• Nenhum resultado encontrado

Sugestões para trabalhos futuros

Capítulo 6 – Conclusões e Sugestão de Trabalho Futuro

6.2 Sugestões para trabalhos futuros

As potencialidades da tecnologia Selective Laser Melting “exigem” que continue a ser estudada, otimizada, e potencializada para que cada vez mais se transforme numa tecnologia revolucionária que permite criar componentes que mais nenhuma outra tecnologia o faz. Posto isto, sugerem-se os seguintes trabalhos futuros:

 Otimização dos parâmetros para materiais cerâmicos produzidos via SLM;

 Otimização dos parâmetros que permitam a produção de componentes com gradiente de material produzidos via SLM;

 Estudo do comportamento mecânico, metalúrgico, tribológico e biocompatível de amostras porosas com gradiente de material produzidas via SLM.

Referências

151

REFERÊNCIAS

[1] D. Thomas, H. Computer, and A. Product, “The Development of Design Rules for Selective Laser Melting,” Philosophy, 2009.

[2] Z. Y. Wang, Y. F. Shen, and D. D. Gu, “Development of porous 316L stainless steel with novel structures by selective laser melting,” Powder Metall., vol. 54, no. 3, pp. 225–230, 2011.

[3] A. Bandyopadhyay, F. Espana, V. K. Balla, S. Bose, Y. Ohgami, and N. M. Davies, “Influence of porosity on mechanical properties and in vivo response of Ti6Al4V implants.,” Acta Biomater., vol. 6, no. 4, pp. 1640–8, 2010.

[4] S. L. Campanelli, N. Contuzzi, A. D. Ludovico, F. Caiazzo, F. Cardaropoli, and V. Sergi, “Manufacturing and characterization of Ti6Al4V lattice components manufactured by selective laser melting,” Materials (Basel)., vol. 7, no. 6, pp. 4803–4822, 2014.

[5] H. Attar, M. Calin, L. C. Zhang, S. Scudino, and J. Eckert, “Manufacture by selective laser melting and mechanical behavior of commercially pure titanium,” Mater. Sci. Eng. A, vol. 593, pp. 170–177, 2014.

[6] C. C. Ng, M. M. Savalani, M. L. Lau, and H. C. Man, “Microstructure and mechanical properties of selective laser melted magnesium,” Appl. Surf. Sci., vol. 257, no. 17, pp. 7447–7454, 2011.

[7] K. G. Prashanth, S. Scudino, H. J. Klauss, K. B. Surreddi, L. Löber, Z. Wang, a. K. Chaubey, U. Kühn, and J. Eckert, “Microstructure and mechanical properties of Al-12Si produced by selective laser melting: Effect of heat treatment,” Mater. Sci. Eng. A, vol. 590, pp. 153– 160, 2014.

[8] E. Brandl, U. Heckenberger, V. Holzinger, and D. Buchbinder, “Additive manufactured AlSi10Mg samples using Selective Laser Melting (SLM): Microstructure, high cycle fatigue, and fracture behavior,” Mater. Des., vol. 34, pp. 159–169, 2012.

[9] J. P. Kruth, L. Froyen, J. Van Vaerenbergh, P. Mercelis, M. Rombouts, and B. Lauwers, “Selective laser melting of iron-based powder,” J. Mater. Process. Technol., vol. 149, no. 1–3, pp. 616–622, 2004.

[10] J. W. Xie, P. Fox, W. O’Neill, and C. J. Sutcliffe, “Effect of direct laser re-melting processing parameters and scanning strategies on the densification of tool steels,” J. Mater. Process. Technol., vol. 170, no. 3, pp. 516–523, 2005.

[11] K. Antony, N. Arivazhagan, and K. Senthilkumaran, “Numerical and experimental investigations on laser melting of stainless steel 316L metal powders,” J. Manuf. Process., vol. 16, no. 3, pp. 345–355, 2014.

152

[12] R. Li, J. Liu, Y. Shi, M. Du, and Z. Xie, “316L Stainless Steel with Gradient Porosity Fabricated by Selective Laser Melting,” J. Mater. Eng. Perform., vol. 19, no. 5, pp. 666– 671, 2010.

[13] Y. Sun, a. Moroz, and K. Alrbaey, “Sliding Wear Characteristics and Corrosion Behaviour of Selective Laser Melted 316L Stainless Steel,” J. Mater. Eng. Perform., vol. 23, no. 2, pp. 518–526, 2014.

[14] J. Sun, Y. Yang, and D. Wang, “Parametric optimization of selective laser melting for forming Ti6Al4V samples by Taguchi method,” Opt. Laser Technol., vol. 49, pp. 118–124, 2013. [15] R. Wauthle, B. Vrancken, B. Beynaerts, K. Jorissen, J. Schrooten, J.-P. Kruth, and J. Van

Humbeeck, “Effects of build orientation and heat treatment on the microstructure and mechanical properties of selective laser melted Ti6Al4V lattice structures,” Addit. Manuf., vol. 5, pp. 77–84, 2015.

[16] S. Zhang, Q. Wei, L. Cheng, S. Li, and Y. Shi, “Effects of scan line spacing on pore characteristics and mechanical properties of porous Ti6Al4V implants fabricated by selective laser melting,” Mater. Des., vol. 63, pp. 185–193, 2014.

[17] C. Yan, L. Hao, A. Hussein, P. Young, and D. Raymont, “Advanced lightweight 316L stainless steel cellular lattice structures fabricated via selective laser melting,” Mater. Des., vol. 55, pp. 533–541, 2014.

[18] S. McKown, Y. Shen, W. K. Brookes, C. J. Sutcliffe, W. J. Cantwell, G. S. Langdon, G. N. Nurick, and M. D. Theobald, “The quasi-static and blast loading response of lattice structures,” Int. J. Impact Eng., vol. 35, no. 8, pp. 795–810, 2008.

[19] Hengfeng Gu, Haijun Gong, Deepankar Pal, Khalid Rafi, Thomas Starr, Brent Stucker, ”Influences of Energy Density on Porosity and Microstructure of Selective Laser Melted 17-4PH Stainless Steel" Psychol. Sci., vol. 25, no. 9, pp. 1682–1690, 2014.

[20] H. Gong, K. Rafi, T. Starr, and B. Stucker, “The effects of processing parameters on defect regularity in Ti-6Al-4V parts fabricated by Selective Laser Melting and Electron Beam Melting,” 24th Int. Solid Free. Fabr. Symp. - An Addit. Manuf. Conf. SFF 2013, August 12, 2013 - August 14, 2013, pp. 424–439, 2013.

[21] Z. Doni, a. C. Alves, F. Toptan, L. a. Rocha, M. Buciumeanu, L. Palaghian, and F. S. Silva, “Tribocorrosion behaviour of hot pressed CoCrMo−HAP biocomposites,” Tribol. Int., vol. 91, pp. 221–227, 2015.

[22] Z. Gronostajski, P. Bandoła, and T. Skubiszewski, “Influence of cold and hot pressing on densification behaviour of titanium alloy powder Ti6Al4V,” Arch. Civ. Mech. Eng., vol. IX, no. 2, pp. 47–57, 2009.

[23] O. Carvalho, M. Buciumeanu, S. Madeira, D. Soares, F. S. Silva, and G. Miranda, “Dry sliding wear behaviour of AlSi–CNTs–SiCp hybrid composites,” Tribol. Int., vol. 90, pp. 148–156, 2015.

Referências

153 [24] D. Bozic, I. Cvijovic, M. Vilotijevic, and M. Jovanovic, “The influence of microstructural characteristics on the mechanical properties of Ti6Al4V alloy produced by the powder metallurgy technique,” J. Serbian Chem. Soc., vol. 71, no. 8–9, pp. 985–992, 2006. [25] Y. Kim, E. Kim, Y. Song, S. Ho, and Y. Kwon, “Microstructure and mechanical properties of

hot isostatically pressed Ti – 6Al – 4V alloy,” J. Alloys Compd., vol. 603, pp. 207–212, 2014.

[26] L. Bolzoni, E. M. Ruiz-Navas, E. Neubauer, and E. Gordo, “Inductive hot-pressing of titanium and titanium alloy powders,” Mater. Chem. Phys., vol. 131, no. 3, pp. 672–679, 2012. [27] M. Sampaio, M. Buciumeanu, B. Henriques, F. S. Silva, J. C. M. Souza, and J. R. Gomes,

“Tribocorrosion behavior of veneering biomedical PEEK to Ti6Al4V structures,” J. Mech. Behav. Biomed. Mater., 2015.

[28] S.-H. Chang and P.-Y. Chang, “Study on the mechanical properties, microstructure and corrosion behaviors of nano-WC–Co–Ni–Fe hard materials through HIP and hot-press sintering processes,” Mater. Sci. Eng. A, vol. 618, pp. 56–62, 2014.

[29] Z. Gronostajski, P. Bandoła, and T. Skubiszewski, “Argon-shielded hot pressing of titanium alloy (TI6AL4V) powders,” Acta Bioeng. Biomech., vol. 12, no. 1, pp. 41–46, 2010. [30] B. Song, X. Zhao, S. Li, C. Han, Q. Wei, S. Wen, J. Liu, and Y. Shi, “Differences in

microstructure and properties between selective laser melting and traditional manufacturing for fabrication of metal parts: A review,” Front. Mech. Eng., vol. 10, no. 2, pp. 111–125, 2015.

[31] Euro Inox, “Technical table stainless steel type 304L,” vol. 5, 2010. [32] T. Barras and C. Bobinas, “Aço inoxidável.”

[33] M. Peters, Titanium and Titanium Alloys Edited by, vol. 1. 2003. [34] C. M. Branco, Mecânica dos Materiais, 3a Edição. .

[35] J. Halling, Ed., Principles of tribology. .

[36] M. E. Mec, “9 Ensaios Mecânicos Dos Materiais,” pp. 167–276.

[37] A. Field, “Multiple Regression Using SPSS,” Mult. Regres. Mult. (Research Methods Psychol., vol. 8057, pp. 1–11, 2009.

[38] Y. H. Chan, “Biostatistics 201: Linear Regression Analysis,” Singapore Med. J., vol. 45, no. 2, pp. 55–61, 2004.

[39] B. Song, S. Dong, B. Zhang, H. Liao, and C. Coddet, “Effects of processing parameters on microstructure and mechanical property of selective laser melted Ti6Al4V,” Mater. Des., vol. 35, pp. 120–125, 2012.

154

[40] a. B. Spierings and G. Levy, “Comparison of density of stainless steel 316L parts produced with selective laser melting using different powder grades,” Solid Free. Fabr. Proc., pp. 342–353, 2009.

[41] Y. Hosoi, “Introduction to stainless steel.,” J. Japan Inst. Light Met., vol. 37, no. 9, pp. 624–635, 1987.

[42] O. Oyj, “Handbook of Stainless Steel,” 2013.

[43] L. Wang, X. Zhao, M. H. Ding, H. Zheng, H. S. Zhang, B. Zhang, X. Q. Li, and G. Y. Wu, “Surface modification of biomedical AISI 316L stainless steel with zirconium carbonitride coatings,” Appl. Surf. Sci., vol. 340, pp. 113–119, 2015.

[44] R. Song, J. Xiang, and D. Hou, “Characteristics of Mechanical Properties and Microstructure for 316L Austenitic Stainless Steel,” J. Iron Steel Res. Int., vol. 18, no. 11, pp. 53–59, 2011.

[45] A. Laohaprapanon, P. Jeamwatthanachai, M. Wongcumchang, N. Chantarapanich, S. Chantaweroad, K. Sitthiseripratip, and S. Wisutmethangoon, “Optimal scanning condition of selective laser melting processing with stainless steel 316L powder,” 2011 2nd Int. Conf. Mater. Manuf. Technol. ICMMT 2011, July 8, 2011 - July 11, 2011, vol. 341–342, no. August 2015, pp. 816–820, 2012.

[46] B. Ad and S. Rocha, “Desenvolvimento do processo de produção de próteses em ligas de Titânio INEGI – Instituto de Engenharia Mecânica e Gestão Industrial,” 2010.

[47] C. Veiga, J. Davim, and A. Loureiro, “Properties and Applications of Titanium Alloys: a Brief Review,” Rev. Adv. Mater. Sci, vol. 32, pp. 133 – 148, 2012.

[48] Annon, “Ti6Al4V Titanium Alloy,” pp. 4–6, 2014.

[49] H. K. Rafi, N. V. Karthik, H. Gong, T. L. Starr, and B. E. Stucker, “Microstructures and mechanical properties of Ti6Al4V parts fabricated by selective laser melting and electron beam melting,” J. Mater. Eng. Perform., vol. 22, no. 12, pp. 3872–3883, 2013.

[50] E. Mecânica, O. Doutor, F. Samuel, and D. F. Soares, “Projecto de segmentos de motor em materiais sinterizados com gradiente de propriedades .,” no. no 33309, 2009.

[51] V. G. Pina, a. Dalmau, F. Devesa, V. Amigó, and a. I. Muñoz, “Tribocorrosion behavior of beta titanium biomedical alloys in phosphate buffer saline solution,” J. Mech. Behav. Biomed. Mater., vol. 46, pp. 59–68, 2015.

[52] A. Laohaprapanon, P. Jeamwatthanachai, M. Wongcumchang, N. Chantarapanich, S. Chantaweroad, K. Sitthiseripratip, and S. Wisutmethangoon, “Optimal Scanning Condition of Selective Laser Melting Processing with Stainless Steel 316L Powder,” Adv. Mater. Res., vol. 341–342, no. August 2015, pp. 816–820, 2011.

Referências

155 [53] W.-S. Lee, T.-H. Chen, C.-F. Lin, and Z.-Y. Li, “Effects of Strain Rate and Temperature on Shear Properties and Fracture Characteristics of 316L Stainless Steel,” Mater. Trans., vol. 53, no. 3, pp. 469–476, 2012.

[54] a Mertens and S. Reginster, “Mechanical properties of alloy Ti-6Al-4V and of stainless steel 316L processed by selective laser melting: influence of out-of-equilibrium microstructures,” Powder …, no. August 2015, pp. 1–18, 2014.

[55] I. Yadroitsev, M. Pavlov, P. Bertrand, and I. Smurov, “Mechanical properties of samples fabricated by selective laser melting,” vol. 625, pp. 24–25, 2009.

[56] S. Mahathanabodee, T. Palathai, S. Raadnui, R. Tongsri, and N. Sombatsompop, “Comparative Studies on Wear Behaviour of Sintered 316L Stainless Steels Loaded with h- BN and MoS<sub>2</sub>,” Adv. Mater. Res., vol. 747, pp. 307–310, 2013. [57] S. Mahathanabodee, T. Palathai, S. Raadnui, R. Tongsri, and N. Sombatsompop, “Dry

sliding wear behavior of SS316L composites containing h-BN and MoS2 solid lubricants,” Wear, vol. 316, no. 1–2, pp. 37–48, 2014.

[58] M. Simonelli, Y. Y. Tse, and C. Tuck, “Microstructure of Ti-6Al-4V produced by selective laser melting,” J. Phys. Conf. Ser., vol. 371, p. 012084, 2012.

[59] A. Hicks, H. Doak, and B. Stucker, “No Title,” pp. 470–483.

[60] M. Simonelli, Y. Y. Tse, and C. Tuck, “Microstructure and Mechanical Properties of Ti-6A1- 4V Fabricated by Selective Laser Melting,” Suppl. Proc., pp. 863–870, 2012.

[61] J. Van Humbeeck, “Microstructure and mechanical properties of Selective Laser Melted,” vol. 00, no. 2010, 2011.

[62] M. Tuceryan and A. K. Jain, “Texture Analysis,” pp. 480–491, 1998.

[63] M. Yan and P. Yu, “An Overview of Densification , Microstructure and Mechanical Property of Additively Manufactured Ti-6Al-4V — Comparison among Selective Laser Melting , Electron Beam Melting , Laser Metal Deposition and Selective Laser Sintering , and with Conventional Po.”

[64] V. K. Balla, J. Soderlind, S. Bose, and A. Bandyopadhyay, “Microstructure, mechanical and wear properties of laser surface melted Ti6Al4V alloy,” J. Mech. Behav. Biomed. Mater., vol. 32, pp. 335–344, 2014.

[65] K. Naci, S. U. N. Yavuz, C. Bunyamin, and A. Hayrettin, “Production of 316L stainless steel implant materials by powder metallurgy and investigation of their wear properties,” vol. 57, no. 15, pp. 1873–1878, 2012.

[66] A. I. Mertens, “Microstructures and Mechanical Properties of Stainless Steel AISI 316L Processed by Selective Laser Melting,” no. August 2015, 2014.

156

[68] K. Muszka and J. Majta, “EFFECT OF GRAIN REFINEMENT ON MECHANICAL PROPERTIES,” vol. 32, no. 2, 2006.

[69] H. Search, C. Journals, A. Contact, M. Iopscience, and I. P. Address, “Microstructure of Ti- 6Al-4V produced by selective laser melting,” vol. 012084.

[70] S. Scudino, “Microstructure and mechanical properties of Al-12Si produced by selective laser melting : Effect of heat treatment,” no. October 2015, 2013.

[71] K. P. Monroy, J. Delgado, L. Sereno, J. Ciurana, and N. J. Hendrichs, “Effects of the Selective Laser Melting Manufacturing Process on the Properties of CoCrMo Single Tracks,” vol. 20, no. 5, 2014.

[72] J. Talonen, P. Nenonen, G. Pape, and H. Hänninen, “Effect of Strain Rate on the Strain- Induced g S a ¿ -Martensite Transformation and Mechanical Properties of Austenitic Stainless Steels,” vol. 36, no. February, 2005.

[73] S. A. Khairallah and A. Anderson, “Journal of Materials Processing Technology Mesoscopic simulation model of selective laser melting of stainless steel powder,” J. Mater. Process. Tech., vol. 214, no. 11, pp. 2627–2636, 2014.

[74] J. Sun, Y. Yang, and D. Wang, “Mechanical properties of a Ti6Al4V porous structure produced by selective laser melting,” Mater. Des., vol. 49, pp. 545–552, 2013.

[75] Y.-J. Kim, L. S. Chumbley, and B. Gleeson, “Continuous Cooling Transformation in Cast Duplex Stainless Steels CD3MN and CD3MWCuN,” J. Mater. Eng. Perform., vol. 17, no. 2, pp. 234–239, 2008.

[76] Dehghan-Manshadi, M. H. Reid, and R. J. Dippenaar, “Effect of microstructural morphology on the mechanical properties of titanium alloys,” J. Phys. Conf. Ser., vol. 240, p. 012022, 2010.

[77] T. Ahmed and H. J. Rack, “Phase transformations during cooling in α+β titanium alloys,” Mater. Sci. Eng. A, vol. 243, no. 1–2, pp. 206–211, 1998.

[78] D. Bozic, I. Cvijovic, M. Vilotijevic, and M. Jovanovic, “The influence of microstructural characteristics on the mechanical properties of Ti6Al4V alloy produced by the powder metallurgy technique,” J. Serbian Chem. Soc., vol. 71, no. 8–9, pp. 985–992, 2006. [79] H. K. Rafi, N. V Karthik, H. Gong, T. Starr, and B. Stucker, “Microstructures and Mechanical

Properties of Ti6Al4V Parts Fabricated by Selective Laser Melting and Electron Beam Melting,” J. Mater. Eng. Perform., vol. 22, no. 12, pp. 3872–3883, 2013.

[80] I. M. Hutchings, “Tribology: friction and wear of engineering materials,” 1992.

[81] Y. Hagedorn and P. Fair, “TOWARDS FINER STRUCTURES : STATE OF THE ART IN SELECTIVE LASER MELTING ( SLM ) Fraunhofer Gesellschaft,” 2013.

Referências

157 [82] S. Bremen, W. Meiners, and A. Diatlov, “Selective Laser Melting. A manufacturing

158

Anexos

159

ANEXO A – Dados de introdução no SPSS Aço 316L

ANEXO A1 – Dados Densidade Aço 316L SPSS

Amostra P (W) v (mm/s) d (mm) E (J/mm3 Densidade (%) 1 100 1250 0,07 38,1 68,85 2 100 733 0,08 56,84 99,92 3 100 733 0,07 64,96 99,56 4 100 700 0,12 39,68 94,82 5 100 417 0,15 53,29 97,77 6 100 417 0,14 57,1 97,23 7 100 417 0,12 66,61 99,77 8 100 417 0,11 72,67 97,97 9 90 1250 0,07 34,29 53,68 10 90 700 0,12 35,71 91,75 11 90 417 0,14 51,39 99,07 12 90 417 0,12 59,95 99,37 13 90 417 0,11 65,4 99,79 14 90 417 0,1 71,94 96,68 15 90 733 0,07 58,47 98,52 16 80 800 0,09 37,04 80,89 17 80 733 0,07 51,97 99,25 18 80 700 0,09 42,33 95,92 19 80 600 0,09 49,38 98,1 20 80 500 0,09 59,26 96,61 21 80 417 0,12 53,29 97,37 22 80 417 0,11 58,14 99,64 23 80 417 0,1 63,95 99,25 24 80 417 0,08 79,94 99,7 25 80 400 0,09 74,07 99,35 26 70 550 0,11 38,57 72,96 27 70 550 0,1 42,42 94,08 28 70 550 0,09 47,14 97,16 29 70 550 0,08 53,03 92,71 30 70 550 0,07 60,61 98,63 31 70 417 0,11 50,87 97,57 32 70 417 0,1 55,96 99,43 33 70 417 0,08 69,94 99,76 34 70 417 0,07 79,94 98,15 35 60 700 0,09 31,75 62,03 36 60 600 0,09 37,04 47,72 37 60 500 0,09 44,44 50,67 38 60 417 0,1 47,96 95,83 39 60 417 0,08 59,95 97,06 40 60 417 0,07 68,52 97,79 41 60 400 0,09 55,56 84,08 42 60 300 0,09 74,07 99,62 43 50 417 0,07 57,1 96,51 44 50 400 0,11 37,88 49,93 45 50 400 0,1 41,67 70,15 46 50 400 0,09 46,3 77,36 47 50 400 0,08 52,08 63,94 48 50 400 0,07 59,52 84,37

160

ANEXO A2 – Dados Dureza Aço 316L SPSS

Amostra P (W) V (mm/s) D (mm) E (J/mm3 Dureza (HV) 1 100 1250 0,07 38,1 170 2 100 733 0,08 56,84 213 3 100 733 0,07 64,96 220 4 100 700 0,12 39,68 161 5 100 417 0,15 53,29 218 6 100 417 0,14 57,1 214 7 100 417 0,12 66,61 221 8 100 417 0,11 72,67 214 9 90 1250 0,07 34,29 169 10 90 700 0,12 35,71 169 11 90 417 0,14 51,39 209 12 90 417 0,12 59,95 220 13 90 417 0,11 65,4 217 14 90 417 0,1 71,94 227 15 90 733 0,07 58,47 234 16 80 800 0,09 37,04 176 17 80 733 0,07 51,97 204 18 80 700 0,09 42,33 165 19 80 600 0,09 49,38 199 20 80 500 0,09 59,26 212 21 80 417 0,12 53,29 218 22 80 417 0,11 58,14 227 23 80 417 0,1 63,95 219 24 80 417 0,08 79,94 223 25 80 400 0,09 74,07 216 26 70 550 0,11 38,57 171 27 70 550 0,1 42,42 180 28 70 550 0,09 47,14 203 29 70 550 0,08 53,03 197 30 70 550 0,07 60,61 212 31 70 417 0,11 50,87 214 32 70 417 0,1 55,96 211 33 70 417 0,08 69,94 213 34 70 417 0,07 79,94 215 35 60 700 0,09 31,75 152 36 60 600 0,09 37,04 171 37 60 500 0,09 44,44 107 38 60 417 0,1 47,96 189 39 60 417 0,08 59,95 208 40 60 417 0,07 68,52 208 41 60 400 0,09 55,56 189 42 60 300 0,09 74,07 205 43 50 417 0,07 57,1 196 44 50 400 0,11 37,88 185 45 50 400 0,1 41,67 135 46 50 400 0,09 46,3 164 47 50 400 0,08 52,08 123 48 50 400 0,07 59,52 132

Anexos

161

ANEXO A3 – Dados Tensão de rutura Aço 316L SPSS

Amostra P (W) v (mm/s) d (mm) E (J/mm3 Tensão de rutura (MPa)

1 100 1250 0,07 38,1 289 2 100 733 0,08 56,84 512 3 100 733 0,07 64,96 513 4 100 700 0,12 39,68 511 5 100 417 0,15 53,29 523 6 100 417 0,14 57,1 499 7 100 417 0,12 66,61 520 8 100 417 0,11 72,67 502 9 90 1250 0,07 34,29 235 10 90 700 0,12 35,71 506 11 90 417 0,14 51,39 550 12 90 417 0,12 59,95 573 13 90 417 0,11 65,4 566 14 90 417 0,1 71,94 557 15 90 733 0,07 58,47 554 16 80 800 0,09 37,04 490 17 80 733 0,07 51,97 567 18 80 700 0,09 42,33 522 19 80 600 0,09 49,38 592 20 80 500 0,09 59,26 586 21 80 417 0,12 53,29 546 22 80 417 0,11 58,14 555 23 80 417 0,1 63,95 568 24 80 417 0,08 79,94 546 25 80 400 0,09 74,07 548 26 70 550 0,11 38,57 243 27 70 550 0,1 42,42 489 28 70 550 0,09 47,14 544 29 70 550 0,08 53,03 550 30 70 550 0,07 60,61 557 31 70 417 0,11 50,87 548 32 70 417 0,1 55,96 561 33 70 417 0,08 69,94 573 34 70 417 0,07 79,94 539 35 60 700 0,09 31,75 144 36 60 600 0,09 37,04 222 37 60 500 0,09 44,44 362 38 60 417 0,1 47,96 550 39 60 417 0,08 59,95 531 40 60 417 0,07 68,52 519 41 60 400 0,09 55,56 556 42 60 300 0,09 74,07 583 43 50 417 0,07 57,1 520 44 50 400 0,11 37,88 198 45 50 400 0,1 41,67 378 46 50 400 0,09 46,3 368 47 50 400 0,08 52,08 365 48 50 400 0,07 59,52 491

162

ANEXO B – Análise estatística Aço 316L

ANEXO B1 – Tabela com os coeficientes que definem a equação do modelo da Densidade

Anexos

163

164

ANEXO C – Análise estatística Ti6Al4V

ANEXO C1 – Tabela com os coeficientes que definem a equação do modelo da Densidade

Anexos

165