• Nenhum resultado encontrado

Como sugestões para trabalhos futuros destacam-se alguns estudos como: • Desenvolver um simulador para estabelecer as condições iniciais em tubulações,

principalmente em simulações verticais multifásicas ;

• Avaliar outras correlações para o modelo drift-flux que considerem o padrão de escoamento;

• Aplicar outros modelos cinemáticos em alternativa ao modelo de mistura drift-flux, como o de dois fluidos;

• Implementar modelos de escoamento bifásico água-óleo e trifásico água-óleo-gás.

Referências

ADACHI, Y.; LU, B.-Y.; SUGIE, H. Three-parameter equations of state. Fluid Phase Equilibria, Elsevier, v. 13, p. 133–142, 1983.

ALMEHAIDEB, R. A.; AZIZ., K.; JR, O. A. P. A reservoir/wellbore model for multiphase injection and pressure transient analysis. SPE Middle East Oil Technical Conference and Exhibition, SPE 17941, p. 123–132, 1989.

ALVES, I. N.; ALHANATL, F. J. S.; SHOHAM, O. A unified model for predicting flowing temperature distribution in wellbores and pipelines. SPE Production Engineering, 1992.

ANDERSON, J. D. Modern Compressible Flow: With Historical Perspective. [S.l.]: McGraw-Hill, 1982.

ANDERSON, J. D. Modern Compressible Flow: With Historical Perspective. [S.l.]: McGraw-Hill, 2003.

ANSARI, A. M.; SYLVESTER, N. D.; SHOHAM, O.; BRILL, J. P. A comprehensive mechanistic model for upward two-phase flow in wellbores. 1990.

ASSMANN, B. W. Previsão do Comportamento de Pressão e Temperatura Transitórios em Poços de Petróleo e Óleodutos. Dissertação (Mestrado) — Universidade Estadual de Campinas, 1993.

AZIZ, K.; SETTARI, A. Petroleum reservoir simulation. [S.l.]: Applied Science Publishers, 1979. ISBN 9780853347873.

BAHONAR, M.; AZAIEZ, J.; CHEN, Z. J. Transient nonisothermal fully coupled wellbore/reservoir model for gas-well testing, part 1: Modelling. Journal of Canadian Petroleum Technology, Society of Petroleum Engineers, v. 50, n. 9-10, p. 37–50, 2011.

BANNWART, A. C.; VIEIRA, F. F.; CARVALHO, C. H.; OLIVEIRA, A. P. Water-assisted flow of heavy oil and gas in a vertical pipe. In: SPE International Thermal Operations and Heavy Oil Symposium. [S.l.: s.n.], 2005.

BEGGS, H.; BRILL, J. A study of two-phase flow in inclined pipes. Journal of Petroleum Technology, v. 25, p. 11, 1973.

BENDIKSEN, K. An experimental investigation of the motion of long bubbles in inclined tubes. Int. Journal of Multiphase Flow, v. 10, p. 467–483, 1984.

BENDIKSEN, K. H.; MAINES, D.; MOE, R.; NULAND, S. The dynamic two-fluid model OLGA: Theory and application. SPE production engineering, Society of Petroleum Engineers, v. 6, n. 02, p. 171–180, 1991.

BERTHELOT, D. Sur une méthode purement physique pour la détermination des poids moléculaires des gaz et des poids atomiques de leurs éléments. J. Phys. Theor. Appl., v. 8, n. 1, p. 263–274, 1899.

BESTION, D. The physical closure laws in the cathare code. Nuclear Engineering and Design, Elsevier, v. 124, n. 3, p. 229–245, 1990.

BHAGWAT, S. M.; GHAJAR, A. J. A flow pattern independent drift flux model based void fraction correlation for a wide range of gas–liquid two phase flow. International Journal of Multiphase Flow, Elsevier, v. 59, p. 186–205, 2014.

BIRD, R.; STEWART, W.; LIGHTFOOT, E. Transport Phenomena. [S.l.]: Wiley, 2007. ISBN 9780470115398.

BONIZZI, M.; ISSA, R. I. On the simulation of three-phase slug flow in nearly horizontal pipes using the multi-fluid model. International Journal of Multiphase Flow, Elsevier, v. 29, n. 11, p. 1719–1747, 2003.

BONNECAZE, R.; ERSKINE, W.; GRESKOVICH, E. Holdup and pressure drop for two-phase slug flow in inclined pipelines. AIChE Journal, Wiley Online Library, v. 17, n. 5, p. 1109–1113, 1971.

BRILL, J. P.; MUKHERJEE, H. K. Multiphase Flow in Wells. [S.l.]: Henry L. Doherty Memorial Fund of AIME, Society of Petroleum Engineers, 1999.

CHARLES, Y.; IGBOKOYI, A. et al. Temperature prediction model for flowing

distribution in wellbores and pipelines. In: SOCIETY OF PETROLEUM ENGINEERS. Nigeria Annual International Conference and Exhibition. [S.l.], 2012.

CHOI, J.; PEREYRA, E.; SARICA, C.; PARK, C.; KANG, J. An efficient drift-flux closure relationship to estimate liquid holdups of gas-liquid two-phase flow in pipes. Energies, v. 5, p. 5294–5306, 2012.

CHOI, J.; PEREYRA, E.; SARICA, C.; LEE, H.; JANG, I. S.; KANG, J. Development of a fast transient simulator for gas-liquid two-phase flow in pipes. Journal of Petroleum Science & Engineering, v. 102, p. 27–35, 2013.

CLARK, N. N.; FLEMMER, R. L. Predicting the holdup in two-phase bubble upflow and downflow using the zuber and findlay drift-flux model. AIChE journal, Wiley Online Library, v. 31, n. 3, p. 500–503, 1985.

CLAUSIUS, R. Ueber das verhalten der kohlensäure in bezug auf druck, volumen und temperatur. Annalen der Physik, Wiley Online Library, v. 169, n. 3, p. 337–357, 1880. CODDINGTON, P.; MACIAN, R. A study of the performance of void fraction correlations used in the context of drift-flux two-phase flow models. Nuclear Engineering and Design, Elsevier, v. 215, n. 3, p. 199–216, 2002.

COLEBROOK, C. F. Turbulent flow in pipes, with particular reference to the transition region between the smooth and rough pipe laws. Journal of the ICE, Thomas Telford, v. 11, n. 4, p. 133–156, 1939.

COMPUTER MODELLING GROUP LTD. User’s Guid WinProp - Phase Property Program. [S.l.], 2009.

COURANT, R.; FRIEDRICHS, K.; LEWY, H. On the partial difference equations of mathematical physics. IBM Journal, v. 11, p. 215–235, 1967.

DANESH, A. PVT and Phase Behaviour of Petroleum Reservoir Fluids. [S.l.]: Elsevier, 1998.

DANIELSON, T.; FAN, Y. et al. Relationship between mixture and two-fluid models. In: Proceedings of 14th International Conference on Multiphase Production Technology, Cannes, France. [S.l.: s.n.], 2009. p. 17–19.

DATE, A. W. Introduction to Computational Fluid Dynamics. New York, USA: Cambridge University Press, 2005.

DITTUS, F. W.; BOELTER, L. M. K. Heat transfer in automobile radiators of the tubular type. Berkeley, Calif. University of California Press, v. 2, n. 13, 1930.

DROPKIN, D.; SOMERSCALES, E. Heat transfer by natural convection in liquids confined by two parallel plates which are inclined at various angles with respect to the horizontal. Journal of Heat Transfer, American Society of Mechanical Engineers, v. 87, n. 1, p. 77–82, 1965.

DUKLER, A. E.; WICKS, M.; CLEVELAND, R. G. Frictional pressure drop in two-phase flow: A comparison of existing correlations for pressure loss and holdup. AIChE Journal, Wiley Online Library, v. 10, n. 1, p. 38–43, 1964.

DUNS, H. J.; ROS, N. C. J. Vertical flow of gas and liquid mixtures in wells. In: 6th World Petroleum Congress. [S.l.: s.n.], 1963.

ERTEKIN, T.; ABOU-KASSEM, J. H.; KING, G. R. Basic Applied Reservoir Simulation. [S.l.]: Henry L. Doherty Memorial Fund of AIME, Society of Petroleum Engineers, 2001. (SPE Textbook Series). ISBN 9781555630898.

FABRE, J.; LINÉ, A. Modeling of two-phase slug flow. Annual review of fluid mechanics, v. 24, n. 1, p. 21–46, 1992.

FAGHRI, A.; ZHANG, Y. Transport phenomena in multiphase systems. [S.l.]: Academic Press, 2006.

FAN, Y. An investigation of low liquid loading gas liquid stratified flow in near-horizontal pipes. Tese (Doutorado) — University of Tulsa, 2005.

FELIZOLA, H. Slug Flow in Extended Reach DirectionalWells. Dissertação (Mestrado) — University of Tulsa, 1992.

FERZIGER, J. H.; PERI ´C, M. Computational Methods for Fluid Dynamics. [S.l.]: Springer Berlin, 2002.

FIROOZABADI, A. Thermodynamics of Hydrocarbon Reservoirs. [S.l.]: McGraw-Hill Education, 1999.

FORTUNA, A. d. O. Técnicas Computacionais Para Dinâminca dos Fluidos: Conceitos Básicos e Aplicações. [S.l.]: Edusp, 2000.

FOX, R. W.; MCDONALD, A. T.; PRITCHARD, P. J. Introduction to Fluid Mechanics. 8th. ed. [S.l.]: John Wiley & Sons, 2011. ISBN 9780470547557.

FRANçA, F.; JR, R. L. The use of drift-flux techniques for the analysis of horizontal two-phase flows. International Journal of Multiphase Flow, v. 18, n. 6, p. 787 – 801, 1992.

FREPOLI, C.; MAHAFFY, J. H.; OHKAWA, K. Notes on the implementation of a fully-implicit numerical scheme for a two-phase tree-field flow model. Nuclear Engineering and Design, v. 225, p. 191–217, 2003.

FULLER, G. G. A modified Redlich-Kwong-Soave equation of state capable of representing the liquid state. Industrial & Engineering Chemistry Fundamentals, ACS Publications, v. 15, n. 4, p. 254–257, 1976.

GODA, H.; HIBIKI, T.; KIM, S.; ISHII, M.; UHLE, J. Drift-flux model for downward two-phase flow. International Journal of Heat and Mass Transfer, Elsevier, v. 46, n. 25, p. 4835–4844, 2003.

GOKCAL, B. Effects of High Viscosity on Two-Phase Oil-Gas Flow Behavior in Horizontal Pipes. Dissertação (Mestrado) — University of Tulsa, 2005.

GOKCAL, B. An Experimental and Theoretical Investigation of Slug Flow for High Oil Viscosity in Horizontal Pipes. Tese (Doutorado) — University of Tulsa, 2008.

GOMEZ, L. E.; SHOHAM, O.; SCHMIDT, Z.; CHOKSHI, R. N.; NORTHUG, T. Unified mechanistic model for steady-state two-phase flow: Horizontal to vertical upward flow. SPE journal, Society of Petroleum Engineers, v. 5, n. 03, p. 339–350, 2000.

GRESKOVICH, E. J.; COOPER, W. T. Correlation and prediction of gas-liquid holdups in inclined upflows. AIChE Journal, Wiley Online Library, v. 21, n. 6, p. 1189–1192, 1975.

HAGEDORN, A.; BROWN, K. Experimental study of pressure gradients occurring during continuours two-phase flow in small-diameter vertical conduits. Journal of Petroleum Technology, v. 17, p. 10, 1965.

HARMENS, A.; KNAPP, H. Three-parameter cubic equation of state for normal substances. Industrial & Engineering Chemistry Fundamentals, ACS Publications, v. 19, n. 3, p. 291–294, 1980.

HASAN, A. R.; KABIR, C. S. Predicting multiphase flow behavior in a deviated well. SPE Production Engineering, Society of Petroleum Engineers, v. 3, n. 4, p. 474–482, 1988.

HASAN, A. R.; KABIR, C. S. A study of multiphase flow behavior in vertical wells. SPE production engineering, Society of Petroleum Engineers, v. 3, n. 2, p. 263–272, 1988. HASAN, A. R.; KABIR, C. S. Heat transfer during two-phase flow in wellbores; part I–formation temperature. In: SOCIETY OF PETROLEUM ENGINEERS. SPE Annual Technical Conference and Exhibition. [S.l.], 1991.

HASAN, A. R.; KABIR, C. S. Aspects of wellbore heat transfer during two-phase flow. Society of Petroleum Engineers, v. 9, p. 211–216, 1994.

HASAN, A. R.; KABIR, C. S. A simplified model for oil/water flow in vertical and deriated wellbores. SPE Production and Facilities, v. 14, n. 1, p. 56–62, 1999.

HASAN, A. R.; KABIR, C. S.; SAYARPOUR, M. Simplified two-phase flow modeling in wellbores. Journal of Petroleum Science and Engineering, Elsevier, v. 72, n. 1, p. 42–49, 2010.

HIBIKI, T.; ISHII, M. One-dimensional drift-flux model and constitutive equations for relative motion between phases in various two-phase flow regimes. Int. J. Heat Mass transfer, v. 46, n. 25, p. 4935–4948, 2003.

HIBIKI, T.; ISHII, M. One-dimensional drift-flux model for two-phase flow in a large diameter pipe. International Journal of Heat and Mass Transfer, v. 46, p. 1773–1790, 2003.

HOELD, A. Coolant channel module ccm: An universally applicable thermal-hydraulic drift-flux based mixture-fluid 1D model and code. Nuclear Engineering and Design, Elsevier, v. 237, n. 15, p. 1952–1967, 2007.

ISHII, M. One-dimensional drift-flux model and constitutive equations for relative motion between phases in various two phase flow regimes. [S.l.]: Argonne National Laboratory, 1977.

ISHII, M.; HIBIKI, T. Thermo-Fluid Dynamics of Two-Phase Flow. [S.l.]: Springer, 2006.

ISHII, M.; HIBIKI, T. Thermo-Fluid Dynamics of Two-Phase Flow. [S.l.]: Springer, 2010. (SpringerLink: Bücher). ISBN 9781441979858.

ISHII, M.; MISHIMA, K. Two-fluid model and hydrodynamic constitutive relations. Nuclear Engineering and Design, v. 82, p. 107 – 126, 1984.

ISSA, R. I.; KEMPF, M. H. W. Simulation of slug flow in horizontal and nearly horizontal pipes with the two-fluid model. International Journal of Multiphase Flow, Elsevier, v. 29, n. 1, p. 69–95, 2003.

JOSSI, J. A.; STIEL, L. I.; THODOS, G. The viscosity of pure substances in the dense gaseous and liquid phases. AIChE Journal, Wiley Online Library, v. 8, n. 1, p. 59–63, 1962.

JOWITT, D.; COOPER, C.; PEARSON, K. The THETIS 80% Blocked Cluster Experiment. Part 5. [S.l.], 1984.

KATAOKA, I.; ISHII, M. Drift flux model for large diameter pipe and new correlation for pool void fraction. International Journal of Heat and Mass Transfer, Elsevier, v. 30, n. 9, p. 1927–1939, 1987.

KOLEV, N. Multiphase Flow Dynamics 1: Fundamentals. [S.l.]: Springer London, Limited, 2007. (Multiphase Flow Dynamics).

KREITH, F. The CRC Handbook of Thermal Engineering. [S.l.]: Springer, 2000.

KUBIC, W. L. A modification of the Martin equation of state for calculating vapour-liquid equilibria. Fluid Phase Equilibria, Elsevier, v. 9, n. 1, p. 79–97, 1982.

LAROCK, B. E.; JEPPSON, R. W.; WATTERS, G. Z. Hydraulics of Pipeline Systems. Florida, USA: CRC Press, 1999.

LEVEQUE, R. J. Finite Volume Methods for Hyperbolic Problems. New York, USA: Cambridge University Press, 2002.

LI, Y.-K.; NGHIEM, L. X.; SIU, A. Phase behaviour computations for reservoir fluids: Effect of pseudo-components on phase diagrams and simulation results. Journal of Canadian Petroleum Technology, Petroleum Society of Canada, v. 24, n. 06, 1985. LIAO, J.; MEI, R.; KLAUSNER, J. F. A study on the numerical stability of the two-fluid model near ill-posedness. International Journal of Multiphase Flow, Elsevier, v. 34, n. 11, p. 1067–1087, 2008.

LIAO, L. H.; PARLOS, A.; GRIFFITH, P. Heat Transfer, Carryover and Fall Back in PWR Steam Generators During Transients. [S.l.], 1985.

LIVESCU, S.; DURLOFSKY, L.; AZIZ, K.; GINESTRA, J. A fully-coupled thermal multiphase wellbore flow model for use in reservoir simulation. Journal of Petroleum Science and Engineering, Elsevier, v. 71, n. 3, p. 138–146, 2010.

MACLEOD, D. On a relation between surface tension and density. Trans. Faraday Soc., The Royal Society of Chemistry, v. 19, n. July, p. 38–41, 1923.

MAGRINI, K. L. Liquid Entrainment in Annular Gas-Liquid Flow in Inclined Pipes. Dissertação (Mestrado) — University of Tulsa, 2009.

MALEKZADEH, R.; BELFROID, S. P. C.; MUDDE, R. F. Transient drift flux model of severe slug in pipeline-riser systems. International Journal of Multiphase Flow, v. 46, p. 32–37, 2012.

MALISKA, C. R. Transferência de Calor e Mecânica dos Fluidos Computacional. 2ª edição. ed. Rio de Janeiro, Brasil: LTC, 2004. 452 p.

MALNES, D. Slug Flow in Vertical, Horizontal and Inclined Pipes. Kjeller, Norway, 1983.

MASELLA, J. M.; TRAN, Q. H.; FERRE, D.; PAUCHON, C. Transient simulation of two-phase flows in pipes. International Journal of Multiphase Flow, Elsevier, v. 24, n. 5, p. 739–755, 1998.

MASON, E. A.; SAXENA, S. C. Approximate formula for the thermal conductivity of gas mixtures. Physics FLuids, v. 1, p. 361–369, 1958.

MICHELSEN, M.; MOLLERUP, J. Thermodynamic Models: Fundamentals & Computational Aspects. [S.l.]: Tie-Line Publications, 2007.

MISHIMA, K.; HIBIKI, T. Some characteristics of air-water two-phase flow in small diameter vertical tubes. International Journal of Multiphase Flow, Elsevier, v. 22, n. 4, p. 703–712, 1996.

MUKHERJEE, H.; BRILL, J. P. Liquid holdup correlations for inclined two-phase flow. Society of Petroleum Engineers, v. 35, 1983.

MUNKEJORD, S. T. Analysis of the two-fluid model and the drift-flux model for numerical calculation of two-phase flow. Tese (Doutorado) — University of Science and Technology (NTNU), Department of Energy and Process Engineering, 2006.

OELLRICH, L.; PLÖCKER, U.; PRAUSNITZ, J.; KNAPP, H. Equation-of-state methods for computing phase equilibria and enthalpies. Int. Chem. Eng., Ruhrgas AG, Essen, West Germany, v. 21, 1981.

ORKISZEWSKI, J. Predicting two-phase pressure drops in vertical pipe. Journal of Petroleum Technology, Society of Petroleum Engineers, v. 19, n. 06, p. 829–838, 1967.

OUYANG, L.-B.; AZIZ, K. Transient gas-liquid two-phase flow in pipes with radial influx or efflux. Journal of Petroleum Science and Engineering, Elsevier, v. 30, n. 3, p. 167–179, 2001.

PAN, L.; WEBB, S. W.; OLDENBURG, C. M. Analytical solution for two-phase flow in a wellbore using the drift-flux model. Advances in Water Resources, v. 34, p. 1656–1665, 2011.

PASSUT, C. A.; DANNER, R. P. Correlation of ideal gas enthalpy, heat capacity and entropy. Industrial & Engineering Chemistry Process Design and Development, ACS Publications, v. 11, n. 4, p. 543–546, 1972.

PATANKAR, S. V. Numerical Heat Transfer and Fluid Flow. New York, USA: McGraw-Hill, 1980.

PATEL, N. C.; TEJA, A. S. A new cubic equation of state for fluids and fluid mixtures. Chemical Engineering Science, Elsevier, v. 37, n. 3, p. 463–473, 1982.

PENG, D.-Y.; ROBINSON, D. B. A new two-constant equation of state. Industrial & Engineering Chemistry Fundamentals, ACS Publications, v. 15, n. 1, p. 59–64, 1976. PENG, D.-Y.; ROBINSON, D. B. The characterization of the heptanes and heavier fractions for the GPA Peng-Robinson programs. [S.l.]: Gas Processors Association, 1978.

POLING, B. E.; PRAUSNITZ, J. M.; O’CONNELL, J. P. The Properties of Gases and Liquids. [S.l.]: McGraw-Hill, 2001.

POURAFSHARY, P.; VARAVEI, A.; SEPEHRNOORI, K.; PODIO, A. A compositional wellbore/reservoir simulator to model multiphase flow and temperature distribution. Journal of Petroleum Science and Engineering, Elsevier, v. 69, n. 1, p. 40–52, 2009. PROSPERETTI, A.; TRYGGVASON, G. Computational Methods for Multiphase Flow. [S.l.]: Cambridge University Press, 2007.

RACHFORD, J. H.; RICE, J. D. Procedure for use of electronic digital computers in calculating flash vaporization hydrocarbon equilibrium. Journal of Petroleum Technology, Society of Petroleum Engineers, v. 4, n. 10, p. 19–3, 1952.

RAMEY, H. J. J. Wellbore heat transmission. Journal of Petroleum Technology, Society of Petroleum Engineers, v. 14, n. 04, p. 427–435, 1962.

REDLICH, O.; KWONG, J. On the thermodynamics of solutions. V. An equation of state. Fugacities of gaseous solutions. Chemical Reviews, ACS Publications, v. 44, n. 1, p. 233–244, 1949.

RODRIGUEZ, O. M. H. Escoamento Multifásico. [S.l.]: Associação Brasileira de Engenharia e Ciências Mecânicas, 2011.

ROSA, A.; CARVALHO, R. de S.; XAVIER, J. Engenharia de reservatórios de petróleo. [S.l.]: Interciência, 2006.

ROSA, E. S. Escoamento Multifásico Isotérmico: Modelos de Multifluidos e de Mistura. [S.l.]: Bookman, 2012.

ROY, D.; THODOS, G. Thermal conductivity of gases. Hydrocarbons at normal pressures. Industrial & Engineering Chemistry Fundamentals, ACS Publications, v. 7, n. 4, p. 529–534, 1968.

ROY, D.; THODOS, G. Thermal conductivity of gases: Organic compounds at atmospheric pressure. Industrial & Engineering Chemistry Research, v. 9, p. 71–79, 1970.

SAGAR, R.; DOTY, D.; SCHMIDT, Z. Predicting temperature profiles in a flowing well. SPE Production Engineering, Society of Petroleum Engineers, v. 6, n. 04, p. 441–448, 1991.

SANDLER, S. I. Chemical, Biochemical, and Engineering Thermodynamics. [S.l.]: Wiley India Pvt. Limited, 2006.

SATTER, A. Heat losses during flow of steam down a wellbore. Journal of Petroleum Technology, Society of Petroleum Engineers, v. 17, n. 07, p. 845–851, 1965.

SCHLEGEL, J.; HIBIKI, T.; ISHII, M. Development of a comprehensive set of drift-flux constitutive models for pipes of various hydraulic diameters. Progress in Nuclear Energy, v. 52, p. 666–677, 2010.

SCHLUMBERGER. PIPESIM Suite. [S.l.], 2005.

SCHMIDT, G.; WENZEL, H. A modified van der Waals type equation of state. Chemical Engineering Science, Elsevier, v. 35, n. 7, p. 1503–1512, 1980.

SCHWARTZENTRUBER, J.; RENON, H.; WATANASIRI, S. Development of a new cubic equation of state for phase equilibrium calculations. Fluid Phase Equilibria, Elsevier, v. 52, p. 127–134, 1989.

SHI, H.; HOLMES, J. A.; DIAZ, L. R.; DURLOFSKY, L. J.; AZIZ, K.; ALKAYA, B.; ODDIE, G. Drift-flux modeling of multiphase flow in wellbores. SPE, v. 84228, p. 11, 2003.

SHI, H.; HOLMES, J. A.; DIAZ, L. R.; DURLOFSKY, L. J.; AZIZ, K. Drift-flux parameters for three-phase steady-state flow in wellbores. SPE, v. 89836, p. 10, 2004.

SHI, H.; HOLMES, J. A.; DIAZ, L. R.; DURLOFSKY, L. J.; AZIZ, K.; ODDIE, G. Drift-flux modeling of two-phase flow in wellbores. SPE, v. 10, p. 130–137, March 2005.

SHIPLEY, D. G. Two phase flow in large diameter pipes. Chemical Engineering Science, Elsevier, v. 39, n. 1, p. 163–165, 1984.

SHIRDEL, M. Development of a Coupled Wellbore-Reservoir Compositional Simulator for Horizontal Wells. Dissertação (Mestrado) — University of Texas, 2010.

SHIRDEL, M.; SEPEHRNOORI, K. Development of a transient mechanistic two-phase flow model for wellbores. In: SPE Reservoir Simulation Symposium. [S.l.: s.n.], 2011. SMITH, J. M.; NESS, H. C. V.; ABBOTT, M. M. Introduction to Chemical Engineering Thermodynamics. 7th edition. ed. [S.l.]: McGraw Hill Higher Education, 2005.

SOAVE, G. Equilibrium constants from a modified Redlich-Kwong equation of state. Chemical Engineering Science, Elsevier, v. 27, n. 6, p. 1197–1203, 1972.

SOD, G. A. A survey of several finite difference methods for systems of nonlinear hyperbolic convservation laws. Journal of Computational Physics, v. 27, p. 1–31, 1978.

SONNENBURG, H. Full-range drift-flux model based on the combination of drift-flux theory with envelope theory. In: Fourth International Topical Meeting on Nuclear Reactor Thermal-Hydraulics (NURETH-4). [S.l.: s.n.], 1989. v. 2.

SOPRANO, A. B.; SILVA, A. F. C. da; MALISKA, C. R. Numerical solution of the multiphase flow of oil, water and gas in horizontal wells in natural petroleum reservoirs. Mecánica Computacional, XXXI, p. 683–693, 2012.

STADKE, H. Gasdynamic Aspects of Two-Phase Flow: Hyperbolic, Wave Propagation Phenomena, and Related Numerical Methods. [S.l.]: Wiley-VCH, 2006.

STIEL, L. I.; THODOS, G. The thermal conductivity of nonpolar substances in the dense gaseous and liquid regions. AIChE Journal, Wiley Online Library, v. 10, n. 1, p. 26–30, 1964.

STONE, T. W.; BENNETT, J.; LAW, D. H.-S.; HOLMES, J. A. Thermal simulation with multisegment wells. In: SPE Reservoir Simulation Symposium. [S.l.: s.n.], 2002. STONE, T. W.; EDMUNDS, N. R.; KRISTOFF, B. J. A comprehensive wellbore/reservoir simulator. In: SPE Symposium on Reservoir Simulation. [S.l.: s.n.], 1989.

STRIKWERDA, J. C. Finite difference schemes and partial differential equations. [S.l.]: Siam, 2004.

STRYJEK, R.; VERA, J. Prsv: An improved Peng-Robinson equation of state for pure compounds and mixtures. The Canadian Journal of Chemical Engineering, Wiley Online Library, v. 64, n. 2, p. 323–333, 1986.

SUN, K. H.; DUFFEY, R. B.; PENG, C. M. The prediction of two-phase mixture level and hydrodynamically-controlled dryout under low flow conditions. International Journal of Multiphase Flow, Elsevier, v. 7, n. 5, p. 521–543, 1981.

TAITEL Y., S.-O. B. J. Simplified transient solution and simulation of two-phase flow in pipelines. Chemical Engineering Science, v. 44, p. 7, 1989.

THOMPSON, P. A.; KIM, Y.-G. Direct observation of shock splitting in a vapor–liquid system. Physics of Fluids (1958-1988), AIP Publishing, v. 26, n. 11, p. 3211–3215, 1983.

TREBBLE, M.; BISHNOI, P. Extension of the Trebble-Bishnoi equation of state to fluid mixtures. Fluid Phase Equilibria, Elsevier, v. 40, n. 1, p. 1–21, 1987.

VERSTEEG, H. K.; MALALASEKERA, W. An Introduction to Computational Fluid Dynamics. [S.l.]: Pearson, 2007.

VIGNERON, F.; SARICA, C.; BRILL, J. P. Experimental analysis of imposed two-phase flow transients in horizontal pipelines. In: BHR Group 7th International Conference. [S.l.: s.n.], 1995. v. 95, p. 199–217.

WAALS, J. D. van der. Over de Continuiteit van den Gas- en Vloeistoftoestand. Tese (Doutorado) — University of Leiden, 1873.

WASSILJEWA, A. Heat conduction in gas mixtures. Physikalische Zeitschrift, v. 5, p. 737–742, 1904.

WEI, Y. S.; SADUS, R. J. Equations of state for the calculation of fluid-phase equilibria. AIChE Journal, Wiley Online Library, v. 46, n. 1, p. 169–196, 2000.

WHITSON, C. H.; MICHELSEN, M. L. The negative flash. Fluid Phase Equilibria, Elsevier, v. 53, p. 51–71, 1989.

WILLHITE, G. P. Over-all heat transfer coefficients in steam and hot water injection wells. Journal of Petroleum Technology, Society of Petroleum Engineers, v. 19, n. 05, p. 607–615, 1967.

WILSON, G. A modified Redlich-Kwong equation of state. Application to general physical data calculations. In: American Institute of Chemical Engineers National Meeting. [S.l.: s.n.], 1968. Paper 15c.

WINTERFELD, P. H. Simulation of pressure buildup in a multiphase wellbore/reservoir system. SPE Formation Evaluation, SPE 15534, p. 247–252, 1989.

WOLDESEMAYAT, M. A.; GHAJAR, A. J. Comparison of void fraction correlations for different flow patterns in horizontal and upward inclined pipes. International Journal of Multiphase Flow, Elsevier, v. 33, n. 4, p. 347–370, 2007.

XIAO, Z.-Q. The calculation of oil temperature in a well. Society of Petroleum Engineers, 1987.

YEOH, G. H.; TU, J. Computational Techniques for Multi-Phase Flows. Kidlington, UK: Elsevier, 2010.

YU, J.-M.; LU, B. C.-Y. A three-parameter cubic equation of state for asymmetric mixture density calculations. Fluid Phase Equilibria, Elsevier, v. 34, n. 1, p. 1–19, 1987.

ZIGRANG, D.; SYLVESTER, N. A review of explicit friction factor equations. Journal of Energy Resources Technology, American Society of Mechanical Engineers, v. 107, n. 2, p. 280–283, 1985.

ZUBER, N.; FINDLAY, J. A. Average volumetric concentration in two-phase flow systems. Journal Heat Transfer, v. 87, p. 453–464, 1965.

ZUKOSKI, E. E. Influence of viscosity, surface tension, and inclination angle on motion of long bubbles in closed tubes. Journal of Fluid Mechanics, v. 25, n. 04, p. 821–837, 1966.

APÊNDICE A -- Modelagem Termodinâmica

Neste apêndice serão apresentadas algumas equações de estado, escritas na forma generalizada, e o cálculo das propriedades de um fluido a partir de uma dessas equações. Além disso, serão discutidas a análise de estabilidade e o cálculo do flash termodinâmico adotados no presente trabalho.

A.1 Equação de Estado Volumétrica

As equações de estado volumétricas são aquelas capazes de relacionar a pressão, a temperatura e o volume molar de um fluido. Uma das equações de estado utilizada para essa finalidade é a equação do gás ideal. Esta representa melhor os gases a bai-xas pressões e temperaturas moderadas, porém a altas pressões e a baibai-xas tempe-raturas torna-se imprecisa. Dessa forma, equações de estados mais representativas tem sido estudadas desde o século XIX.

De acordo com Peng e Robinson (1976) as equações de estados semi-empíricas geralmente expressam a pressão como a soma de dois termos: um positivo, represen-tando a pressão de atração, e outro negativo, represenrepresen-tando a pressão de repulsão. O termo repulsivo foi desenvolvido por Waals (1873) e é frequentemente utilizado por ou-tras equações. Como a maioria dessas equações modificam apenas o termo atrativo, é possível escrevê-las de forma genérica por:

P = RT

v − b− ∆ (A.1)

onde o primeiro termo do lado direito representa o termo repulsivo; e ∆, o termo atrativo. A variável P representa a pressão; T , a temperatura; v, o volume molar; R, a constante universal dos gases perfeitos; e b, uma constante proposta por Waals (1873).

diferentes autores. Esse termo é função dos parâmetros a, b e c e da função θ que depende da temperatura e que podem ser determinados utilizando-se as restrições do ponto crítico dadas por:

 ∂P ∂v  T =TC = 0,  ∂2P ∂v2  T =TC = 0, v = vC = ZCRTC PC (A.2)

onde Z representa o fator de compressibilidade do fluido e o subscrito C denota que

Documentos relacionados