• Nenhum resultado encontrado

O caso de problemas de contato mecânico é um caso bastante amplo com diversos problemas de interesse na engenharia. Entretanto, o MEC foi pouco explorado nessa área e, portanto, existem muitos pontos a serem investidos e estudados. Assim, pode-se sugerir os seguintes temas para trabalhos futuros:

◦ Estudar e estender o programa para caso de aplicação de força tangencial oscilatória e fadiga por fretting;

◦ Extensão do programa para problemas de contato de múltiplos corpos como, por exemplo, cabos condutores;

◦ Extensão para casos tridimensionais;

◦ Extensão para situação de contato dinâmico;

◦ Implementação do MEC isogeométrico e da aproximação cruzada adaptativo (ACA) para a análise de problemas de contato mecânico.

Referências

ABASCAL, R. 2d transient dynamic friction contact problems. i. numerical analysis. Engineering analysis with boundary elements, v. 16, n. 3, 227–233, 1995.

ALART, P. e CURNIER, A. A mixed formulation for frictional contact problems prone to newton like solution methods. Computer methods in applied mechanics and engineering, v. 92, n. 3, 353–375, 1991.

ANDERSSON, T. The boundary element method applied to two-dimensional contact problems with friction. pp. 239–258, 1981.

ARAUJO, J. e NOWELL, D. The effect of rapidly varying contact stress fields on fretting fatigue. International Journal of Fatigue, v. 24, n. 7, 763–775, 2002.

ARAUJO, J.A. On the initiation and arrest fretting fatigue cracks. 2000. Tese (Doutorado). University of Oxford.

BAIETTO, M.C.; PIERRES, E.; GRAVOUIL, A.; BERTHEL, B.; FOUVRY, S. e TROLLE, B. Fretting fatigue crack growth simulation based on a combined experimental and xfem strategy. International Journal of Fatigue, v. 47, 31–43, 2013.

BARBOSA, R.E. e GHABOUSSI, J. Discrete finite element method for multiple deformable bo- dies. Finite Elements in Analysis and Design, v. 7, n. 2, 145–158, 1990.

BATRA, R. Quasistatic indentation of a rubber-covered roll by a rigid roll. International Journal for Numerical Methods in Engineering, v. 17, n. 12, 1823–1833, 1981.

BRAMHALL, R. Studies in fretting fatigue. 1973. Tese (Doutorado). PhD. Thesis. University of Oxford.

BUCHANAN, A.M. e FITZGIBBON, A.W. Damped newton algorithms for matrix factorization with missing data. In Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer Society Conference on, v. 2, pp. 316–322. IEEE, 2005.

CATTANEO, C. Sul contatto di due corpi elastici: distribuzione locale degli sforzi. Rend. Accad. Naz. Lincei, v. 27, n. 6, 342–348, 1938.

CHRISTENSEN, P.W. Algortihms for Frictional Contact Problems Based on Mathematical Programming. 1997. Tese (Doutorado). Linkoping University, Sweden.

COCU, M. Existence of solutions of signorini problems with friction. International journal of engineering science, v. 22, n. 5, 567–575, 1984.

CURNIER, A. A theory of friction. International Journal of Solids and Structures, v. 20, n. 7, 637–647, 1984.

DUVAUT, G. e LIONS, J.L. Les inéquations en mécanique et en physique. 1972.

FESSLER, H. e OLLERTON, E. Contact stresses in toroids under radial loads. British journal of applied physics, v. 8, n. 10, 387, 1957.

FOUVRY, S.; ELLEUCH, K. e SIMEON, G. Prediction of crack nucleation under partial slip fretting conditions. The Journal of Strain Analysis for Engineering Design, v. 37, n. 6, 549– 564, 2002.

FOUVRY, S.; KAPSA, P.; SIDOROFF, F. e VINCENT, L. Identification of the characteristic length scale for fatigue cracking in fretting contacts. Le Journal de Physique IV, v. 8, n. PR8, Pr8–159, 1998.

FRANGI, A. e NOVATI, G. Bem–fem coupling for 3d fracture mechanics applications. Compu- tational Mechanics, v. 32, n. 4-6, 415–422, 2003.

FREDHOLM, I. Sur une classe d’équations fonctionnelles. Acta mathematica, v. 27, n. 1, 365– 390, 1903.

GIANNAKOPOULOS, A.; LINDLEY, T.; SURESH, S. e CHENUT, C. Similarities of stress con- centrations in contact at round punches and fatigue at notches: implications to fretting fatigue crack initiation. Fatigue and Fracture of Engineering Materials and Structures, v. 23, n. 7, 561–572, 2000.

GINER, E.; SABSABI, M.; RÓDENAS, J.J. e FUENMAYOR, F.J. Direction of crack propagation in a complete contact fretting-fatigue problem. International Journal of Fatigue, v. 58, 172–180, 2014.

GONZÁLEZ, J.A.; PARK, K.; FELIPPA, C.A. e ABASCAL, R. A formulation based on localized lagrange multipliers for bem–fem coupling in contact problems. Computer Methods in Applied Mechanics and Engineering, v. 197, n. 6, 623–640, 2008.

GOODMAN, L. Contact stress analysis of normally loaded rough spheres. Journal of applied mechanics, v. 29, n. 3, 515–522, 1962.

HARISH, G. e FARRIS, T. Shell modeling of fretting in riveted lap joints. AIAA journal, v. 36, n. 6, 1087–1093, 1998.

HERTZ, H. über die berührung fester elastischer körper (on the contatc of elsatic solids). J. reine und angewandte Mathematik, v. ., ., 1882.

HIBBELER, R. Engineering Mechanics: Statics. Prentice Hall, 2004.

HOJJATI TALEMI, R. Numerical modelling techniques for fretting fatigue crack initiation and propagation. 2014. Tese (Doutorado). Ghent University.

IREMAN, P.; KLARBRING, A. e STRÖMBERG, N. Gradient theory of damage coupled to fricti- onal contact and wear, and its numerical treatment. Comput Model Eng Sci, v. 52, n. 2, 125–158, 2009.

JOHANSSON, L. Numerical simulation of contact pressure evolution in fretting. Journal of tribology, v. 116, n. 2, 247–254, 1994.

JOHNSON, K.L. Contact mechanics. Cambridge university press, 1987.

KIKUCHI, N. e ODEN, J.T. Contact problems in elasticity: a study of variational inequalities and finite element methods, v. 8. siam, 1988.

KLARBRING, A. A mathematical programming approach to three-dimensional contact problems with friction. Computer Methods in Applied Mechanics and Engineering, v. 58, n. 2, 175–200, 1986.

LANDERS, J.A. e TAYLOR, R.L. An augmented alagrangian formulation for the finite element solution of contact problems. Relatório técnico, DTIC Document, 1986.

MADGE, J.; LEEN, S.; MCCOLL, I. e SHIPWAY, P. Contact-evolution based prediction of fretting fatigue life: effect of slip amplitude. Wear, v. 262, n. 9, 1159–1170, 2007.

MAN, K.; ALIABADI, M. e ROOKE, D. Bem frictional contact analysis: load incremental tech- nique. Computers & structures, v. 47, n. 6, 893–905, 1993.

MAN, K.W. Contact mechanics using boundary elements. Computational Mechanics, 1994.

rosion. Anti-Corrosion Methods and Materials, v. 1, n. 7, 247–252, 1954.

MCVEIGH, P.; HARISH, G.; FARRIS, T. e SZOLWINSKI, M. Modeling interfacial conditions in nominally flat contacts for application to fretting fatigue of turbine engine components. Internati- onal Journal of Fatigue, v. 21, S157–S165, 1999.

METALS, A. Properties and Selection of Metals. Handbook, 1961.

MINDLIN, R.D. Compliance of elastic bodies in contact. Journal of applied mechanics, v. 16, 159–268, 1949.

MOSTOFI, A. e GOHAR, R. Pressure distribution between closely contacting surfaces. Journal of Mechanical Engineering Science, v. 22, n. 5, 251–259, 1980.

MUSKHELISHVILI, N.I. Some basic problems of the mathematical theory of elasticity. 1. Springer Science & Business Media, 1977.

NISHIOKA, K. e HIRAKAWA, K. Fundamental investigations of fretting fatigue:(part 2, fretting fatigue testing machine and some test results). Bulletin of JSME, v. 12, n. 50, 180–187, 1969.

NISHIOKA, K. e KENJI, H. Fundamental investigations of fretting fatigue: Part 6, effects of contact pressure and hardness of materials. Bulletin of JSME, v. 15, n. 80, 135–144, 1972.

NISHIOKA, K.; NISHIMURA, S. e HIRAKAWA, K. Fundamental investigations of fretting fati- gue: Part 1, on the relative slip amplitude of press-fitted axle assemblies. Bulletin of JSME, v. 11, n. 45, 437–445, 1968.

NOWELL, D. An analysis of fretting fatigue. 1988. Tese (Doutorado). University of Oxford.

OMBERG, N. An augmented lagrangian method for fretting problems. European Journal of Mechanics-A/Solids, v. 16, 573–593, 1997.

PANAGIOTOPOULOS, I.P. A nonlinear programming approach to the unilateral contact-, and friction-boundary value problem in the theory of elasticity. Ingenieur-Archiv, v. 44, n. 6, 421– 432, 1975.

PARIS, F. e GARRIDO, J. An incremental procedure for friction contact problems with the boun- dary element method. Engineering analysis with boundary elements, v. 6, n. 4, 202–213, 1989.

PÁCZELT, I.; KUCHARSKI, S. e MRÓZ, Z. The experimental and numerical analysis of quasi- steady wear processes for a sliding spherical indenter. Wear, v. 274, 127–148, 2012.

PERSSON, A. On the Stress Distribution of Cylindrical Bodies in Elastic Contact. 1964. Tese (Doutorado). PhD Dissertation, Chalmers Teknisha Hogskola.

POPOV, V. Contact mechanics and friction: physical principles and applications. Springer Science Business Media, 2010.

PUSO, M.A. e LAURSEN, T.A. A mortar segment-to-segment contact method for large deforma- tion solid mechanics. Computer methods in applied mechanics and engineering, v. 193, n. 6, 601–629, 2004.

REBEL, G.; PARK, K. e FELIPPA, C. A contact formulation based on localized lagrange mul- tipliers: formulation and application to two-dimensional problems. International Journal for Numerical Methods in Engineering, v. 54, n. 2, 263–297, 2002.

RODRÍGUEZ-TEMBLEQUE, L.; ABASCAL, R. e ALIABADI, M. Anisotropic fretting wear simulation using the boundary element method. Computer Modeling in Engineering & Scien- ces(CMES), v. 87, n. 2, 127–156, 2012.

RODRÍGUEZ-TEMBLEQUE SOLANO, L. Formulación numérica de la interacción mecánica entre superficies de sólidos 3d. 2009. Tese (Doutorado). Universidad de Sevilla.

joint. Experimental Mechanics, v. 24, n. 3, 208–217, 1984.

RUIZ, C. e CHEN, K. Life assessment of dovetail joints between blades and discs in aero-engines. Mechanical Engineering Publications,, v. 15, 187–194, 1986.

RUIZ, C. e NOWELL, D. Designing against fretting fatigue in aeroengines. European Structural Integrity Society, v. 26, 73–95, 2000.

SHIGLEY, J.E. Mechanical engineering design. McGraw-Hill, 1972.

SIMO, J.C. e LAURSEN, T. An augmented lagrangian treatment of contact problems involving friction. Computers & Structures, v. 42, n. 1, 97–116, 1992.

SINGH, K.P. e PAUL, B. Numerical solution of non-hertzian elastic contact problems. Journal of Applied mechanics, v. 41, n. 2, 484–490, 1974.

SMIRNOV, V.I. A course of higher mathematics. Pergamon, 1964.

STRÓMBERG, N. A newton method for three-dimensional fretting problems. International Journal of Solids and Structures, v. 36, n. 14, 2075–2090, 1999.

STRÓMBERG, N.; JOHANSSON, L. e KLARBRING, A. Derivation and analysis of a generalized standard model for contact, friction and wear. International Journal of Solids and Structures, v. 33, n. 13, 1817–1836, 1996.

TIMOSHENKO, S.P. e GOODIER, J.N. Theory of Elasticity. McGraw-Hill, New York, 1951.

VON MISES, R. Mechanik der festen korper im plastisch-deformablen zustand. Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse, v. 1913, 582–592, 1913.

WATERHOUSE, R.B. Fretting fatigue. Elsevier Science & Technology, 1981.

WEI, D.S.; WANG, Y.R. e YANG, X.G. Analysis of failure behaviors of dovetail assemblies due to high gradient stress under contact loading. Engineering Failure Analysis, v. 18, n. 1, 314–324, 2011.

WRIGGERS, P. e LAURSEN, T.A. Computational contact mechanics, v. 30167. Springer, 2006.

WRIGGERS, P.; SIMO, J. e TAYLOR, R. Penalty and augmented lagrangian formulations for contact problems. Proceedings of the NUMETA, v. 85, 97–105, 1985.

ZAVARISE, G.; WRIGGERS, P. e SCHREFLER, B. On augmented lagrangian algorithms for thermomechanical contact problems with friction. International Journal for Numerical Methods in Engineering, v. 38, n. 17, 2929–2949, 1995.

A

Código computacional da solução analítica Mindlin-Cattaneo

% Soluções analíticas para o problema de contato entre um cilindro e uma % base rígida

% Solução para a tensão normal (p): Solução de Hertz

% Solução para a tensão de cisalhamento (q): Solução de Mindlin-Cattaneo

clear close all

cargav=100; % Valor da carga aplicada na direção vertical

cargah=15; % Valor da carga aplicada na direção horizontal

w=6.5; % Espessura da sapata

R=70; % Raio da sapata

P=2*w*cargav; % Carga total aplicada na direção vertical

Q=2*w*cargah; % Carga total aplicada na direção horizontal

ni=0.33; % Coeficiente de Poisson

E=73.4e3; % Módulo de elasticidade

East=E/(1-ni); % E no estado plano de deformação

a=sqrt(4*R*P/East/pi); % Comprimento da região de contato

xno=-a:a/100:a; % Coordenadas x dos nós

po=2*P/(pi*a); % Valor máximo da tensão normal na reginão de contato

qo=Q/(2*pi*a^2);

mi=cargah/cargav; % Valor mínimo possível para o coeficiente de atrito

for j=1:4 % Loop sob os coeficientes de atrito

c=a*sqrt(1-abs(Q/(mi*P))); % Comprimento da região em adesão

vetmi(j)=mi; % Vetor que guarda os valores dos coeficientes de atrito

for i = 1:size(xno,2) % Loop sobre os nós da região de contato

if(abs(xno(i))<=a) % Verifica se o nó está em contato

p(i)=po*sqrt(1-(xno(i)/a)^2); % tensão normal

q(i,j)=mi*p(i); % tensão de cisalhamento (região em slip)

if(abs(xno(i))<=c) % Verifica se o nó está na região de adesão

qlinha=mi*po*c/a*sqrt(1-(xno(i)/c)^2);

q(i,j)=q(i,j)-qlinha; % tensão de cisalhamento (região % em stick)

end else

p(i)=0; % Valor da tensão normal na região que não está em % contato

% não está em contato

end end

mi=mi+0.05; % Incremento do coeficiente de atrito

end

figure

plot(xno/a,p/po,'bd-',xno/a,q(:,1)/(vetmi(1)*po),'rs-', ...

xno/a,q(:,2)/(vetmi(2)*po),'ko-',xno/a,q(:,3)/(vetmi(3)*po),'g*-', ...

xno/a,q(:,4)/(vetmi(4)*po),'mp-')

leg1=['q para Q/(\mu P) =',num2str(Q/(vetmi(1)*P))]; leg2=['q para Q/(\mu P) =',num2str(Q/(vetmi(2)*P))]; leg3=['q para Q/(\mu P) =',num2str(Q/(vetmi(3)*P))]; leg4=['q para Q/(\mu P) =',num2str(Q/(vetmi(4)*P))]; legend('p/p_o',leg1,leg2,leg3,leg4);

ylabel('Tensões normalizadas') xlabel('{\it x/a}')

Documentos relacionados