MM. Prenatal lipopolysaccharide reduces social behavior in male offspring.

78. Kirsten TB, Kirsten Chaves GP, Chaible LM, Silva AC, Martins DO, Britto LRG. Hypoactivity of the central dopaminergic system and autistic‐like behavior induced by a single early prenatal exposure to lipopolysaccharide. Journal of Neuroscience Research. 2012; 90(10):1903-1912.

79. Fortier ME, Joober R, Luheshi GN, Boksa P. Maternal exposure to bacterial endotoxin during pregnancy enhances amphetamine-induced locomotion and startle responses in adult rat offspring. J Psychiatr Res. 2004;38(3):335-345. 80. Leon CG, Tory R, Jia J, Sivak O, Wasan KM. Discovery and development of toll-

like receptor 4 (TLR4) antagonists: a new paradigm for treating sepsis and other diseases. Pharm Res. 2008;25(8):1751-1761.

81. Barker JH; Weiss JP. Detecting lipopolysaccharide in the cytosol of mammalian cells: Lessons from MD-2/TLR4. J Leukoc Biol. 2019;1-6.

82. Karrow NA. Activation of the hypothalamic-pituitary-adrenal axis and autonomic nervous system during inflammation and altered programming of the

neuroendocrine-immune axis during fetal and neonatal development: lessons learned from the model inflammagen, lipopolysaccharide. Brain Behav

Immun. 2006;20(2):144-158.

83. Seeley JJ, Ghosh S. Molecular mechanisms of innate memory and tolerance to LPS. J Leukoc Biol. 2017;101(1):107-119.

84. Wang X; Quinn P. Lipopolysaccharide: Biosynthetic pathway and structure modification. Progress in Lipid Research. 2010;49(2):97-107

85. Xu DX, Chen YH, Wang H, Zhao L, Wang JP, Wei W. Tumor necrosis factor alpha partially contributes to lipopolysaccharide-induced intra-uterinefetal growth restriction and development retardation in mice. Toxicol Lett. 2006;163(1):20-29. 86. Pang Y, Dai X, Roller A, Carter K, Paul I, Bhatt, AJ, et al. Early Postnatal

Lipopolysaccharide Exposure Leads to Enhanced Neurogenesis and Impaired Communicative Functions in Rats. PLoS One. 2016;11(10):e0164403.

87. Saluk-Juszczak J, Wachowicz B. [The proinflammatory activity of lipopolysaccharide]. Postepy Biochem. 2005;51(3):280-287.

88. Fenton, MJ, Golenbock DT. LPS-binding proteins and receptors. Journal of Leukocyte Biology. 1998;64(1):25-32.

89. Aderem A, Ulevitch RJ. Toll-like receptors in the induction of the innate immune response. Nature. 2000;406(6797):782-787.

90. MIYAKE K. Innate recognition of lipopolysaccharide by CD14 and toll-like receptor 4-MD2: unique roles for MD-2. International Immunopharmacology.

91. Harré EM, Galic MA, Mouihate A, Noorbakhsh F, Pittman QJ. Neonatal inflammation produces selective behavioural deficits and alters N-methyl-D- aspartate receptor subunit mRNA in the adult rat brain [published correction appears in Eur J Neurosci. 2008 Apr;27(8):2210]. Eur J Neurosci.

2008;27(3):644–653.

92. Hava G, Vered L, Yael M, Mordechai H, Mahoud H. Alterations in behavior in adult offspring mice following maternal inflammation during pregnancy. Developmental Psychobiology. 2006;48(2):162-168.

93. Romero R, Espinoza J, Goncalves LF, Kusanovic JP, Friel L, Hassan S. The role of inflammation and infection in preterm birth. Seminars in Reproductive

Medicine. 2011;38(3):385-406.

94. Avitsur R, Yirmiya R. The immunobiology of sexual behavior: gender differences in the suppression of sexual activity during illness. Pharmacology Biochemistry and Behavior.1999;64(4):787-796.

95. Ramana KV, Fadl AA, Tammali R, Reddy AB, Chopra AK, Srivastavas SK. Aldose reductase mediates the lipopolysaccharide-induced release of inflammatory meidators in RAW264.7 murine macrophages. J Biol Chem. 2006:281(44):33019-33029.

96. Vargas DL, Nascimbene C, Krishnan C, Zimmerman AW, Pardo CA. Neuroglial activation and neuroinflammation in the brain of patients with autism. Ann. Neurol. 2005;57:67-81.

97. Lee KM, Maclean AG. New advences on glial activation in health and disease.

World J Virol. 2015;4(2):42-55

98. Bosch ME, Kielian T. Neuroinflammatory paradigms in lysosomal storage diseases. Front Neurosci. 2015 9:1-11.

99. Monnet-Tschudi F, Defaux A, Braissant O, Cagnon L, Zurich MG.

Methods to assess neuroinflammation. Curr. Protoc. Toxicol. 2011;Chap.12: Unit 12.19.

100. Petrelli F, Pucci L, Bezzi P. Astrocytes and microglia and their potential link with autism spectrum disorders. Front Cell Neurosci. 2016;10:1-8.

101. Ullian EM, Sapperstein SK, Christopherson KS, Barres BA. Control of synapse number by glia. Science. 2001;291:657-661.

102. Knuesel I, Chicha L, Britschgi M, Schobel SA, Bodmer M, Hellings JA, et al. Maternal immune activation and abnormal brain development across CNS disorders. Nat. Rev. Neurol. 2014;10:643-660.

103. Petrelli F, Bezzi P. Novel insights into gliotransmitters. Curr. Opin.Pharmacol. 2016;26:138-145.

104. Patel AB, Tisilioni I, Leeman SE, Theoharides TC. Neurotensin stimulates sortilin and mTOR in human microglia inhibitable by methoxyluteolin, a

potentialtherapeutic target for autism. Proc Natl Acad Sci. 2016;113(45): E7049- E7058.

105. Shafer DP, Lehrman EK, Kautzman AG, Koyama R, Mardinly AR,

Yamasaki R, et al. Microglia sculpt postnatal neural circuits in an activity and complement-dependent manner. Neuron. 2012;74:691-705.

106. Halassa MM, Fellin T, Takano H, Dong JH, Haydon PG. Synaptic islands defined by the territory of a single astrocyte. J. Neurosci. 2007;27:6473-6477.

107. Fiacco TA, McCarthy KD. Astrocyte calcium elevations: properties, propagation, and effects on brain signaling. Glia 2006;54:676-690.

108. Bezzi P, Volterra A. A neuron-glia signalling network in the active brain. Curr. Opin. Neurobiol. 2001;11:387-394.

109. Araque A, Carmignoto G, Haydon PG, Oliet SHR, Robitaille R, Volterra A. Gliotransmitters travel in time and space. Neuron 2014;81:728-739.

110. Ornoy A. Weinstein-Fudim L, Ergaz Z. Genetic syndromes, maternal diseases and antenatal factors associated with autismo spectrum disorders (ASD). Front Neurosci. 2016;10:1-21.

111. Young, A. M., Campbell, E., Lynch, S., Suckling, J., and Powis, S. J. Aberrant NF-kappaB expression in autism spectrum condition: a mechanism or

neuroinflammation. Front. Psychiatry. 2011; 2:1-8.

112. Szachta P, Skonieczna-Zydecka K, Adler G, Karakua-Juchnowicz H, Madlani

H, Igny’s I. Immune related factors in pathogenesis of autism spectrum disorders.

Eur Rev Med Pharmacol Sci. 2016;20(14):3060-3072.

113. McAfoose J, Baune BT. Evidence for a cytokine model of cognitive function. Neurosci Biobehav Rev 2009;33:355-366.

114. Derecki NC, Cardani AN, Yang Ch, Quinnies KM, Crihfield A, Lynch KR, Kipnis J. Regulation of learning and memory by meningeal immunity: a key role for IL-4. J Exp Med 2010;207:1067-1080.

115. Qasem H, Al-Avadhi L, El-Ansary A. Cysteinyl leukotriene correlated with 8- isoprostane levels as predictive biomarkers for sensory dysfunction in autism.

Lipids Health Dis. 2016;15(1):1-10.

116. Daneman R, Prat A. The Blood–Brain Barrier. Cold Spring Harb Perspect Biol. 2015; 7(1): a020412.

117. Kealy J, Greene C, Campbell M. Blood-brain barrier regulation in psychiatric

118. Zlokovic BV. The blood-brain barrier in health and chronic neurodegenerative disorders. Neuron. 2008;57(2):178-201.

119. Daneman, R. The blood-barrier in health and disease. Ann Neurol 2012;72:648–672.

120. Hawkins BT, Davis TP. The blood-brain barrier/neurovascular unit in health and disease. Pharmacol Rev. 2005;57:173-185.

121. Obermeier B, Daneman R, Ransohoff RM. Developmente maintenance and

disruption of the blood-brain barrier. Nat Med. 2013;19(12):1584-1596.

122. Engelhardt B, Liebner S. Novel insights into the development andmaintenance of the blood-brain barrier. Cell Tissue Res. 2014;355:687-699.

123. Varatharaj A, Galea I. The blood-brain barrier in systemic inflammation. Brain,

Behavior, and Immunity. 2017;60:1-12.

124. Li X, Chauhan BHA, Sheikh AM, Patil S, Chauhan V, Li X-M, et al. Elevated

immune response in the brain of autistic patients. J Neuroimmunol. 2009;207(1–

2):111–116.

125. Streit WJ, Mrak RE, Griffin WS. Microglia and neuroinflammation: a

pathological perspective. Journal of neuroinflammation. 2004;1(1):1-4.

126. Goines PE, Ashwood P. Cytokine dysregulation in autism spectrum disorders

(ASD): possible role of the environment. Neurotoxicol Teratol. 2013;36:67-81.

127. Uttara B, Singh AV, Zamboni P, Mahajan RT. Oxidative stress and

neurodegenerative diseases: a review of upstream and downstream antioxidant

therapeutic options. Curr Neuropharmacol. 2009;7(1):65-74.

128. Melo A, Monteiro L, Lima RMF, Oliveira DM, Cerqueira MD, El-Bacha RS.

Oxidative stress in neurodegenerative diseases: mechanisms and therapeutic perspectives. Oxidative Med Cell Longev. 2011;2011:1-14.

129. Hegazy HG, Elham HA, Ali; Amany H, Elgoly M. Interplay between

proinflammatory cytokines and brain oxidative stress biomarkers: Evidence of parallels between butyl paraben intoxication and the valproic acid brain

physiopathology in autism rat model. Cytokine. 2015;71(2):173-180.

130. Castejon AM, Spaw JA. Autism and Oxidative Stress Interventions: Impact on

Autistic Behavior. Austin J Pharmacol Ther. 2014;2(2):1-6.

131. Castrén AL, Westermarck T, Atroshi F. Oxidative Stress and Dietary

Interventions in Autism: Exploring the Role of Zinc, Antioxidant Enzymes and Other Micronutrients in the Neurobiology of Autism. Pharmacology and Nutritional Intervention in the Treatment of Disease. 2014;3:97-117.

132. Granot E, Kohen R. Oxidative stress in childhood--in health and disease states. Clin Nutr. 2004;23(1):3-11.

133. Smaga I, Niedzielska E, Gawlik M, Moniczewski A, Krzek J, Przegaliński E, et

al. Oxidative stress as an etiological factor and a potential treatment target of psychiatric disorders. Part 2. Depression, anxiety, schizophrenia and autism. Pharmacol Rep. 2015;67(3):569-80.

134. Yao JK, Keshavan MS. Antioxidants, redox signaling, and pathophysiology in

schizophrenia: an integrative view. Antioxidants & Redox Signaling 2011;15(7):2011-2035.

135. Pandey KB, Rizvi SI. Markers of oxidative stress in erythrocytes and plasma

during aging in humans. Oxid Med Cell Longev. 2010;3(1):2-12.

136. Cadenas E, Davies KJA. Mitochondrial free radicalgeneration, oxidative

stress, and aging. Free Radic Biol Med. 2000;29:222-230.

137. Mosley RL, Benner EJ, Kadiu I, Thomas M, Boska MD, Hasan K, et al.

Neuroinflammation, oxidative stress and the pathogenesis of Parkinson’s Disease. Clin Neurosci Res. 2006;6(5):261-281.

138. Sharma R, Awasthi S, Zimniak P, Asthi Y. C Transport of gluatatione- conjugates in human erythrocytes. Acta Biochim Pol. 2000;47(3)751-762. 139. Andreazza AC. Combining redox-proteomics and epigenomics to explain the

involvement of oxidative stress inpsychiatric disorders. Mol Biosyst. 2012 Oct; 8(10):2503-2512.

140. Chúlia FZ, Salmina AB, Malinovskaya NA, Noda M, Verkhratsky A, Moreira JCF. The glial perspective of autism spectrum disorders. Neuroscience and Biobehavioral Reviews. 2014;38:160-172.

141. Tansey MG, McCoy MK, Frank-Cannon TC. Neuroinflammatory mechanisms in Parkinson's disease: potential environmental triggers, pathways, and targets for early therapeutic intervention. Exp Neurol. 2007; 208(1):1-25.

142. Hallwell, B. Role of free radicais in the neurodegenerative diseases: therapeutic implications for antioxidante treatment. Drugs and Aging. 2001;18:685-716.

143. Chauhan A, Chauhan V, Brown WT, Cohen I. Oxidative stress in autism: increased lipid peroxidation and reduced serum levels of ceruloplasmin and

transferrin–the antioxidant proteins. Life Sci. 2004;75(21):2539–2549.

144. González-Fraguela ME, Hung MLD, Vera H, Maragoto C, Noris E, Blanco L, et al. Oxidative Stress Markers in Children with Autism Spectrum Disorders. British Journal of Medicine & Medical Research. 2013;3(2):307-317.

145. Zoroglu SS, Armutcu F, Ozen S, Gurel A, Sivasli E, Yetkin O, et al. Increased oxidative stress and altered activities of erythrocyte free radical scavenging

enzymes in autism. Eur Arch Psychiatry Clin Neurosci. 2004;254(3):143-147.

146. Rai K, Hegde AM, Jose N. Salivary antioxidants and oral health in children

with autism. Arch Oral Biol. 2012;57(8):1116-1120.

147. Meguid NA, Dardir AA, Abdel-Raouf ER, Hashish A. Evaluation of oxidative stress in autism: defective antioxidant enzymes and increased lipid peroxidation. Biol Trace Elem Res. 2011;143(1):58-65.

148. Ghanizadeh A. Malondialdehyde, Bcl-2, superoxide dismutase and glutathione peroxidase may mediate the association of sonic hedgehog protein and oxidative

Documentos relacionados