• Nenhum resultado encontrado

Sugestões Para Pesquisas Futuras

No documento Universidade Federal do Rio de Janeiro (páginas 103-168)

5 CONCLUSÕES E SUGESTÕES PARA PESQUISAS FUTURAS

5.2 Sugestões Para Pesquisas Futuras

- Realizar testes em sistemas contínuos, proporcionando melhor adaptação da microbiota às concentrações de glicerol adicionadas e, por conseguinte, maiores acréscimos na produção específica de biogás e metano;

- Através de sistemas contínuos, executar frequente monitoramento das variáveis de estabilidade (pH, alcalinidade e ácidos voláteis) e desempenho do digestor (produção de metano) permitindo, assim, melhor entendimento do processo de codigestão, em especial no indicativo de sinais de instabilidade e/ou possíveis sobrecargas acarretadas pela adição do glicerol;

- Avaliar a produção de biogás e metano em escala piloto, para determinação do efeito escalonamento, com adaptações nas concentrações de substratos e inóculo que permitam melhores condições de funcionamento do digestor para posterior aplicação em campo em sistemas de codigestão binária e/ou ternária contendo glicerol como cosubstrato;

- Verificar a viabilidade da utilização do metano produzido em escala piloto para geração de energia elétrica e gás veicular, através de um balanço entre energia de entrada (agitação, bomba de circulação, aquecimento, por exemplo) e energia de saída (metano produzido) para verificação da energia excedente, que pode ser aplicada, entre outros casos, como combustível para o caminhão que realiza o transporte das matérias-primas (glicerol e/ou resíduo orgânico) até a estação de tratamento de esgoto.

89 REFERENCIAS BIBLIOGRÁFICAS

ALIBARDI, L.; COSSU, R. Composition variability of the organic fraction of municipal solid waste and effects on hydrogen and methane production potentials. Waste Management, v. 36, p. 147–155, 2015.

ALVAREZ, J. A.; OTERO, L.; LEMA, J. M. A methodology for optimising feed composition for anaerobic co-digestion of agro-industrial wastes. Bioresource technology, v. 101, n. 4, p. 1153–8, fev. 2010.

ALVES, I. R. DE F. S.; OLIVEIRA, L. B.; MAHLER, C. F. Lixo Urbano: o que você precisa saber sobre o assunto. In: REVAN (Ed.). . Lixo Urbano: o que você precisa saber sobre o assunto. 1a. ed. Rio de Janeiro, Revan, 2012.

ALVES, I. R. F. S. Análise Experimental do Potencial de Geração de Biogás em Resíduos Sólidos Urbanos. Dissertação de Mestrado, Departamento de Engenharia Civil, Universidade Federal de Pernambuco, 2008. 118 p.

AMARAL, P.F.F., FERREIRA, T.F., FONTES, G.C., COELHO, M.A.Z. Glycerol Valorization: New Biotechnological Routes. Food and Bioproducts Processing. v 87, p. 179-186, 2009.

AMON, T. et al. Optimising methane yield from anaerobic digestion of manure: Effects of dairy systems and of glycerine supplementation. International Congress Series, v. 1293, p. 217–220, jul. 2006.

ANDRADE, C. A. Nitratos e metais pesados no solo e em plantas de Eucalyptus grandis após aplicação de biossólido da ETE de Barueri. Dissertação (Mestrado) - Universidade de São Paulo, 1999, 120p.

ÁNGEL, J. et al. Bioresource Technology Anaerobic digestion of glycerol derived from biodiesel manufacturing. Bioresource Technology, v. 100, n. 23, p. 5609–5615, 2009.

ANGELIDAKI, I. et al. Defining the biomethane potential (BMP) of solid organic wastes and energy crops: a proposed protocol for batch assays. Water science and technology. v. 59, n. 5, p. 927–34, jan. 2009.

90 AGÊNCIA NACIONAL DE PETRÓLEO (ANP). Produção Nacional de Biodiesel Puro - B100 (2005-2016). 2016.

ANTONOPOULOU G, GAVALA HN, SKIADAS IV, ANGELOPOULOS K, LYBERATOS G. Biofuels generation from sweet sorghum: fermentative hydrogen production and anaerobic digestion of the remaining biomass. Bioresource Technology. v.99: 110- 119. 2008.

APHA. American Public Health Association. Standard Methods for the Examination of Water and Wastewater, 21st ed. American Public Health Association, America Water Works Association, Water Environment Federation, Washington, DC.2005.

ASTALS, S.; ARISO, M.; GALÍ, A. Co-digestion of pig manure and glycerine : Experimental and modelling study. Journal of Environmental Management, v. 92, n. 4, p. 1091–1096, 2011.

ASTALS, S.; NOLLA-ARDÈVOL, V.; MATA-ALVAREZ, J. Anaerobic co-digestion of pig manure and crude glycerol at mesophilic conditions : Biogas and digestate. Bioresource Technology, v. 110, p. 63–70, 2012.

ASTALS, S.; NOLLA-ARDÈVOL, V.; MATA-ALVAREZ, J. Thermophilic co-digestion of pig manure and crude glycerol : Process performance and digestate stability. Journal of Biotechnology, v. 166, p. 97–104, 2013.

ATHANASOULIA, E.; MELIDIS, P.; AIVASIDIS, A. Co-digestion of sewage sludge and crude glycerol from biodiesel production. Renewable Energy, v. 62, p. 73–78, fev. 2014.

BABA, Y. et al. Anaerobic digestion of crude glycerol from biodiesel manufacturing using a large-scale pilot plant : Methane production and application of digested sludge as fertilizer. Bioresource technology, v. 140, p. 342–348, 2013.

BATISTA, L. F. Lodos gerados nas estações de tratamento de esgotos no distrito federal: um estudo de sua aptidão para o condicionamento, utilização e disposição final. Departamento de Engenharia Civil e Ambiental. Universidade de Brasília, 2015. 197p.

91 BANCO CENTRAL DO BRASIL. Conversão de Moedas. Disponível em: <http://www4.bcb.gov.br/pec/conversao/conversao.asp>. Acesso em 14/06/2016 BELITZ, H. D.; GROSCH, W.; SCHIEBERLE, P. Food Chemistry. 4 th ed. Berlin: Springer, 2009.

BIOMERCADO. Centro de Referência da Cadeia de Produção de Biocombustíveis Para Agricultura Familiar. Cotações da Glicerina Bruta no Estado de São Paulo. Disponível em: <http://biomercado.com.br/>. Acesso em 14/06/2016

BORIES, A., HIMMI, E., JAUREGUI, J.J.A., PELAYO-ORTIZ, C., GONZALES, V.A., 2004. Glycerol fermentation with Propionibacteria and optimisation of the production of propionic acid. Sciences Des Aliments. 24, 121–135.

BOUALLAGUI, H. et al. Bioreactor performance in anaerobic digestion of fruit and vegetable wastes. Process Biochemistry, v. 40, n. 3, p. 989–995, 2005.

BOUALLAGUI, H. et al. Improvement of fruit and vegetable waste anaerobic digestion performance and stability with co-substrates addition. Journal of Environmental Management, v. 90, n. 5, p. 1844–1849, 2009.

BRANCOLI, P. L. Avaliação experimental da co - digestão anaeróbia de resíduos orgânicos e lodo de esgoto em digestores têxteis Avaliação experimental da co - digestão anaeróbia de resíduos orgânicos e lodo de esgoto em digestores têxteis. Dissertação de Mestrado. Escola Politécnica, Universidade Federal do Rio de Janeiro. 2014.85p.

BRISOLARA, K. F.; QI, Y. Biosolids and Sludge Management. Water environment research. v. 87, n. 10, p. 1147–66, 2011.

BUSWELL, E.G., NEAVE, S.L. Laboratory studies of sludge digestion. Illinois Division of State Water Survey, Bulletin No. 30. 1930.85 p.

CABBAI, V. et al. BMP tests of source selected OFMSW to evaluate anaerobic codigestion with sewage sludge. Waste managemenent. v. 33, n. 7, p. 1626–32, jul. 2013.

92 CARUCCI, G., CARRASCO, F., TRIFONI, K., MAJONE, M. AND BECCARI, M., “Anaerobic digestion of food industry wastes: effect of codigestion on methane yield”. Journal of Environmental Engineering, 131, 1037–1045, 2005.

CASTRILLÓN, L.; ORMAECHEA, P.; MARAÑÓN, E. Methane production from cattle manure supplemented with crude glycerin from the biodiesel industry in CSTR and IBR. Bioresource Technology, v. 127, p. 312–317, 2013.

CENBIO [Centro Nacional de Referência em Biomassa] (2013). http://cenbio.iee.usp.br/saibamais/tecnologias.htm#gaseificacao. Acesso em janeiro de 2013.

CHARLES, W.; WALKER, L.; CORD-RUWISCH, R. Effect of pre-aeration and inoculum on the start-up of batch thermophilic anaerobic digestion of municipal solid waste. Bioresource Technology, v. 100, n. 8, p. 2329–2335, 2009.

CHEN, W.-H. et al. Kinetic study of biological hydrogen production by anaerobic fermentation. International Journal of Hydrogen Energy, v. 31, n. 15, p. 2170–2178, 2006.

CHEN, Y.; CHENG, J. J.; CREAMER, K. S. Inhibition of anaerobic digestion process: a review. Bioresource technology, v. 99, n. 10, p. 4044–64, jul. 2008.

CHENG, K.-K. et al. Pilot-scale production of 1,3-propanediol using Klebsiella pneumoniae. Process Biochemistry, v. 42, n. 4, p. 740–744, 2007.

CHENG, J. et al. Physicochemical characterization of typical municipal solid wastes for fermentative hydrogen and methane co-production. Energy Conversion and Management, v. 117, p. 297–304, 2016.

CHRISTY, P.; GOPINATH, L. R.; DIVYA, D. A review on anaerobic decomposition and enhancement of biogas production through enzymes and microorganisms. Renewable and Sustainable Energy Reviews, v. 34, p. 167–173, jun. 2014.

CORTEZ, L.A.B; LORA, E.E.S.; AYARZA, J.A.C. Biomassa no Brasil e no mundo. In: CORTEZ, L.A.B; LORA, E.E.S.; GOMEZ, E.O. (org). Biomassa para energia. Campinas, São Paulo. Editora da UNICAMP, 2008.

93 CUETOS, M.J., GÓMEZ, X., OTERO, M., MORÁN, A.,. Anaerobic digestión of solid slaughterhouse waste (SHW) at laboratory scale: influence of co-digestion with. 2008

DE CLERCQ, D. et al. Biomethane production potential from restaurant food waste in megacities and project level-bottlenecks: A case study in Beijing. Renewable and Sustainable Energy Reviews, v. 59, p. 1676–1685, 2016.

DI MARIA, F. et al. Co-treatment of fruit and vegetable waste in sludge digesters. An analysis of the relationship among bio-methane generation, process stability and digestate phytotoxicity. Waste management, v. 34, n. 9, p. 1603–1608, set. 2014.

DUGBA, P.; ZHANG, R. Treatment of dairy wastewater with two-stage anaerobic sequencing batch reactor systems — thermophilic versus mesophilic operations. Bioresource Technology, v. 68, n. 3, p. 225–233, jun. 1999.

DUBOIS, M., GILLES, K.A., HAMILTON, J.K., REBERS, P.A., SMITH, F. Colorimetric method for determination of sugars and related substances. Analitical Chemistry. 28, p. 350–356. 1956.

EHRIG, H.J. Prediction of gas production from laboratory scale tests, In: Proceedings Sardinia, Third International Landfill Symposium., Cagliari, Italy. Cagliari: CISA. p. 87-114.1991.

ELBESHBISHY, E.; NAKHLA, G.; HAFEZ, H. Biochemical methane potential (BMP) of food waste and primary sludge: influence of inoculum pre-incubation and inoculum source. Bioresource technology, v. 110, p. 18–25, abr. 2012.

EMPRESA DE PESQUISA ENERGÉTICA. Inventário Energético dos Resíduos Sólidos Urbanos. 1a. ed. Rio de Janeiro, EPE/MME, 2014a.

EMPRESA DE PESQUISA ENERGÉTICA. Nota técnica DEA 16/2014: Economicidade e Competitividade do Aproveitamento Energético dos Resíduos Sólidos Urbanos. Rio de Janeiro: EPE/MME, 2014b.

EMPRESA DE PESQUISA ENERGÉTICA. Balanço energético Nacional 2015: Ano Base 2014. 292 p. 2015

94 EMPRESA DE PESQUISA ENERGÉTICA. Anuário Estatatístico de Energia Elétrica 2015: Ano base 2014. 232 p. 2015b

ERSAHIN, M. E. et al. Biomethane production as an alternative bioenergy source from codigesters treating municipal sludge and organic fraction of municipal solid wastes. Journal of biomedicine & biotechnology, v. 2011, p. 953-965, jan. 2011.

ESPOSITO, G. et al. Bio-Methane Potential Tests To Measure The Biogas Production From The Digestion and Co-Digestion of Complex Organic Substrates. The Open Environmental Engineering Journal, p. 1–8, 2012.

FELIZARDO P, JOANA NEIVA CORREIA M, RAPOSO I, MENDES JF, BERKEMEIER R, BORDADO JM. Production of biodiesel from waste frying oils. Waste Management 2006;26:487–94.

FERNÁNDEZ, J.; PÉREZ, M.; ROMERO, L. I. Kinetics of mesophilic anaerobic digestion of the organic fraction of municipal solid waste: Influence of initial total solid concentration. Bioresource Technology, v. 101, n. 16, p. 6322–6328, 2010.

FERRER, I. et al. Biogas production in low-cost household digesters at the Peruvian Andes. Biomass and Bioenergy, v. 35, n. 5, p. 1668–1674, 2011.

FONOLL, X. et al. Anaerobic co-digestion of sewage sludge and fruit wastes : Evaluation of the transitory states when the co-substrate is changed. Chemical Engineering Journal. v. 262, p. 1268–1274, 2015.

FONTES, R.; ALÇADA, M.N. A Bioquímica e a Química Orgânica. Disponível em: http://users.med.up.pt/ruifonte/PDFs/PDFs_arquivados_anos_anteriores/2010-

2011/Bioquimica_e_Quimica_Organica_vs2010-11.pdf. Acesso em: 27 abr. 2015.

FORSTER-CARNEIRO, T. et al. Dry-thermophilic anaerobic digestion of organic fraction of the municipal solid waste: Focusing on the inoculum sources. Bioresource Technology, v. 98, n. 17, p. 3195–3203, 2007.

FOUNTOULAKIS, M. S.; MANIOS, T. Enhanced methane and hydrogen production from municipal solid waste and agro-industrial by-products co-digested with crude glycerol. Bioresource technology, v. 100, n. 12, p. 3043–3047, jun. 2009.

95 FOUNTOULAKIS, M. S.; PETOUSI, I.; MANIOS, T. Co-digestion of sewage sludge with glycerol to boost biogas production. Bioresource technology. v. 30, p. 1849– 1853, 2010.

FREITAS, E. S. . Produção de Biodiesel a Partir do Sebo Bovino: Proposta de um Sistema de Logística Reversa. Dissertação de Mestrado. Departamento de Engenharia Industrial da Escola Politécnica. Universidade Federal da Bahia, 2016.

GALEMBECK, F.; BARBOSA, C. A. S; SOUSA, R. A. (2009). Aproveitamento sustentável de biomassa e de recursos naturais na inovação química. Quimica Nova, v. 32, No. 3, p. 571-581.

GALLERT, C.; WINTER, J. Propionic acid accumulation and degradation during restart of a full-scale anaerobic biowaste digester. Bioresource Technology, v. 99, n. 1, p. 170–178, 2008.

GARCÍA, A. J. et al. Biodegradable municipal solid waste: characterization and potential use as animal feedstuffs. Waste Management, v. 25, n. 8, p. 780–787, 2005.

GÁS NATURAL FENOSA. Tarifas CEG Rio. Disponível em: <https://www.gasnaturalfenosa.com.br/br/rio+de+janeiro/para+a+sua+casa/distribuicao +de+gas+natural/tarifas/1297092029463/ceg+rio.html>. Acesso em 14/06/2016

GÓMEZ, X. et al. Anaerobic co-digestion of primary sludge and the fruit and vegetable fraction of the municipal solid wastes: Conditions for mixing and evaluation of the organic loading rate. Renewable Energy, v. 31, n. 12, p. 2017–2024, 2006.

GUERMOUD, N., OUAGJNIA, F., AVDELMALEK, F., TALEB, F., ADDOU, A. Municipal solid waste in Mostagnem city (Western Algeria). Waste Management. v. 29, p. 896– 902. 2009.

HANSEN, T. L. et al. Method for determination of methane potentials of solid organic waste. Waste management, v. 24, n. 4, p. 393–400, jan. 2004.

96 HANSEN, C. F. et al. A chemical analysis of samples of crude glycerol from the production of biodiesel in Australia, and the effects of feeding crude glycerol to growing-finishing pigs on performance, plasma metabolites and meat quality at slaughter. Animal Production Science, v. 49, n. 2, p. 154–161, 2009.

HARRIES C. R.; CROSS CJ; SMITH. Development of a biochemical methane potential (BMP) test and application to testing of municipal solid waste samples.Proceedings Sardinia, Eighth International Waste Management and Landfill Symposium. Anais...Cagliari, Italy.: Cagliari: CISA. v. 1, 2001

HATTINGH, W. H. J.; THIEL, P. G.; SIEBERT, M. L. Determination of protein content of anaerobic digesting sludge. Water Research, v.1, p.185−189.1967.

HAZIMAH AH, OOI TL, SALMIAH A. Recovery of glycerol and diglycerol from glycerol pitch. Oil Palm Research. v 15. p 1-5, 2003.

HENRIQUES, R. M. Potencial para Geração de Energia Elétrica no Brasil com Resíduos de biomassa através da Gaseificação. Tese (doutorado) – UFRJ/ COPPE/ Programa de Planejamento Energético. 207 p.2009.

HOLM-NIELSEN; SEADI, A.; OLESKOWICZ-POPIEL. The future of anaerobic digestion and biogas utilization. Bioresource technologyTechnol, v. 100, p. 5478– 5484., 2009.

HOLM-NIELSEN, J. H. et al. n-line Near Infrared monitoring of glycerol-boosted anaerobic digestion processes - evaluation of Process Analytical Technologies. J. Biotechnology Bioengeneering, v. 99, n. 2, p. 302–313, 2007.

HU, S., LUO, X., WAN, C., LI, Y. Characterization of crude glycerol from biodiesel plants. J. Agricultural Food Chemistry. v.60, n.23, p.5915–5921.2012. http://dx.doi.org/10.1021/ jf3008629

IACOVIDOU, E.; OHANDJA, D.; VOULVOULIS, N. Food waste co-digestion with sewage sludge e Realising its potential in the UK. Journal of Environmental Management, v. 112, p. 267–274, 2012.

97 ISSAZADEH, K. et al. Diversity of methanogenic bacteria in ecological niches. Animal Biology Research, v. 4, p. 36–42, 2013.

JENSEN, P. D. et al. ScienceDirect Anaerobic codigestion of sewage sludge and glycerol , focusing on process kinetics , microbial dynamics and sludge dewaterability. Water research, v. 7, n. 60, 2014.

JIANG, Y.; HEAVEN, S.; BANKS, C. J. Strategies for stable anaerobic digestion of vegetable waste. Renewable Energy, v. 44, p. 206–214, ago. 2012.

JITRWUNG; YARGEAU. Optimization of media composition for the production of biohydrogen from waste glycerine. Int. J. Hydrogen Energy, v. 36, p. 9602–9611, 2011.

KARAKASHEV, D.; BATSTONE, D. J.; ANGELIDAKI, I. Influence of environmental conditions on methanogenic compositions in anaerobic biogas reactors. Applied Environmental Microbiology, v. 71, n. 1, p. 331–338, 2005.

KHALID, A. et al. The anaerobic digestion of solid organic waste. Waste management (New York, N.Y.), v. 31, n. 8, p. 1737–1744, ago. 2011.

KHANAL, S. K. et al. Bioenergy and Biofuel Production from Wastes/Residues of Emerging Biofuel Industries. Water Environment Research, v. 80, n. 10, p. 1625– 1647, 2008.

KIVAISI, A.K., MTILA, M. Production of biogas from water hyacinth (Eichhornia crassipes) (Mart) (Solms) in a two stage bioreactor. World Journal. Microbiology. Technology. v. 14, p. 125–131, 1998..

KIM, H.; NAM, J.; SHIN, H. A comparison study on the high-rate co-digestion of sewage sludge and food waste using a temperature-phased anaerobic sequencing batch reactor system. Bioresource Technology, v. 102, n. 15, p. 7272–7279, 2011.

KIM, H.-W.; HAN, S.-K.; SHIN, H.-S. The optimisation of food waste addition as a co- substrate in anaerobic digestion of sewage sludge. Waste management & research, v. 21, n. 6, p. 515–526, 2003.

98 KIRAN, E. et al. Bioconversion of food waste to energy: A review. Fuel, v. 134, p. 389– 399, out. 2014.

KOUTROULI, E.C., KALFAS, H., GAVALA, H.N., Skiadas, I.V., Stamatelatou, K., Lyberatos, G. Hydrogen and methane production through two-stage mesophilic anaerobic digestion of olive pulp. Bioresource technology. v. 42, p. 3718–3723. 2009.

KRUPP, M., SHUBERT, J., WIDMANN, R.. Feasibility study for co-digestion of sewage sludge with OFMSW on two wastewater treatment plants in Germany. Waste Management, 2005.

LABATUT, R. A; ANGENENT, L. T.; SCOTT, N. R. Biochemical methane potential and biodegradability of complex organic substrates. Bioresource technology, v. 102, n. 3, p. 2255–2264, fev. 2011.

LAGES, F; SILVA-GRAÇA; M LUCAS C. Active glycerol uptake is a mechanism underlying halotolerance in yeasts: a study of 42 species. Microbiology, v.145, p. 2577–2585, 1999.

LANE, A. . Anaerobic digestion of orange peel. Food Technology Australia, v. 36, n. 3, p. 125–127, 1984.

LEE, D. H. et al. Methane production potential of leachate generated from Korean food waste recycling facilities: A lab-scale study. Waste Management, v. 29, n. 2, p. 876– 882, 2009.

LESTEUR, M. et al. Alternative methods for determining anaerobic biodegradability: A review. Process Biochemistry, v. 45, n. 4, p. 431–440, 2010.

LI, G. Evaluating Methane Production from Anaerobic Mono- and Co- digestion of Kitchen Waste, Corn Stover, and Chicken Manure. Applied Biochemistry And Biotechnology. v 171. n 1, p. 117-127 2013.

LI, Y. et al. Comparison of methane production potential, biodegradability, and kinetics of different organic substrates. Bioresource technology, v. 149, p. 565–9, dez. 2013b.

99 LOURENÇO. Vermicompolstagem – Gestão de Resíduos Orgânicos. 1a edição, Lisboa, 150p, 2010.

LU, Y., LAI, Q., ZHANG, C., ZHAO, H., MA, K., ZHAO, X., CHEN, H., LIU, D., XING, X.H. Characteristics of hydrogen and methane production from cornstalks by an augmented two- or three-stage anaerobic fermentation process. Bioresource Technology, v. 100, n. 12, p. 2889–2895, 2009.

MA, J., VAN WAMBEKE, M., CARBALLA, M., VERSTRAETE, W. Improvement of the anaerobic treatment of potato processing wastewater in a UASB reactor by co- digestion with glycerol. Biotechnology Letters. v. 30, p. 861–867, 2007.

MACIEL, F.J. (2003). Estudo da geração, percolação e emissão de gases no Aterro de Resíduos Sólidos da Muribeca/PE. Dissertação de Mestrado. Centro de Tecnologia e Geociências, Universidade Federal de Pernambuco, Recife-PE. 173p.

MATA-ALVAREZ, J. et al. A critical review on anaerobic co-digestion achievements between 2010 and 2013. Renewable and Sustainable Energy Reviews, v. 36, p. 412–427, 2014.

MATA-ALVAREZ, J.; MACÉ, S.; LLABRÉS, P. Anaerobic digestion of organic solid wastes. An overview of research achievements and perspectives. Bioresource Technology, v. 74, n. 1, p. 3–16, ago. 2000.

MINISTÉRIO DE MINAS E ENERGIA. Resenha Energética Brasileira - Exercício de 2014. Brasília: Ministério de Minas e Energia, 2015.

MINISTÉRIO DE MINAS E ENERGIA. Sancionada lei que eleva percentual de

biodiesel ao óleo diesel para 8%. Disponível em:

<http://www.mme.gov.br/web/guest/pagina-inicial/outras-noticas/-

/asset_publisher/32hLrOzMKwWb/content/sancionada-lei-que-eleva-percentual-de- biodiesel-ao-oleo-diesel-para-8->. Acesso em 14/06/2016.

MONTUSIEWICZ, A.; LEBIOCKA, M. Co-digestion of intermediate landfill leachate and sewage sludge as a method of leachate utilization. Bioresource technology, v. 102, n. 3, p. 2563–2571, fev. 2011.

100 MONTUSIEWICZ, A.; LEBIOCKA, M.; PAWLOWSKA, M. Characterization of the biomethanization process in selected wastes mixtures. Archives of Environmental Protection, p. 49–61, 2008.

MOON, H. C.; SONG, I. S. Enzymatic Hydrolysis of FoodWaste and Methane Production Using UASB Bioreactor. International Journal of Green Energy, v. 8, n. 3, p. 361–371, 2011.

MORIN, S., LEMAY, S. AND BARRINGTON, S.F. An urban composting system. Paper No. 03-612. Written for presentation at the CSAE/ SCGR 2003 meeting, July 6–9. Montreal, Quebec. 2003.

MSHANDETE, A., KIVAISI, A., RUBINDAMAYUGI, M., MATTIASSON, B. Anaerobic batch co-digestion of sisal pulp and fish wastes. Bioresource Technology v. 95, p. 19–24, 2004.

NAKAMURA, K.; KISHI, Y.; IKEGAMI, M. Application of Waste Glycerin Liquid Produced from Biodiesel Production to Methane Fermentation. n. October, p. 197–204, 2008.

NARTKER, S. et al. Increasing biogas production from sewage sludge anaerobic co- digestion process by adding crude glycerol from biodiesel industry. Bioresource Technology v. 34, p. 2567–2571, 2014.

NEMETH, A., KUPCSULIK, B., SEVELLA, B., 2003. 1,3-propanediol oxidoreductase production with Klebsiella pneumonia DSM2026. World Journal Microbiology Biotechnology. v. 19, n. 7, p. 659–663, 2003.

NEVES, L. et al. Influence of composition on the biomethanation potential of restaurant waste at mesophilic temperatures. Waste management, v. 28, n. 6, p. 965–72, jan. 2008.

NGHIEM, L. D. et al. Co-digestion of sewage sludge and crude glycerol for on-demand biogas production. International Biodeterioration and Biodegradation, v. 95, p. 160- 166, 2014.

101 PANICHNUMSIN, NOPHARATANA, AHRING, C. Production of methane by co- digestion of cassava pulp with various concentrations of pig manure. Biomass and BioenergyBioenergy, v. 34, p. 1117–1124., 2010.

PANPONG, K. et al. Anaerobic Co-digestion of Canned Seafood Wastewater with Glycerol Waste for Enhanced Biogas Production. Energy Procedia, v. 52, p. 328–336, 2014.

PARK, K. Y. et al. Combination of different substrates to improve anaerobic digestion of sewage sludge in a wastewater treatment plant. International Biodeterioration & Biodegradation, v. 109, p. 73–77, abr. 2016.

POLÍTICA NACIONAL DE RESÍDUOS SÓLIDOS. Decreto-Lei nº 12.305, de 2 de agosto de 2010. Institui a Política Nacional de Resíduos Sólidos; altera a Lei no 9.605, de 12 de fevereiro de 1998; e dá outras providências. Diário Oficial [da República Federativa do Brasil], Brasília, 3 agosto de 2010. Disponível em: < http://www.planalto.gov.br/ccivil_03/_ato2007-2010/2010/lei/l12305.htm.>.

QIAO, W. et al. Biogas production from supernatant of hydrothermally treated municipal sludge by upflow anaerobic sludge blanket reactor. Bioresource technology, v. 102, n. 21, p. 9904–11, nov. 2011.

RAMAKRISHNA, D.M., VIRARAGHAVAN, T. Strategies for sludge minimization in activated sludge process e a review. Fresenius. Environmental. Bulletin. v. 14, p. 2- 12, 2005.

RAO, M.S., SINGH, S.P. Bioenergy conversion studies of organic frac- tion of MSW: kinetic studies and gas yield-organic loading relation- ships for process optimization. Bioresource Technology. v. 95, n. 2, p. 173–185, 2004.

RAPOSO, F. et al. Biochemical methane potential (BMP) of solid organic substrates: evaluation of anaerobic biodegradability using data from an international interlaboratory study. Journal of Chemical Technology & Biotechnology, v. 86, n. 8, p. 1088–1098, 12 ago. 2011.

102 RATANATAMSKUL, C., WATTANAYOMMANAPORN, O., YAMAMOTO, K., 2011. Codigestion of food waste and sewage sludge by two stage anaerobic digester for biogas production from high rise building. In: Thirteenth International Waste Man- agement and Landfill Symposium. CISA Publisher, Cagliari, Italy

RAZAVIARANI, V. et al. Pilot scale anaerobic co-digestion of municipal wastewater sludge with biodiesel waste glycerin. Bioresource technology, v. 133, p. 206–12, abr. 2013.

RAZAVIARANI, V.; BUCHANAN, I. D. Anaerobic co-digestion of biodiesel waste glycerin with municipal wastewater sludge : Microbial community structure dynamics and reactor performance. Bioresource Technology. v. 182, p. 8–17, 2015.

RIVALDI, J. D. et al. Glicerol de biodiesel. Biotecnologia Ciência &Desenvolvimento, n. 37, p. 44–51, 2007.

ROBRA, S. et al. Generation of biogas using crude glycerin from biodiesel production as a supplement to cattle slurry. Biomass and Bioenergy, v. 34, n. 9, p. 1330–1335, 2010.

ROMERO-GÜIZA, M. S. et al. The role of additives on anaerobic digestion: A review. Renewable and Sustainable Energy Reviews, v. 58, p. 1486–1499, mai 2016.

SECRETARIA NACIONAL DE SANEAMENTO AMBIENTAL. Sistema Nacional de Informações sobre Saneamento: diagnóstico do manejo de resíduos sólidos urbanos – 2014. Brasília: MCIDADES.SNSA, 2016a.

SECRETARIA NACIONAL DE SANEAMENTO AMBIENTAL. Sistema Nacional de Informações sobre Saneamento: Diagnóstico dos Serviços de Água e Esgotos – 2014. Brasilia: SNSA/MCIDADES, 2016b.

SEMBLANTE, S., HAI, F.I., GUO, W.S., NGO, H.H., YOU, S.J., PRICE, W., NGHIEM, D.L., 2014. Sludge cycling between aerobic, anoxic and anaerobic regimes to reduce sludge production during wastewater treatment: performance, mechanisms, and im- plications. Bioresource Technology. 155, 395e409

103 SEQUINEL, R. Caracterização físico-química da glicerina proveniente de usinas de biodiesel e determinação de metanol residual por CG com amostragem por Headspace estático. Tese de Doutorado. Istituto de Química, Universidade Estadual Paulista, 102p. 2013

SHIN, J. et al. Predicting Methane Production Potential of Anaerobic Co-digestion of Swine Manure and Food Waste. Environmental Energy Research. v. 13, n. 2, p. 93– 97, 2008.

SIDDIQUI, Z.; HORAN, N. J.; KOFI, A. Optimisation of C : N Ratio for Co-Digested Processed Industrial Food Waste and Sewage Sludge Using the BMP Test.

No documento Universidade Federal do Rio de Janeiro (páginas 103-168)

Documentos relacionados