• Nenhum resultado encontrado

A proposta de solução de inclusão da afetação da gravidade no resultado da dureza, tal como explicado no Subcapítulo 3.3.1, requer o desenvolvimento de um modelo complexo do processo de medição para avaliar a influência deste fator na sua plenitude. Seria benéfico desenvolver um modelo tanto mais detalhado quanto possível, em conjunto com o fabricante do equipamento (Proceq®). Esta solução só se tornaria totalmente validada após a realização de

ensaios empíricos em mais do que um tipo de gravidade e em vários materiais rochosos diferentes ou geomateriais.

Visto que este projeto terá certamente continuidade, sugere-se que, após a automatização do processo de operação do Equotip, se efetuem várias medições em amostras rochosas no decorrer de campanhas de microgravidade.

Depois de consolidada a influência da gravidade, seria interessante estudar a variação da orientação de impacto aquando de medições inseridas em ambiente espacial, a fim de relacionar ambos os parâmetros, permitindo também medições não verticais em gravidades diferentes da terrestre.

Finalmente, recomenda-se o desenvolvimento de hardware e software do GEO-MiNO ou semelhante, no sentido de viabilizar a primeira medição de dureza usando um Equotip numa missão efetivamente no espaço.

Como nota final e tal como referido ao longo desta dissertação, a presente investigação continua a decorrer e os primeiros resultados da experiência do Equotip em voos parabólicos estão a ser analisados. Esta abordagem preliminar e inédita da medição de dureza nas rochas em gravidade lunar e microgravidade com o equipamento Equotip, encontra-se em fase de finalização (peer review) e publicação numa revista científica internacional.

Reference to be submited: A. Pires, A. Costa, R. Moura, A. Persad, J. Reimuller, D. Gowanlock, S. Alavi, H. Wright, J. Almeida, F. G. Almeida, E. Silva, A. Pérez-Alberti, and H. I. Chaminé, mm“Hardness tester for analog planetary rocks: A preliminary assessment of performance in microgravity flight experiment,” Springer Advances in Science, Technology and Innovation Proceedings, vol. 4GEO, 2020.

Abstract: Lunar exploration is more and more imperative when we talk about space missions. But not limited to the Moon or Mars, it is important to inclide asteroids, comets and meteors. Sampling and analysis have posed great challenges in the past and present in such low gravity environments as comets and asteroids (e.g. failure to land on the 67P/Churyumov-Gerasimenko comet, or more recently missions such as Ryugu and Bennu, demonstrate how microgravity research on Earth is important to the planning and success of geological sampling). This research presents an experiment related with planetary geology and it was performed under the framework of microgravity campaign in the national Research Council of Canada|NRC (Ottawa) with PoSSUM Project (www.projectpossum.org). The main purpose is assessing rock hardness testing function of the Equotip3 (Proceq®) and equipment behavior in microgravity and lunar gravity environments, as well as to carry out preliminary approach for data correlation. This was the first time that this type of research was carried out inside FALCON20 and the first time ever that this equipment flew in these envirments. The data gathered in the experiment enabled us to understand the rock behavior and the hardness values, which are easily related with uniaxial compressive strength values in laboratory. Later, through numerical modeling will be performed in order to analyze all the measurements (in-situ) and to determine data correlation with microgravity environment. The experiment was tested in rock samples from Flagstaff (San Francisco Volcanic Field): basalt and limestone. In terms of future outcomes, this experiment will certainly contribute fot the development of the robotic geo-system that is currently on-going - forthcoming integration in a lander/rover and space suit miniaturization for integrated human use.

Figura 42 - Atividades extraveiculares e trabalho de campo num boulder e rególito do astronauta Harrison Schmidt na missão Apollo 17, em 1972 (última missão tripulada a pousar na Lua) [131]

Referências

[1] V. R. Baker, "Terrestrial Analogs, Planetary Geology, and the Nature of Geological Reasoning," Planetary and Space Science, vol. 95, pp. 5-10, 2014.

[2] T. K. P. Gregg, Planetary Tectonics and Volcanism: The Inner Solar System. Oxford: Elsevier, 2015.

[3] K. V. Hodges and H. H. Schmitt, "Imagining a New Era of Planetary Field Geology," Science Advances, vol. 5, no. 9, 2019.

[4] L. Motz and F. H. Weaver, The Story of Astronomy. Springer US, 1995.

[5] A. A. Siddiqi, Beyond Earth: A Chronicle of Deep Space Exploration 1958-2016. Washington: NASA History Division, 2018.

[6] A. A. Siddiqi, Challenge to Apollo: the Soviet Union and The Space Race 1945-1974. Washington: NASA History Division, 2000.

[7] S. Ivanov, Y. Osipov, and V. Sadovnichy, Fifty Years of Space Research: After the International Forum «Space: Science and Challenges of the XXI Century». Moscow: Space Research Institute of Russian Academy of Sciences, 2009.

[8] NASA, Missions: Surveyor 1, 2019. [Online]. Available:

https://solarsystem.nasa.gov/missions/surveyor-1/in-depth/ [Accessed Jun. 30, 2020].

[9] G. D. Krebs, Luna Ye-6M, 1996. [Online]. Available: https://space.skyrocket.de [Accessed May 4, 2020].

[10] Smithsonian, Lunar Lander, Surveyor, Alpha Scattering Auxiliary, 2011. [Online]. Available: https://airandspace.si.edu/collection-objects/lunar-lander-surveyor-alpha-scattering-

auxiliary/nasm_A19731143000 [Accessed 30 May, 2020].

[11] NASA, "Apollo 11 Preliminary Science Report," Washington, 1969. [Online]. Available: https://www.hq.nasa.gov/alsj/a11/as11psr.pdf [Accessed May 23, 2020].

[12] A. T. Basilevsky, A. M. Abdrakhimov, J. W. Head, C. M. Pieters, Y. Wu, and L. Xiao, "Geologic Characteristics of the Luna 17/Lunokhod 1 and Chang'E-3/Yutu Landing Sites, Northwest Mare Imbrium of the Moon," Planetary and Space Science, vol. 117, pp. 385-400, 2015.

[13] K. Zacny et al., "Robotic Lunar Geotechnical Tool " presented at the Earth and Space 2010. [Online]. Available: https://ascelibrary.org/doi/abs/10.1061/41096%28366%2919 [Accessed Aug. 10, 2020].

[14] H. Lindsay, ALSEP: Apollo Lunar Surface Experiments Package, 2008. [Online]. Available: https://www.hq.nasa.gov/alsj/HamishALSEP.html [Accessed Jun. 1, 2020].

[15] NASA, "Apollo 17: Preliminary Science Report," Washington, 1973. [Online]. Available: https://www.hq.nasa.gov/alsj/a17/as17psr.pdf [Accessed May 13, 2020].

[16] NASA, Mars 6, 1999. [Online]. Available:

https://nssdc.gsfc.nasa.gov/nmc/spacecraft/display.action?id=1973-052A [Accessed Jun. 1, 2020].

[17] NASA, Mars Pathfinder - Deplying APXS, 1997. [Online]. Available: https://mars.nasa.gov/resources/8782/mars-pathfinder-deploying-apxs/ [Accessed Jun. 1, 2020].

[18] NASA, Apha Proton X-Ray Spectrometer, 1997. [Online]. Available: https://mars.nasa.gov/MPF/mpf/sci_desc.html#APXS [Accessed Jun. 4, 2020].

[19] NASA, Beagle 2, 2003. [Online]. Available: https://solarsystem.nasa.gov/missions/beagle-2/in- depth/ [Accessed Jun. 1, 2020].

[20] NASA, "Spirit and Opportunity: Mars Rover Flight Director Report ", Washington, 2007. [Online]. Available: https://www.nasa.gov/mission_pages/mer/index.html [Accessed Jun. 1, 2020].

[21] NASA, Pioneer Venus 2, 2019. [Online]. Available:

https://solarsystem.nasa.gov/missions/pioneer-venus-2/in-depth/ [Accessed Jun. 2, 2020]. [22] NASA, Venera 11 & Venera 12, 2003. [Online]. Available:

https://heasarc.gsfc.nasa.gov/docs/heasarc/missions/venera1112.html [Accessed Jun. 2, 2020]. [23] K. Davis and I. Meginnis, "Testing of the NASA Exploration Extravehicular Mobility Unit

Demonstration (xEMU Demo) Architecture at the Neutral Buoyancy Laboratory (NBL)," presented at the 49th International Conference on Environmental Systems, Boston, 2019. [Online]. Available: https://ttu-ir.tdl.org/handle/2346/84564 [Accessed Jun. 2, 2020].

[24] ASCE, Earth Space Conference: Engineering for Extreme Environments, 2020. [Online]. Available: https://www.earthspaceconference.org/ [Accessed Feb. 20, 2020].

[25] IAC, International Astronautical Congress, 2020. [Online]. Available: https://iac2020.org/ [Accessed Jun. 2, 2020].

[26] J. Brisset, J. Colwell, A. Dove, S. Abukhalil, C. Cox, and N. Mohammed, "Regolith Behavior Under Asteroid-Level Gravity Conditions: Low-Velocity Impact Experiments," Progress in Earth and Planetary Science, vol. 5, no. 1, p. 73, 2018.

[27] E. Hand, "Philae Probe Makes Bumpy Touchdown on a Comet," Science, vol. 346, no. 6212, pp. 900-901, 2014.

[28] INESCTEC, Laboratory: Robotics and Autonomous System Laboratory, 2020. [Online]. Available: https://www.inesctec.pt/en/laboratories/robotics-and-autonomous-systems- laboratory#intro [Accessed Feb. 20, 2020].

[29] NASA, Polar Suborbital Science in the Upper Mesosphere, 2020. [Online]. Available: https://projectpossum.org [Accessed Sep. 4, 2020].

[30] CanadianSpaceAgency, Otter EVA Operations Courses, 2019. [Online]. Available: https://projectpossum.org/science-programs/graduate-courses/otter-eva-courses/ [Accessed May 15, 2020].

[31] CanadianSpaceAgency, PoSSUM Bioastronautics Courses 2019. [Online]. Available: https://projectpossum.org/science-programs/graduate-courses/bioastronautics-courses/

[Accessed May 15, 2020].

[32] M. Kompatscher, "Equotip-Rebound Hardness Testing after D. Leeb," presented at the Hardness Measurements Theory and Application in Laboratories and Industries, Washington, 2004.

[33] K. Gogolinskii, V. Syasko, A. Umanskii, A. Nikazov, and T. Bobkova, "Mechanical Properties Measurements with Portable Hardness Testers: Advantages, Limitations, Prospects," in Journal of Physics: Conference Series, 2019, vol. 1384, no. 1.

[34] ISO 6506: Metallic Materials-Brinell hardness test, 1981.

[35] ASTM E10: Standard Test Mothod for Brinell Hardness of Metallic Materials, 2015. [36] ISO 6507: Metallic materials-Vickers hardness test, 2005.

[37] ASTM E92: Standard Test Method for Vickers Hardness of Metallic Materials 1997. [38] ISO 4545: Metallic Materials-Knoop hardness test, 2017.

[39] ISO 6508: Metallic materials-Rockwell hardness test, 2016.

[40] ASTM E18: Standard Test Mothods for Rockwell Hardness of Metallic Materials, 2015. [41] ISO 7619: Rubber, vulcanized or thermoplastic-Determination of indentation hardness, 2010. [42] ASTM D2240: Standard Test Method for Rubber Property - Durometer Hardness, 2015. [43] ASTM D 3441: Standard Test Method for Mechanical Cone Penetration Tests of Soil, 1998. [44] ISO 22476: Geotechnical investigation and testing - Field testing, 2011.

[45] R. Ulusay et al., "ISRM Suggested Method fot the Needle Penetration Test," Rock Mechanics and Rock Engineering, vol. 47, pp. 1073-1085, 2014.

[46] ASTM A1038: Standard Practice for Portable Hardness Testing by the Utrasonic Contact Impedance Method, 2019.

[47] C. Frehner, R. Mennicke, F. Gattiker, and D. Chai, "Advancements of Ultrasonic Contact Impedance (UCI) Hardness Testing based on Continuous Load Monitoring during the Indentation Process, and Practical Benefits," presented at the 15th Asia Pacific Conference for Non-Destructive testing, Singapore, 2017.

[48] S. Frank, C. Frehner, and A. Akhlaghi, Equotip Application Booklet: Portable Hardness Testing - Leeb, Portable Rockwell and UCI. Switzerland: ProceqSA, 2019.

[49] A. Aydin and A. Basu, "The Schmidt Hammer in Rock Material Characterization," Engineering Geology, vol. 81, no. 1, pp. 1-14, 2005.

[50] ISO 16859: Metallic materials-Leeb hardness test, 2015.

[51] Proceq, 2020. [Online]. Available: www.proceq.com [Accessed Feb. 23, 2020].

[52] ISO 1920-7: Testing of concrete-Part 7: Non-destructive tests on hardened concrete, 2004. [53] M. Jedidi, "Evaluation of the Quality of Concrete Structures by the Rebound Hammer Method,"

Current Trends in Civil & Structural Engineering, vol. 5, no. 5, pp. 1-7, 2020.

[54] ASTM A956: Standard Test Method for Leeb Hardness testing of Steel Products, 2006. [55] ISO 18265: Metallic materials - Conversion of hardness values, 2013.

[56] ASTM E140: Standard Hardness Conversion Tables for Metals Relationship Among Brinnell Hardness, Vickers Hardness, Rockwell Hardness, Supericial Hardness, Knoop Hardness, Scleroscope Hardness, and Leeb Hardness, 2012.

[57] ASTM D 2938: Standard Test Method for Unconfined Compressive Strength of Intact Rock Core Specimens 1995.

[58] EN 1926: Natural stone test methods - Determination of uniaxial compressive strength 2006. [59] Geology In, Geological Hammers a Brief Description of Every Geologist's Most Essential Tool,

2020. [Online]. Available: http://www.geologyin.com/2014/11/geological-hammers-brief- description-of.html [Accessed Sep. 24, 2020].

[60] C. Lima and J. E. Menezes, "Textos de apoio de geologia de Engenharia " FEUP, 2005. [61] DIN 50150: Conversion of hardness values for metallic materials, 2000.

[62] Y. Asiri, "Standarized Process for Field Estimation of Unconfined Compressive Strength Using Leeb Hardness," M.S thesis, Department of Applied Science, Dalhousie University, Halifaz, 2017. [Online]. Available: https://dalspace.library.dal.ca/bitstream/handle/10222/72741/Asiri- Yassir-MASc-MINE-February-2017.pdf?sequence=6 [Accessed Feb. 28, 2020]

[63] W. Verwaal and A. Mulder, Rock and Aggregate Test Procedures: Laboratory manual. Delft: University of Technology, 2000.

[64] S. Siegesmund and R. Snethlage, Stone in Architecture: Properties and Durability. Germany: Springer, 2011.

[65] P. Verhoef, Wear of Rock Cutting Tools: Implications for the Site Investigation of Rock Dredging Projects. Delft: Routledge, 2017.

[66] D. U. Deere and R. P. Miller, Engineering Claassification and Index Properties for Intact Rocks. Urbana: University of Illinoius, 1966.

[67] F. I. Shalabi, E. J. Cording, and O. H. Al-Hattamleh, "Estimation of Rock Engineering Properties using Hardness Tests," Engineering Geology, vol. 90, no. 3-4, pp. 138-147, 2007. [68] R. N. Singh and A. K. Ghose, Engineered Rock Structures in Mining and Civil Construction.

Michigan: Oxford & IBH Publishing Company, 2006.

[69] E. Yasar and Y. Erdogan, "Estimation of Rock Physicomechanical Properties using Hardness Methods," Engineering Geology, vol. 71, no. 3-4, pp. 281-288, 2004.

[70] B. Misra, "Correlation of Rock Properties with Machine Performance," Ph.D Thesis, University of Leeds, 1972.

[71] W. E. Bamford, H. V. Duyse, C. Nieble, and D. U. Deere, "Suggested Methods for Determining Hardness and Abrasiveness of rocks," International Society for Rock Mechanics, vol. 15, pp. 89-97, 1978.

[72] H. Rabia and N. Brook, "The Shore Hardness of Rock," International Journal of Rock Mechanics and Mining Sciences, vol. 16, no. 5, pp. 335-336, 1979.

[73] R. Altindag and A. Guney, "Effect of the Specimen Size on the Determination of Consistent Shore Hardness Values," International Journal of Rock Mechanics and Mining Sciences, vol. 42, no. 1, pp. 153-160, 2005.

[74] R. Altindag and A. Guney, "Suggested Method for Determining the Shore Hardness Value for Rock," International Journal of Rock Mechanics and Mining Sciences, vol. 43, no. 1, pp. 19- 22, 2006.

[75] R. Altindag and A. Guney, "Predicting the Relationships between Brittleness and Mechanical Properties (UCS, TS and SH) of Rocks " Scientific Research and Essays, vol. 5, no. 16, pp. 2107-2118, 2010.

[76] A. Kılıc and A. Teymen, "Determination of Mechanical Properties of Rocks using Simple Methods," Bulletin of Engineering Geology and the Environment, vol. 67, pp. 237-244, 2008. [77] R. G. Wuerker, "The Status of Testing Strength of Rock," Transactions of the Society of Mining

Engineers AIME, vol. 3, no. 11, pp. 1108-1113, 1953.

[78] I. M. R. Duarte, A. B. Pinho, and F. L. Ladeira, "Penetrometer Testing in Residual Soils from Granitic Rocks in the South of Portugal," Geotechnical and Geophysical Site Characterization, vol. 2, pp. 1279-1284, 2004.

[79] A. J. Puppala, V. Bhadriraju, and A. Porbaha, "SPT and CPT Based Methods to Address Shear Strength of Deep Mixed Soil Cement Columns " in 16th International Confference on Soil Mechanics and Geotechnical Engineering, 2006, pp. 1257-1260.

[80] Y. Yamaguchi, N. Ogawa, M. Kawasaki, and A. Nakamura, "Evaluation of Seepage Failure Response Potential of Dam Foundation with Simplified Tests," Journal of the Japan Society of Engineering Geology, vol. 38, no. 3, pp. 130-144, 1997.

[81] O. Aydan, "The Inference of Physico-Mechanical Properties of Soft Rocks and the Evaluation of the Effect of Water Content and Weathering on their Mechanical Properties from Needle Penetration Tests," presented at the Symposium of ARMA, Chicago, 2012, Paper No. ARMA12-639.

[82] R. Ulusay and Z. A. Erguler, "Needle Penetration Test: Evaluation of its Performance and Possible uses in Predicting Strength of Weak and Soft Rocks," Engineering Geology, vol. 149- 150, pp. 47–56, 2012.

[83] JapaneseGeotechnicalSociety, "Method for Needle Penetration Test," Japanese Standards and Explanations of Geotechnical and Geoenvironmental Investigation Methods, no. 1, pp. 426- 432, 2012.

[84] L. N. Mohammad, A. Herath, M. Y. Abu-Farsakh, K. Gaspard, and R. Gudishal, "Prediction of Resilient Modulus of Cohesive Subgrade Soils from Dynamic Cone Penetrometer Test Parameters " Journal of Materials in Civil Engineering, vol. 19, no. 11, pp. 986-992, 2007. [85] M. A. Patel and H. S. Patel, "Experimental Study to Correlate the Test Results of PBT, UCS,

and CBR with DCP on Various soils in soaked condition " International Journal of Engineering vol. 6, no. 5, pp. 244-261, 2012.

[86] M. A. Patel, H. S. Patel, and G. Dadhichc, "Prediction of Subgrade Strength Parameters from Dynamic Cone Penetrometer Index, Modified Liquid Limit and Moisture Content " presented at the 2nd Conference of Transportation Research Group of India, Agra, 2013.

[87] Y. M. Alshkane, K. A. Rashed, and H. S. Daoud, "Unconfined Compressive Strength (UCS) and Compressibility Indices Predictions from Dynamic Cone Penetrometer Index (DCP) for Cohesive Soil in Kurdistan Region/Iraq," Geotechnical and Geological Engineering, vol. 38, pp. 3683–3695, 2020.

[88] J. Mcelvaney and I. Bunadidjatnika, "Strength Evaluation of Lime-Stabilised Pavement Foundations using the Dynamic Cone Penetrometer," Australian Road Research, vol. 21, no. 1, pp. 40-66, 1991.

[89] O. Katz, Z. Rechesa, and J. C. Roegiersc, "Evaluation of Mechanical Rock Properties using a Schmidt Hammer," International Journal of Rock Mechanics and Mining Sciences, vol. 37, pp. 723-728, 2000.

[90] J. S. Cargill and A. Shakoor, "Evaluation of Empirical Methods for Measuring the Uniaxial Compressive Strength of Rock " International Journal of Rock Mechanics and Mining Sciences, vol. 27, no. 6, pp. 495-503, 1990.

[91] C. I. Sachpazis, "Correlating Schmidt Hardness with Compressive Strength and Young’s Modulus of Carbonate Rocks," Bulletin of the International Association of Engineering Geology, vol. 42, pp. 75-83, 1990.

[92] A. Tugrul and I. H. Zarif, "Correlation of Mineralogical and Textural Characteristics with Engineering Properties of Selected Granitic Rocks from Turkey," Engineering Geology vol. 51, no. 4, pp. 303-317, 1999.

[93] X. Li, G. Rupert, D. A. Summers, P. Santi, and D. Liu, "Analysis of Impact Hammer Rebound to Estimate Rock Drillability," Rock Mechanics and Rock Engineering, vol. 33, no. 1, pp. 1-13, 2000.

[94] I. Yılmaz and H. Sendir, "Correlation of Schmidt Hardness with Unconfined Compressive Strength and Young’s Modulus in Gypsum from Sivas (Turkey)," Engineering Geology, vol. 66, no. 3-4, pp. 211-219, 2002.

[95] A. Aydin, Suggested Method for Determination of the Schmidt Hammer Rebound Hardness: Revised Version. Ankara: International Journal of Rock Mechanics and Mining Sciences, 2009. [96] R. Nazir, E. Momeni, D. J. Armaghani, and M. F. M. Amin, "Prediction of Unconfined Compressive Strength of Limestone Rock Samples Using L-Type Schmidt Hammer " Electronic Journal of Geotechnical Engineering, vol. 18, pp. 1767-1775, 2013.

[97] J. E. O'Rourke, "Rock Index Properties for Geoengineering in Underground Development," Mining Engineering, vol. 41, no. 2, pp. 106-110, 1989.

[98] S. Xu, P. Grasso, and A. Mathlab, "Use of Schmidt Hammer for Estimating Mechanical Properties of Weak Rock," in 6th International IAEG Congress, Landslides, 1990.

[99] N. G. Yilmaz and R. M. Goktan, "Comparison and Combination of Two NDT Methods with Implications for Compressive Strength Evaluation of Selected Masonry and Building Stones," Bulletin of engineering Geology and the Environment vol. 78, 2019.

[100] H. Aoki and Y. Matsukura, "Estimating the Unconfined Compressive Strentgh of Intact Rocks from Equotip Hardness," Bulletin of Engineering Geology and the Environment, vol. 67, pp. 23- 29, 2008.

[101] M. J. Day and A. S. Goudie, "Field Assessment of Rock Hardness using the Schmidt Test Hammer," Bulletin of Engineering Geology and the Environment, vol. 18, pp. 19-29, 1977. [102] A. S. Goudie, "The Schmidt Hammer in Geomorphological Research," Progress in Physical

Geography, vol. 30, no. 6, pp. 703-718, 2006.

[103] P. Sumner and W. Nel, "The Effect of Rock Moisture on Schmidt Hammer Rebound: Tests on Rock Samples from Marion Island and South Africa," Earth Surface Processes and Landforms, vol. 27, no. 10, pp. 1137-1142, 2002.

[104] ASTM D5873: Standard Method for Determination of Rock Hardness by Rebound Hammer Method, 2000.

[105] H. Aoki and Y. Matsukura, "A New Technique for Non-Destructive Field Measurement of Rock-Surface Strength: an Application of the Equotip Hardness Tester to Weathering Studies," Earth Surface Processes and Landforms, vol. 32, no. 12, pp. 1759-1769, 2007.

[106] N. G. Yılmaz, "The Influence of Testing Procedures on Uniaxial Compressive Strength Prediction of Carbonate Rocks from Equotip Hardness Tester (EHT) and Proposal of a New Testing Methodology: Hybrid Dynamic Hardness (HDH)," Rock Mechanics and Rock Engineering, vol. 46, pp. 95-106, 2013.

[107] A. G. Corkum, Y. Asiri, H. E. Naggar, and D. Kinakin, "The Leeb Hardness Test for Rock: An Updated Methodology and UCS Correlation," Rock Mechanics and Rock Engineering, vol. 51, pp. 665-675, 2018.

[108] H. R. G. K. Hack, J. Hingira, and W. Verwaal, "Determination of Discontinuity Wall Strength by Equotip and Ball Rebound Tests," International Journal of Rock Mechanics and Mining Sciences and Geomechanics, vol. 30, no. 2, pp. 151-155, 1993.

[109] H. Viles, A. Goudie, S. Grab, and J. Lalley, "The Use of the Schmidt Hammer and Equotip for Rock Hardness Assessment in Geomorphology and Heritage Science: a Comparative Analysis," Earth Surface Process and Landforms, vol. 36, no. 3, pp. 320-333, 2011.

[110] S. Kawasaki, C. Tanimoto, K. Koizumi, and M. Ishikawa, "An Attempt to Estimate Mechanical Properties of Rocks using the Equotip Hardness Tester," Journal of the Japan Society of Engineering Geology vol. 43, no. 4, pp. 244-248, 2002.

[111] W. Verwaal and A. Mulder, "Estimating Rock Strength with the Equotip Hardness Tester," International Journal of Rock Mechanics and Mining Sciences and Geomechanics, vol. 30, no. 6, pp. 659-662, 1993.

[112] F. Meulenkamp and M. A. Grima, "Application of Neural Networks for the Prediction of the Unconfined Compressive Strength (UCS) from Equotip Hardness," International Journal of Rock Mechanics and Mining Sciences, vol. 36, no. 1, pp. 29-39, 1999.

[113] G. Daniels, C. Mcphee, Y. Sorrentino, and P. McCurdy, "Non-Destructive Strength Index Testing Applications for Sand Failure Evaluation," in SPE Asia Pacific Oil and Gas Conference and Exhibition, Perth, 2012.

[114] J. S. Lee, L. Swallwood, and E. Morgan, "New Application of Rebound Hardness Numbers to generate Logging of Unconfined Compressive Strength in Laminated Shale Formations," presented at the 48th US Rock Mechanics Association, Minneapolis, 2014.

[115] O. Su and M. Momayez, "Correlation between Equotip hardness index, mechanical properties and drillability of rocks," International Journal of Engineering Science, vol. 40, no. 56, pp. 519- 531, 201.

[116] G. Yilmaz and R. Goktan, "Analysis of the Leeb Hardness Test Data Obtained by Using Two Different Rock Core Holders," Journal of Natural and Applied Sciences, vol. 22, no. 1, pp. 24- 31, 2018.

[117] S. Celik and I. Cobanoğlu, "Comparative Investigation of Shore, Schmidt, and Leeb hardness Tests in the Characterization of Rock Materials," Environmental Earth Sciences, vol. 78, no. 18, 2019.

[118] L. Mol, "Measuring Rock Hardness in the Field," in Geomorphological Techniques: British Society for Geomorphology, 2014.

[119] R. M. Grima and Babuška, "Fuzzy Model for the Prediction of Unconfined Compressive Strength of Rock Samples," International Journal of Rock Mechanics and Mining Sciences, vol. 36, no. 3, pp. 339-349, 1999.

[120] NASA, Space Science Data Coordinated Archive: Penetrometer (Gruntomer), 2020. [Online]. Available: https://nssdc.gsfc.nasa.gov/nmc/experiment/display.action?id=1966-116A-06 [Accessed Jul 9, 2020].

[121] G. H. Heiken, D. T. Vaniman, and B. M. French, Lunar Source Book: A User's Guide to the Moon. EUA: Cambridge University Press, 1991.

[122] S. W. Johnson and W. D. Carrier, "Soil Mechanics Results of Luna 16 and Lunokhod I: A Preliminary Report," Houston, 1971.

[123] NASA, "Apollo 14: Preliminary Science Report," Washington, 1971. [Online]. Available: https://www.hq.nasa.gov/alsj/a14/as14psr.pdf [Accessed Jul. 7, 2020]

[124] J. K. Mitchell, L. G. Bromwell, W. D. Carrier III, N. C. Costes, and R. F. Scott, "Soil Mechanical Properties at the Apollo 14 Site," Journal of Geophysical Research (1896-1977), vol. 77, no. 29, pp. 5641-5664, 1972.

[125] NASA, "Apollo 15: Preliminary Science Report," Washington, 1972. [Online]. Available: https://www.history.nasa.gov/alsj/a15/as15psr.pdf [Accessed Jul. 9, 2020].

[126] Smithsonian, Lunar Self Recording Penetrometer, 1974. [Online]. Available: https://airandspace.si.edu/collection-objects/penetrometer-lunar-self-recording-lsrp-

apollo/nasm_A19750056000 [Accessed Jul. 15, 2020].

[127] K. Zacny et al., "Development of Venus Drill," presented at the 2017 IEEE Aerospace Conference, Big Sky, 2017.

[128] Proceq, "Equotip Hardness Tester: Conversion Tables - Impact Device D," 1985.

[129] P. Tavares, J. A. Silva, P. Costa, G. Veiga, and A. P. Moreira, "Flexible Work Cell Simulator Using Digital Twin Methodology for Highly Complex Systems in Industry 4.0," in ROBOT 2017: Third Iberian Robotics Conference, Seville, 2018, pp. 541-552.

[130] NASA, Mars 2020 Mission - Preseverance Rover, 2020. [Online]. Available: https://mars.nasa.gov/mars2020/spacecraft/rover/ [Accessed Aug. 20, 2020].

[152] K. Schindler and W. Sheehan, Northern Arizona Space Training (Images of America). USA: Arcadia Publishing, 2017, p.128.

Escala

Rockwell Símbolo da escala penetrador Tipo de

Força preliminar

(𝑭𝑯𝑹𝟎) Força Total (𝑭𝑯𝑹) 𝑺𝑯𝑹 𝑵𝑯𝑹

Intervalos de aplicação

A HRA Cone de diamante 98,07 N 588,4 N 0,002 mm 100 20-95 HRA

B HRBW Esfera de carboneto de tungsténio Ø 1,5875 mm 98,07 N 980,7 N 0,002 mm 130 10-100 HRBW C HRC Cone de diamante 98,07 N 1,471 kN 0,002 mm 100 20-70 HRC D HRD Cone de diamante 98,07 N 980,7 N 0,002 mm 100 40-77 HRD E HREW Esfera de carboneto de tungsténio Ø 3,175 mm 98,07 N 980,7 N 0,002 mm 130 70-100 HREW F HRFW Esfera de carboneto de tungsténio Ø 1,5875 mm 98,07 N 588,4 N 0,002 mm 130 60-100 HRFW G HRGW Esfera de carboneto de tungsténio Ø 1,5875 mm 98,07 N 1,471 kN 0,002 mm 130 30-94 HRGW H HRHW Esfera de carboneto de tungsténio Ø 3,175 mm 98,07 N 588,4 N 0,002 mm 130 80-100 HRHW K HRKW Esfera de carboneto de tungsténio Ø 3,175 mm 98,07 N 1,471 kN 0,002 mm 130 40-100 HRKW 15N HR15N Cone de diamante 29,42 N 147,1 N 0,001 mm 100 70-94 HR15N 30N HR30N Cone de diamante 29,42 N 294, 2 N 0,001 mm 100 42-86 HR30N 45N HR45N Cone de diamante 29,42 N 441,3 N 0,001 mm 100 20-77 HR45N

15T HR15TW tungsténio Ø carboneto de

Documentos relacionados