• Nenhum resultado encontrado

2. Revisão Bibliográfica

2.4. Mecanismos de Resistência aos β-lactâmicos em P aeruginosa

2.4.4. Proteínas Ligadoras de Penicilinas – PBPs

Proteínas ligadoras de penicilinas (PBPs) são enzimas localizadas na membrana citoplasmática e constituem o sítio de ação para a classe de antimicrobianos dos β-lactâmicos. Essas enzimas estão envolvidas nas etapas finais da síntese do peptideoglicano. As PBPs se ligam covalentemente aos β-lactâmicos impedindo a formação da parede celular, causando a lise

Revisão Bibliográfica

Revisão Bibliográfica

Revisão Bibliográfica

Revisão Bibliográfica

Página 32 osmótica da célula. O número de PBPs podem variar de acordo com cada espécie e são denominadas numericamente de acordo com o peso molecular; quanto maior o peso molecular, menor a numeração que recebem (Strateva & Yordanov 2009; Zavascki et al., 2010). As PBPs podem ser apresentadas em diferentes espécies e gêneros com a mesma denominação, e não necessariamente serem relacionadas (Poole 2004; Zapun et al., 2008; Strateva & Yordanov 2009; Zavascki et al., 2010). A resistência aos antimicrobianos β-lactâmicos devido a alterações nas PBPs é mais comum em micro-organismos Gram positivos do que nos micro-organismos Gram negativos (Godfrey et al., 1981; Gotoh et al., 1998).

Até o momento, sete diferentes PBPs foram descritas em P. aeruginosa: 1a, 1b, 2, 3, 4, 6 e 7. As PBPs -1a, -1b, -2 e -3 desempenham funções essenciais e não essenciais para a viabilidade da célula. Portanto, os carbapenens possuem afinididade para se ligarem à PBP-2, enquanto as cefalosporinas se ligam à PBP-3 (Strateva & Yordanov 2009; Zavascki et al., 2010). Apesar de pouco frequentes, alterações nas PBPs já foram descritas em isolados clínicos de P.

aeruginosa. Dois estudos relataram a alteração na PBP-4 em isolados de P. aeruginosa após

tratamento com imipenem e com piperacilina/tazobactam. Em outro estudo, também foi sugerido que a resistência aos β-lactâmicos em P. aeruginosa poderia estar associada a um aumento na produção da PBP-3 (Strateva & Yordanov 2009; Zavascki et al., 2010).

Em 2010, um estudo descrito por Moyá e seus colaboradores, apresentou um inibidor potente para a PBP-3 e a PBP-1b, sendo chamado de CXA-101, ceftolozane (nova Cefalosporinases anti - Pseudomonas). O mesmo estudo verificou que o imipenem foi o inibidor mais potente para a PBP-2 e PBP-1c. Além disso, o CXA-101, assim como a ceftazidima e ao contrário do imipenem, demonstrou ser um indutor muito fraco de expressão da AmpC, devido a baixa afinidade com a PBP-4. Já no estudo de Zamorano e colaboradores (2010) demonstrou que a hiperprodução de AmpC é o mecanismo mais comum de resistência à penicilina e as

Revisão Bibliográfica

Revisão Bibliográfica

Revisão Bibliográfica

Revisão Bibliográfica

Página 33 cefalosporinas em isolados clínicos de P. aeruginosa, sendo impulsionado por mutações no gene

ampD ou pela inativação do gene dacB, que codifica a PBP-4. Entretanto quando ocorre a

inativação do gene nagZ, os autores verificaram uma redução drastica na capacidade de isolados de P. aeruginosa em desenvolver resistência a ceftazidima e com isso não expressão da PBP-4. Os autores concluíram que NagZ é um candidato para a reversão e prevenção da resistência aos β-lactâmicos.

Apesar da ausência de diferenças significativas na expressão do gene ou sequência, uma clara tendência para o aumento da PBP2 (imipenem) e da PBP3 (ceftazidima, ceftolozane e imipenem) foi observado em isolados de P. aeruginosa apresentando panresistência aos β- lactâmicos. Sendo assim, sugere-se que, além da AmpC, dos sistemas de efluxo, e da OprD, alterações nas PBPs parece desempenhar um papel importante no aparecimento da panresistência em P. aeruginosa (Moyá et al., 2012).

FAbu}xà|äÉá

FAbu}xà|äÉáFAbu}xà|äÉá

FAbu}xà|äÉá

Objetivos

Objetivos

Objetivos

Objetivos

Página 35 3.1 Objetivo Principal

 Avaliar se a presença de ES-OXA poderia estar contribuindo para o fenótipo de redução de sensibilidade à cefepima.

3.2 Objetivos Secundários

 Padronizar uma técnica de PCR-multiplex para detecção dos diferentes grupos de oxacilinases descritas em P. aeruginosa;

 Avaliar se a DDST seria capaz de discriminar os isolados produtores de ES-OXA daqueles produtores de oxacilinases de espectro restrito;

 Analisar o perfil de sensibilidade aos antimicrobianos nas amostras de P. aeruginosa produtoras de oxacilinase;

 Avaliar a similaridade genética entre os isolados de P. aeruginosa produtores de oxacilinases e demais β-lactamases;

 Caracterizar molecularmente as oxacilinases encontradas nos isolados clínicos de P.

aeruginosa isolados durante o período de 15 anos;

 Estudar a frequência dos genes codificadores de ESβL mais comumente encontrados em P. aeruginosa isolados no Brasil.

Apresentação

Apresentação

Apresentação

Apresentação

Página 37 Os resultados da presente tese de mestrado serão apresentados na forma de artigo científico, que será posteriormente submetido ao periódico “Antimicrobial Agents and Chemotherapy (AAC)”. Dados parciais desse estudo serão apresentados na forma de pôster (nº C2-1594) na seção “Epidemiology of Resistance in Pseudomonas and Acinetobacter” no “53th Interscience Conference on Antimicrobial Agents and Chemotherapy - ICAAC” a ser realizado na cidade de Denver, Colorado, EUA, entre os dias 10 a 13 de Setembro de 2013. Para a finalização da padronização das reações de PCR multiplex e convencional para a detecção dos diferentes grupos de oxacilinases avaliados no estudo, estamos aguardando o envio dos controles positivos solicitados aos respectivos grupos de pesquisa no exterior que ainda estão faltando (OXA-5, OXA-20, OXA-45, OXA-46 e OXA-198). Sendo assim, a foto do gel de agarose (Figure 1, página 68) somente consta os controles para alguns grupos de oxacilinases (OXA-1, OXA-2, OXA-10 e OXA-18).

Art

Art

Art

ArtigoCientíficoigoCientíficoigoCientíficoigoCientífico

Página 39 Temporal Distribution of Oxacilinases Encoding Genes in Cefepime Non-Susceptible

1

Pseudomonas aeruginosa Clinical Isolates

2 3

Fernanda Villas Boas Petrolini1, Rodrigo Cayô1*, Ana Carolina Ramos da Silva¹, Graziela Braun¹,

4

Eloiza Helena Campana1, Renata Cristina Picão2, Ana Cristina Gales1.

5 6

1Laboratório ALERTA, Disciplina de Infectologia, Departamento de Medicina, Universidade

7

Federal de São Paulo - UNIFESP, São Paulo, Brazil.

8

2Departamento de Microbiologia Médica, Instituto de Microbiologia Paulo Goes, Universidade

9

Federal do Rio de Janeiro - UFRJ, Rio de Janeiro, Brazil.

10 11

Running Title: OXA enzymes in Pseudomonas aeruginosa.

12 13

*Corresponding Author. Current Address: Laboratório ALERTA, Universidade Federal de São

14

Paulo - UNIFESP, Rua Pedro de Toledo, 781, 6th floor, Vila Clementino, 04039-032, São Paulo -

15

SP, Brazil. Phone/Fax.: +55 11 55764748. E-mail: rodrigocayosilva@gmail.com.

Art

Art

Art

ArtigoCientíficoigoCientíficoigoCientíficoigoCientífico

Página 40 ABSTRACT

17

Initially, multiplex and single PCR reactions were standardized using specific primers to detect

18

and sequence all narrow and extended-spectrum oxacilinases detected in P. aeruginosa. Then,

19

the presence of genes encoding oxacilinases was evaluated among 231 unique Pseudomonas

20

aeruginosa isolates not susceptible to cefepime (CNS-PSA) collected between the years 1997

21

and 2011 from a Brazilian teaching hospital. The bacterial identification was confirmed by MALDI-

22

TOF MS. All isolates harbored blaOXA-50 that codifies a chromosomal encoded narrow-spectrum

23

oxacilinase. The frequency of oxacilinases among the CNS-PSA was 17.7%, with blaOXA-56 being

24

the most frequent followed by blaOXA-2 (1.3%) and blaOXA-4 (0.90%). Additionally, other β-

25

lactamase encoding genes were also found: blaCTX-M-2 (31.6%), blaSPM-1 (5.6%), blaSHV-5 (2.2%),

26

blaGES-1 (1.7%) and blaTEM-1 (0.4%). Association of blaOXA-2 with blaGES-1 or blaOXA-56 with blaGES-1 or

27

blaSPM-1 was also observed. Spread of epidemic clones carrying blaOXA-2, blaOXA-4, and blaSHV-5

28

was noticed. In contrast, genetic heterogeneity was observed among those isolates possessing

29

blaOXA-56 and blaCTX-M-2, which were the most frequent β-lactamases detected in the periods of

30

1997 to 2001 and 2004 to 2011, respectively. Despite of a great diversity of β-lactamases

31

encoding genes found among CNS-PSA in a Brazilian tertiary teaching hospital during a 15-year

32

period, the resistance to cefepime could not be attributed to the emergence and/or spread of

33

extended-spectrum oxacilinase producing strains.

Art

Art

Art

ArtigoCientíficoigoCientíficoigoCientíficoigoCientífico

Página 41 INTRODUCTION

35

P. aeruginosa is a leading cause of infectious disease in hospitalized patients (1).

36

According to the SENTRY Antimicrobial Surveillance Program, P. aeruginosa was the most

37

common pathogen causing pneumonia, and ranked as the third and fifth most frequent agent

38

causing skin and soft tissue and bloodstream infections in Latin America, respectively (2).

39

Treatment of infections caused by P. aeruginosa is usually difficult due to its innate resistance to

40

multiple antimicrobials. In addition, this pathogen possesses a remarkable ability of acquiring

41

other mechanisms of resistance (1). The development of resistance to β-lactams in P. aeruginosa

42

is associated with overexpression of intrinsic cephalosporinase AmpC and efflux systems, outer

43

membrane impermeability and mainly the acquisition of transferable genes encoding a variety of

44

β-lactamases (3). A growing number of Ambler class A extended-spectrum β-lactamases

45

(ESβLs), metallo-β-lactamases (MBLs) and extended-spectrum class D oxacilinases (ES-OXAs)

46

have been reported in clinical isolates of P. aeruginosa worldwide (4,5,6,7).

47

The β-lactamase production is the most frequent and dynamic mechanism of resistance

48

to β-lactams in P. aeruginosa. It compromises drastically the clinical use of these antimicrobial

49

agents and directly impacts on treatment and clinical outcomes (8,9). During the past decades,

50

the persistent exposure of bacterial strains to a variety of β-lactam agents has promoted and

51

selected continuous changes on structure the β- lactamases and expansion of their activity (10).

52

Among them, the class D β-lactamases or oxacilinases (OXAs) is a diverse and heterogenic

53

group containing more than 350 variants described so far that includes narrow- or extended-

54

spectrum β-lactamases (ES-OXA), and carbapenemases (CHDLs) (11,12,13).

55

Although a multiplex-PCR has been proposed for detection of CHDLs founded mostly in

56

Acinetobacter baumannii (14), there is no rapid and discriminative molecular test to identify other

57

non-CHDLs oxacilinases, which are commonly described in P. aeruginosa (15). Besides, differing

Art

Art

Art

ArtigoCientíficoigoCientíficoigoCientíficoigoCientífico

Página 42 from other frequent ESβLs, like TEM and SHV groups, non-CHDLs oxacilinases do not always

59

show a progression towards broad-spectrum of activity compared to their ancestors making even

60

more difficult their recognition and classification (11,12,13,16). The recognition of the ESβLs

61

phenotype is of paramount importance for prescription of adequate therapy and implementation

62

of infection control measures. The majority of ESβLs types are detected by double disc synergy

63

(DDST) using clavulanate as inhibitor. ES-OXA isolates can be also detected based on inhibition

64

of their activity by sodium chloride; however, these tests often underestimate the frequency of

65

ES-OXA since the presence of this group of enzymes is generally masked by the co-production of

66

other β-lactamases in P. aeruginosa (12,13,15).

67

Cefepime and ceftazidime are broad-spectrum cephalosporins that display similar

68

potency against Pseudomonas aeruginosa (2). Both antimicrobials have been widely used to

69

treat moderately ill patients. In our hospital, we have observed, clinical isolates

70

of P. aeruginosa presenting lower susceptibility to cefepime than to ceftazidime during recent

71

years. This phenotype has been related to hyperproduction of the efflux system MexXY-OprM

72

and/or the production of OXA-31, OXA-35, PSE-1 or CTX-M-2.

73

The objective of this study was to evaluate the frequency of β-lactamases encoding

74

genes, including narrow and ES-OXA, in a large collection of cefepime non-susceptible P.

75

aeruginosa isolates that could justify this phenotype of resistance (This work was presented in

76

part as Poster at the 53th Interscience Conference on Antimicrobial Agents and Chemotherapy -

77

ICAAC at Denver, CO, USA, 2013).

Art

Art

Art

ArtigoCientíficoigoCientíficoigoCientíficoigoCientífico

Página 43 MATERIAL AND METHODS

79

Standardization of Multiplex PCR for oxacilinase detection. To design the primers for

80

oxacilinase detection the currently available reference accession numbers of 350 oxacilinases

81

encoding genes were obtained from the Lahey website (http://www.lahey.org/Studies/). All

82

nucleotide sequences were downloaded from GenBank (National Center for Biotechnology

83

Information, National Institutes of Health, Bethesda, MD) and aligned. A dendrogram was

84

constructed using the program Lasergene DNAstar MegAling version 7.0.0 (DNASTAR, Madison,

85

USA) from the phylogenetic analysis using the software "Multiple Sequence Alignment - Clustal

86

W". Based on the homology of the nucleotide sequences, the oxacilinases described in P.

87

aeruginosa were grouped and consensus sequences were obtained for each of the oxacilinases

88

encoding genes (Table 1). Primers for detection and sequencing for each cluster were designed

89

for multiplex PCR to obtain at least 100 bp difference in the sizes of amplicons using the "Primer

90

3" version 0.4.0 (http://frodo.wi.mit.edu/ accessed January 2013) as described in Table 2. For the

91

most common narrow and ES-OXA genes groups were included in the multiplex PCR and for

92

another, a single PCR were developed. A single PCR was developed for cromossomal or

93

infrequently β-lactamase encoding genes as well as for confirmation of the multiplex results. For

94

standardization and optimization of PCR reactions for oxacilinase detection, oxacilinase-

95

producing control strains representatives of each OXA group identified in P. aeruginosa were

96

tested.

97 98

Bacterial isolates. A total of 231 cefepime non-susceptible P. aeruginosa clinical isolates

99

collected from patients hospitalized at Complex Hospital São Paulo between January 1997 and

100

August 2011 were studied. All isolates were stored at -20°C in the bank of microorganisms of the

101

Clinical Special Laboratory of Microbiology - LEMC, Division of Infectious Diseases, Federal

Art

Art

Art

ArtigoCientíficoigoCientíficoigoCientíficoigoCientífico

Página 44 University of São Paulo - UNIFESP. The identification and susceptibility test was initially

103

performed by PhoenixTM Automated Microbiology System (Becton Dickinson, USA). Identification

104

of P. aeruginosa isolates was confirmed by Matrix Assisted Laser Desorption Ionization - Time of

105

Flight (MALDI-TOF MS) (17).

106 107

DNA preparation. The P. aeruginosa clinical isolates and control strains were grown on blood

108

agar plates overnight at 37ºC to ensure colony purity. Three to five bacterial colonies were taken

109

from the blood agar plates and suspended in 350 µL of Milli-Q® sterile water (Billerica, MA, USA).

110

One microliter of this bacterial suspension was used as templates for further amplification (18).

111 112

Multiplex PCR technique. PCR reactions were prepared in a laminar flow containing master mix

113

("GoTaq Green Master Mix", Promega, Madison, USA), sterile water (Water, Molecular Biology

114

Grade, Eppendorf AG, Hamburg, Germany) and oligonucleotides (Invitrogen, Carlsbad, USA).

115

The thermocycling conditions and primers used in the PCR reactions are also shown in Table 2.

116

For the multiplex reaction assembly were used: 10.0 µL of master mix, 0.25 µL of each primer

117

(sense and anti-sense) designed for groups of blaOXA-1-like, blaOXA-2-like, blaOXA-5, blaOXA-18, blaOXA-45,

118

blaOXA-46 and 0.75 mL of each primer (sense and anti-sense) designed for a group of blaOXA-10-like,

119

4.5 µL of sterile deionized water, and 1.0 µL of template (sample or positive control). For single

120

PCR reactions, 10.0 µL of master mix, 0.5 µL of each primer (sense and anti-sense) designed

121

for detection of blaOXA-1-like, blaOXA-2-like, blaOXA-3-like, blaOXA-5, blaOXA-7-like, blaOXA-18, blaOXA-20-like,

122

blaOXA-45, blaOXA-46 and blaOXA-198, 8 µL of sterile deionized water and 1.0 µL of template were

123

tested. In addition, other commonly genes encoding for other ESβLs (blaCTX-M-like, blaSHV-like,

124

blaTEM-like and blaGES-like), as well as, genes enconding for MβLs (blaIMP-like, blaVIM-like, blaSPM-1,

125

blaGIM-1, blaSIM-1 and blaNDM-like) were also evaluated, as previously published (18,19,20). The

Art

Art

Art

ArtigoCientíficoigoCientíficoigoCientíficoigoCientífico

Página 45 revelation of the multiplex PCR products were performed by electrophoresis in 2% agarose gels

127

(Agarose UltrapureTM Invitrogen, Carlsbad, USA) while conventional PCR was performed by

128

electrophoresis on 1% agarose gels, 110V for 50 min in 0.5X TBE buffer (89 mM Tris-borate and

129

2 mM EDTA, pH 8.0). "DNA ladder" 100 bp was used as molecular weight marker (Invitrogen,

130

Carlsbad, USA). The gels were stained with ethidium bromide (2.5 mg/mL) for 30 minutes and the

131

bands were visualized under ultraviolet light - 320 nm (GelDoc Quantity One, Bio-Rad

132

Laboratories, USA).

133 134

Sequencing and interpretation of results. The sequencing reactions were carried out from the

135

purification of the products obtained in PCR reactions using the "QIAquick Gel Extraction Kit"

136

(Qiagen, Courtaboeuf, France) according to manufacturer instructions. Quantification of genomic

137

DNA was determined by optical density in a spectrophotometer digital "NanoVue Plus

138

Spectrophotometer" (GE Healthcare, Canada) using 2 µL of total DNA purified. After the

139

measurement, approximately 70 ηg of DNA was subjected to preparatory sequencing reaction

140

using the "Kit BigDye Terminator Cycle Sequencing" (Applied Biosystems, Foster City, USA). The

141

sequencing reactions were performed on the machine "ABI 3500 Genetic Analyzer" (Applied

142

Biosystems, Perkin Elmer, USA). The DNA sequences and the derived protein sequences

143

obtained were analyzed using the "Lasergene Software Package" (DNASTAR, Madison, USA)

144

and then compared to those sequences deposited in the "GenBank".

145 146

Strain-tailored double-disk synergy test (DDST) for ES-OXA detection. P. aeruginosa

147

isolates carrying blaOXA were tested by a DDST as described by Hocquet and colleagues.

148

Mueller- Hinton (MH) agar plates were inoculated with 0.5 McFarland bacterial suspension of

149

each strain and disks of ceftazidime (30 µg) and cefepima (30 µg) were placed 30 mm apart of

Art

Art

Art

ArtigoCientíficoigoCientíficoigoCientíficoigoCientífico

Página 46 amoxicillin-clavulanate (10 µg) or imipenem (10 µg). The plates were incubated aerobically at

151

35°-37°C for 18-20 h (15). The phenotypic detection of oxacilinase was considered positive if a

152

distortion in the β-lactam inhibition zones was noticed. OXA-18-producing P. aeruginosa and

153

PAO1 P. aeruginosa strains were tested as positive and negative quality controls, respectively.

154 155

Antimicrobial susceptibility testing. The minimum inhibitory concentrations (MIC) for all

156

oxacilinases-producing P. aeruginosa clinical isolates were determined by broth microdilution

157

following the recommendations of the "Clinical and Laboratory Standards Institute - CLSI” (21).

158

The following antimicrobials were tested: piperacillin/tazobactam, ceftazidime, cefepime,

159

aztreonam, imipenem, meropenem, ciprofloxacin, amikacin, gentamicin and polymyxin B. The

160

powders of antimicrobial agents were purchased from Sigma-Aldrich (Sigma, Steinheim,

161

Germany). The susceptibility results were interpreted according with the CLSI breakpoints (22).

162

Escherichia coli ATCC 25922 and P. aeruginosa ATCC 27853 were tested as quality control

163

strains.

164 165

Genetic similarity and cluster analysis. Genetic similarity among oxacilinases-producing P.

166

aeruginosa isolates was evaluated by ERIC-PCR using randomic primers as described previously

167

(23). Analysis of ERIC patterns was performed by visual inspection of photographs of ethidium

168

bromide-stained 2% agarose gels. Dendrogram and cluster analysis were performed using

169

algorithms available within the BioNumerics software package v.6.0 (Applied Maths, Sint-

170

Martens-Latem, Belgium). Percent similarity between different chromosomal fingerprints was

171

scored by the Dice coefficient. The unweighted pair group method with arithmetic means

172

(UPGMA), with a 1.00% tolerance limit and 1.00% optimization, was utilized to obtain the

173

dendrogram.

Art

Art

Art

ArtigoCientíficoigoCientíficoigoCientíficoigoCientífico

Página 47 RESULTS

175

Multiplex PCR for detection of narrow- and ES-OXA standardization. Based on the

176

nucleotide sequences, the 52 oxacilinases described in P. aeruginosa were divided in ten

177

different groups as follow: OXA-1 group (5 variants), OXA-2 group (10 variants), OXA-5 group

178

(one variant), OXA-10 group (18 variants), OXA-18 group (one variant), OXA-20 group (two

179

variant), OXA-45 group (one variant), OXA-46 group (three variant), OXA-50 group (10 variants)

180

and OXA-198 group (one variant). The respective variants of each group and their spectrum of

181

activity are shown on Table 3. The most frequent groups of narrow- and ES-OXA described in P.

182

aeruginosa isolates (OXA-1, OXA-2, OXA-5, OXA-10, OXA-18, OXA-45 and OXA-46) were

183

included in the multiplex PCR and a single PCR was developed for the remaining groups (OXA-

184

20, OXA-50 and OXA-198). The amplicons showed the expected sizes of for all control strains,

185

confirming the specificity of each pair of primers to detect the narrow- and ES-OXA groups as

186

demonstrated in Figure 1.

187 188

β-lactamases production in cefepime non-susceptible P. aeruginosa isolates. A total of 231

189

cefepime non-susceptible P. aeruginosa isolates were recovered from January 1997 to August

190

2011 in a tertiary teaching hospital localized in São Paulo city, Brazil. All P. aeruginosa isolates

191

carried the cromossomal blaOXA-50-like gene that encoded a narrow-spectrum oxacilinase intrinsic

192

to this pathogen. Then, as expected, all isolates were identified as P. aeruginosa by MALDI-TOF

193

MS with a high score ≥ 2.3. Among them, the multiplex PCR was performed and detected the

194

presence of acquired oxacilinases encoding genes in 41 isolates (17.7%). The blaOXA-10 group

195

was found in 36 of 41 isolates (87.8%) followed by blaOXA-2 and blaOXA-1 detected in 3 (7.3%)

196

and 2 (4.9%) of 41 isolates, respectively. blaOXA-5, blaOXA-18, blaOXA-20, blaOXA-45, blaOXA-46, and

197

blaOXA-198 groups were not detected among the P. aeruginosa isolates evaluated. DNA

Art

Art

Art

ArtigoCientíficoigoCientíficoigoCientíficoigoCientífico

Página 48 sequencing results revealed that the blaOXA-56 (OXA-10 group) that codifies OXA-56, a narrow-

199

spectrum oxacilinase, was the most frequent oxacilinases among the P. aeruginosa isolates

200

evaluated during the 15-year period of study, followed by the blaOXA-2 (OXA-2 group) and blaOXA-

201

4 (OXA-1 group) that codify OXA-2 and OXA-4 narrow-spectrum oxacilinases, respectively. Other

202

β-lactamase encoding genes were also found: blaCTX-M-2 (ESβL; 73 isolates/31.6%), blaSPM-1

203

(MβL; 13 isolates/5.6%), blaSHV-5 (ESβL; 5 isolates/2.2%), blaGES-1 (ESβL; 4 isolates/1.7%) and

204

blaTEM-1 (narrow-spectrum; 1 isolate/0.4%). The concomitant presence of blaOXA-56 with blaGES-1 or

205

blaSPM-1 was found in one and six isolates, respectively, as well as blaOXA-2 with blaGES-1 in one

206

isolate (Figure 3). Thus, among the 231 isolates evaluated in the present study, 128 isolates

207

(55.4%) possessed at least one acquired β-lactamase encoding gene of the eight genes

Documentos relacionados