• Nenhum resultado encontrado

6 CONCLUSÕES FINAIS

6.1 Trabalhos futuros

Como sugestões de trabalhos futuros, propõem-se:

• Avaliação da sensitividade dos parâmetros dos quantificadores como por exemplo: tipo da wavelet mãe, número de níveis da WPT, número da “palavra” do método de BP, número de IMFs e aperfeiçoamento (matemático e computacional) dos métodos ora propostos;

• Comparação dos métodos ora propostos com técnicas padrão do domínio tempo- frequência como, por exemplo: espectro FFT, espectro do envelope, cepstrum, wavelet, EMD, EEMD, análise cicloestacionária, entre outras;

• Avaliação do desempenho da ferramenta em outros tipos de dados, para além dos dados de vibração, oriundos da O&M de turbinas eólicas como dados do sistema SCADA, dados anemométricos, dados de sistemas LIDAR/SODAR, dados de outros sistemas de CMS como análise do óleo, termografia;

• Validação da ferramenta em uma bancada onde todos os parâmetros estejam controlados e se possa saber o momento da falha e sua respectiva causa.

6.2 Artigos publicados

Ao longo desse trabalho foram publicados artigos em periódicos e congressos conforme lista a seguir.

Periódicos

LEITE, G. DE N. P.; ARAÚJO, A. M.; ROSAS, P. A. C. Prognostic techniques applied to maintenance of wind turbines: a concise and specific review. Renewable and Sustainable Energy Reviews, n. June, 2017.

LEITE, G. DE N. P.; ARAÚJO, A. M.; ROSAS, P. A. C.; Detecção de falhas em componentes mecânicos a partir da utilização de técnicas de entropia da informação. Revista CIENTEC. 2018.

LEITE, G. DE N. P.; WESCHENFELDER, F.; Utilização de energia solar fotovoltaica integrado com sistemas de climatização conectados ao SIN no Brasil: estudo da viabilidade técnica-econômica. Revista CIENTEC. 2018.

Congressos

SILVA, V., LEITE, G. N. P., ARAÚJO A. M.; Vibration analysis of wind turbine bearing based on information theory quantifiers, 24th ABCM International Congress of Mechanical

Engineering, Curitiba, 2017.

LEITE, G. DE N. P.; ARAÚJO, A. M.; ROSAS, P. A. C.; Detecção de falhas em componentes mecânicos a partir da utilização de técnicas de entropia da informação. SNCT, Recife, 2018. LEITE, G. DE N. P.; WESCHENFELDER, F.; Utilização de energia solar fotovoltaica integrado com sistemas de climatização conectados ao SIN no Brasil: estudo da viabilidade técnica-econômica. I Workshop Regional de Refrigeração e Climatização. 2018.

Submetidos (periódicos)

LEITE, G. DE N. P.; ARAÚJO, A. M.; ROSAS, P. A. C.; STOSIC, T.; STOSIC, B. Entropy measures for early detection of bearing faults. Physica A, 2018

REFERÊNCIAS

AHMADZADEH, F.; LUNDBERG, J. Remaining useful life estimation : review. Int J Syst Assur Eng Manag, 2013.

ALEGRIA, O. C. et al. Empirical Wavelet Transform-based Detection of Anomalies in ULF Geomagnetic Signals Associated to Seismic Events with a Fuzzy Logic-based System for Automatic Diagnosis. Wavelet Transform and Some of Its Real-World Applications, 2015. AN, X.; PAN, L. Wind turbine bearing fault diagnosis based on adaptive local iterative filtering and approximate entropy. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, v. 231, n. 17, p. 3228–3237, 2017a.

AN, X.; PAN, L. Bearing fault diagnosis of a wind turbine based on variational mode decomposition and permutation entropy. Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability, v. 231, n. 2, p. 200–206, 2017b.

ANTONI, J. Cyclic spectral analysis of rolling-element bearing signals: Facts and fictions. Journal of Sound and Vibration, v. 304, n. 3–5, p. 497–529, 2007.

BANDT, C.; POMPE, B. Permutation entropy: a natural complexity measure for time series. Physical review letters, v. 88, n. 17, p. 174102, 2002.

BARILLI, R. J. DE C. Análise de Falhas em Mancais de Rolamento Utilizando a Técnica do Envelope. Rio de Janeiro: [s.n.].

BARSZCZ, T. Application of diagnostic algorithms for wind turbines. DIAGNOSTYKA, v. 2, n. 50, p. 7–11, 2009.

BASSEVILLE, M. Divergence measures for statistical data processing - An annotated bibliography. Signal Processing, v. 93, n. 4, p. 621–633, 2013.

BECHHOEFER, E.; SCHLANBUSCH, R. Generalized Prognostics Algorithm Using Kalman Smoother. IFAC-PapersOnLine, v. 48, n. 21, p. 97–104, 2015.

BLANCO, S. et al. Time-frequency analysis of electroencephalogram series. III. Wavelet packets and information cost function. Physical Review E, v. 57, n. 1, p. 932–940, 1998. BORIS, I.; DAVID CASTER, H. How to Detect and Handle Outliers. [s.l.] Milwaukee, Wis. : ASQC Quality Press, 1993.

BOSKOSKI, P.; JURICIC, D. Fault detection of mechanical drives under variable operating conditions based on wavelet packet Rényi entropy signatures. Mechanical Systems and Signal Processing, v. 31, p. 369–381, 2012.

BUDYNAS, R. G.; NISBETT, J. K. Shigley’s mechanical engineering design. 9th. ed. [s.l.] McGraw-Hill Higher Education, 2010.

BUTLER, S. et al. A feasibility study into prognostics for the main bearing of a wind turbine. Proceedings of the IEEE International Conference on Control Applications.

Anais...2012

CHEN, B.; MATTHEWS, P. C.; TAVNER, P. J. Wind turbine pitch faults prognosis using a- priori knowledge-based ANFIS. Expert Systems with Applications, v. 40, n. 17, p. 6863– 6876, 2013.

CHEN, Z. Fault diagnosis of gear box based on information entropy. 2010 Chinese Control and Decision Conference, CCDC 2010, p. 1239–1242, 2010.

CHENGBING, H. et al. Fault diagnosis of wind turbine planetary gearbox based on order analysis and divergence index. The Journal of Engineering, v. 2017, n. 13, p. 1394–1398, 2017.

COVER, T. M.; THOMAS, J. A. Elements of Information Theory. Second edi ed. [s.l.] Wiley Interscience, 2006.

D’ELIA, G.; COCCONCELLI, M.; MUCCHI, E. An algorithm for the simulation of faulted bearings in non-stationary conditions. Meccanica, p. 1–20, 2017.

DE AZEVEDO, H. D. M.; ARAÚJO, A. M.; BOUCHONNEAU, N. A review of wind turbine bearing condition monitoring: State of the art and challenges. Renewable and Sustainable Energy Reviews, v. 56, p. 368–379, 2016.

DRAGOMIR, O. et al. Review of prognostic problem in condition-based maintenance. European Control Conference, ECC’09., v. sur CD ROM, p. 1585–1592, 2009.

DUPUIS, R. Application of Oil Debris Monitoring For Wind Turbine Gearbox Prognostics and Health Management. Annual Conference of the Prognostics and Health

Management Society. Anais...2010Disponível em:

<https://www.phmsociety.org/sites/phmsociety.org/files/phm_submission/2010/phmc_10_04 4.pdf>

ERRICHELLO, R.; MULLER, J. Gearbox Reliability Collaborative Gearbox 1 Failure Analysis Report December 2010 – January 2011. Denver: [s.n.].

FAN, X. et al. A Particle-Filtering Approach for Remaining Useful Life Estimation of Wind Turbine Gearbox. International Conference on Chemical, Material and Food Engineering. Anais...2015

FERRI, G. L.; PENNINI, F.; PLASTINO, A. LMC-complexity and various chaotic regimes. Physics Letters, Section A: General, Atomic and Solid State Physics, v. 373, n. 26, p. 2210– 2214, 2009.

FISHER, R. A. On the Mathematical Foundations of Theoretical Statistics. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, v. 222, n. 594–604, p. 309–368, 1922.

FLORIAN, M.; SØRENSEN, J. Wind Turbine Blade Life-Time Assessment Model for Preventive Planning of Operation and Maintenance. Journal of Marine Science and Engineering, v. 3, n. 3, p. 1027–1040, 2015.

Cambridge University Press, 2004.

FU, L. et al. Condition monitoring for roller bearings of wind turbines based on health evaluation under variable operating states. Energies, v. 10, n. 10, 2017.

GAO, Q. W. et al. A novel wind turbine fault diagnosis method based on intergral extension load mean decomposition multiscale entropy and least squares support vector machine. Renewable Energy, v. 116, p. 169–175, 2018.

GLOBAL WIND ENERGY COUNCIL. Global wind statistics 2017. Brussels: [s.n.]. Disponível em: <http://gwec.net/wp-content/uploads/vip/GWEC_PRstats2017_EN- 003_FINAL.pdf>.

HENG, A. et al. Rotating machinery prognostics: State of the art, challenges and opportunities. Mechanical Systems and Signal Processing, v. 23, n. 3, p. 724–739, 2009.

HU, A.; XIANG, L.; GAO, N. Fault diagnosis for the gearbox of wind turbine combining ensemble intrinsic time-scale decomposition with Wigner bi-spectrum entropy. Journal of Vibroengineering, v. 19, n. 3, p. 1759–1770, 2017.

HUANG, N. E. et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proceedings of the Royal Society London, Series A, v. 454, n. 1971, p. 903–995, 1998.

HUSSAIN, S.; GABBAR, H. A. Vibration Analysis and Time Series Prediction for Wind Turbine Gearbox Prognostics. International Journal of Prognostics and Health Management, v. 4, n. Special Issue Wind Turbine PHM, p. 1–11, 2013.

INOUYE, T. et al. Quantification of EEG irregularity by use of the entropy of the power spectrum. Electroencephalography and Clinical Neurophysiology, v. 79, n. 3, p. 204–210, 1991.

JARDINE, A. K. S.; LIN, D.; BANJEVIC, D. A review on machinery diagnostics and prognostics implementing condition-based maintenance. Mechanical Systems and Signal Processing, v. 20, n. 7, p. 1483–1510, 2006.

KOTHAMASU, R.; HUANG, S. H.; VERDUIN, W. H. System health monitoring and prognostics - A review of current paradigms and practices. Handbook of Maintenance Management and Engineering, p. 337–362, 2009.

KUSIAK, A. Renewables: Share data on wind energy. Nature, v. 529, n. 7584, p. 19–21, 2016. LEE, J. et al. Recent advances and trends in predictive manufacturing systems in big data environment. Manufacturing Letters, v. 1, n. 1, p. 38–41, 2013.

LEE, J. et al. Prognostics and health management design for rotary machinery systems - Reviews, methodology and applications. Mechanical Systems and Signal Processing, v. 42, n. 1–2, p. 314–334, 2014.

LEITE, G. DE N. P.; ARAÚJO, A. M.; ROSAS, P. A. C. Prognostic techniques applied to maintenance of wind turbines: a concise and specific review. Renewable and Sustainable Energy Reviews, n. June, 2017.

LI, Y. et al. A fault diagnosis scheme for planetary gearboxes using modified multi-scale symbolic dynamic entropy and mRMR feature selection. Mechanical Systems and Signal Processing, v. 91, p. 295–312, 2017.

LINGMEI, W. et al. Advances in Energy Systems Engineering. p. 803–822, 2017.

LÓPEZ-RUIZ, R.; MANCINI, H. L.; CALBET, X. A statistical measure of complexity. Physics Letters A, v. 209, n. 5–6, p. 321–326, 1995.

MAHESWARI, R. U.; UMAMAHESWARI, R. Trends in non-stationary signal processing techniques applied to vibration analysis of wind turbine drive train – A contemporary survey. Mechanical Systems and Signal Processing, v. 85, p. 296–311, 2017.

MARK, W. D. Analysis of the vibratory excitation of gear systems: Basic theory. The Journal of the Acoustical Society of America, v. 63, n. 5, p. 1409–1430, 1978.

MARK, W. D. Analysis of the vibratory excitation of gears systems. II: Tooth error representations, approximations, and application. The Journal of the Acoustical Society of America, v. 66, n. 5, p. 1758–1787, 1979.

MÁRQUEZ, F. P. G. et al. Identification of critical components of wind turbines using FTA over the time. Renewable Energy, v. 87, p. 869–883, 2016.

MARTIN, M. T.; PLASTINO, A.; ROSSO, O. A. Generalized statistical complexity measures: Geometrical and analytical properties. Physica A: Statistical Mechanics and its Applications, v. 369, n. 2, p. 439–462, 2006.

MATTHEWS, P. C.; CHEN, B.; TAVNER, P. J. Automated on-line fault prognosis for wind turbine pitch systems using supervisory control and data acquisition. IET Renewable Power Generation, v. 9, n. 5, p. 503–513, 2015.

MAY, R. M. Simple mathematical models with very complicated dynamics. Nature, 1976. NI, Q. et al. A case study of sample entropy analysis to the fault detection of bearing in wind turbine. Case Studies in Engineering Failure Analysis, v. 9, n. September, p. 99–111, out. 2017.

NUNES, R. R.; ALMEIDA, M. P. DE; SLEIGH, J. W. Entropia espectral: um novo método para adequação anestésica. Revista Brasileira de Anestesiologia, v. 54, n. 3, p. 404–422, 2004. OLIVARES, F.; PLASTINO, A.; ROSSO, O. A. Contrasting chaos with noise via local versus global information quantifiers. Physics Letters, Section A: General, Atomic and Solid State Physics, v. 376, n. 19, p. 1577–1583, 2012.

PARDO, L. Statistical Inference Based on Divergence Measures. [s.l.] Taylor & Francis Group, 2006.

PENG, Y.; DONG, M.; ZUO, M. J. Current status of machine prognostics in condition-based maintenance: A review. International Journal of Advanced Manufacturing Technology, v. 50, n. 1–4, p. 297–313, 2010.

literature review. Wind Engineering, v. 37, n. 5, p. 535–548, 2013.

QIAO, W. et al. IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS A Survey on Wind Turbine Condition Monitoring and Fault Diagnosis − Part II : Signals and Signal Processing Methods. v. 0046, n. c, 2015.

QIU, H. et al. Wavelet filter-based weak signature detection method and its application on rolling element bearing prognostics. Journal of Sound and Vibration, v. 289, n. 4–5, p. 1066– 1090, 2006.

RANDALL, R. B. Vibration-Based Condition Monitoring: Industrial, Aerospace and Automotive Applications. [s.l: s.n.].

RANDALL, R. B.; ANTONI, J. Rolling element bearing diagnostics-A tutorial. Mechanical Systems and Signal Processing, v. 25, n. 2, p. 485–520, 2011.

RÉNYI, A. On measures of entropy and information. Fourth Berkeley Symposium on Mathematical Statistics and Probability, v. 1, n. c, p. 547–561, 1961.

RIBEIRO, H. V. et al. Complexity-entropy causality plane: A useful approach for distinguishing songs. Physica A: Statistical Mechanics and its Applications, v. 391, n. 7, p. 2421–2428, 2012.

RIEDL, M.; MÜLLER, A.; WESSEL, N. Practical considerations of permutation entropy: A tutorial review. European Physical Journal: Special Topics, v. 222, n. 2, p. 249–262, 2013. ROSSO, O. A. et al. Causality and the entropy-complexity plane: Robustness and missing ordinal patterns. Physica A: Statistical Mechanics and its Applications, v. 391, n. 1–2, p. 42– 55, 2012.

RUIZ-GONZALEZ, R. et al. An SVM-Based classifier for estimating the state of various rotating components in Agro-Industrial machinery with a vibration signal acquired from a single point on the machine chassis. Sensors (Switzerland), v. 14, n. 11, p. 20713–20735, 2014.

SHANNON, C. E. A mathematical theory of communication. The Bell System Technical Journal, v. 27, n. July 1928, p. 379–423, 1948.

SHARMA, S.; MAHTO, D. Condition Monitoring of Wind Turbines: A Review Condition Monitoring of Wind Turbines A Review Condition Monitoring of Wind Turbines: A Review. Global Journal of Researches in Engineering Mechanical and Mechanics Engineering, v. 13, n. 6, 2013.

SHENG, S. S. Wind Turbine Gearbox Vibration Condition Monitoring Benchmarking Datasets. Denver: [s.n.].

SIKORSKA, J. Z.; HODKIEWICZ, M.; MA, L. Prognostic modelling options for remaining useful life estimation by industry. Mechanical Systems and Signal Processing, v. 25, n. 5, p. 1803–1836, 2011.

SINGH, J.; DARPE, A. K.; SINGH, S. P. Bearing damage assessment using Jensen-Rényi Divergence based on EEMD. Mechanical Systems and Signal Processing, v. 87, n. July, p.

307–339, 2017.

SKRIMPAS, G. A. et al. Residual signal feature extraction for gearbox planetary stage fault detection. Wind Energy, v. 20, n. 8, p. 1389–1404, ago. 2017.

STOSIC, T. et al. Investigating anthropically induced effects in streamflow dynamics by using permutation entropy and statistical complexity analysis: A case study. Journal of Hydrology, v. 540, p. 1136–1145, 2016.

SUN, X. M. et al. Fault Diagnosis of Wind Turbine Bearings Based on Hilbert Space Feature Entropy. Advanced Materials Research, v. 971–973, p. 472–475, jun. 2014.

SUN, X. M.; CHEN, C. Z.; ZHOU, H. Quantitative Analysis of Fault of Wind Turbines Based on Hilbert Space Feature Entropy. Advanced Materials Research, v. 971–973, p. 1292–1295, jun. 2014.

TAVNER, P. J. How are we going to make offshore wind farms more reliable? presented at the SUPERGEN Wind 2011 General Assembly. Anais...Durham: 2011

TCHAKOUA, P. et al. Wind turbine condition monitoring: State-of-the-art review, new trends, and future challenges. Energies, v. 7, n. 4, p. 2595–2630, 2014.

THORSEN, O. V. AND D. M. A survey of faults on induction motors in offshore oil industry, petrochemical industry, gas terminal, and oil refineries. IEEE Transactions on Energy Conversion, n. IA-31, p. 1189–96, 1995.

TJERNBERG, L. B.; BANGALORE, P. An Approach for Self Evolving Neural Network Based Algorithm for Fault Prognosis in Wind Turbines : A Case Study. IEEE Grenoble Power- Tech (POWERTECH). Anais...IEEE, 2013

U.S. DEPARTMENT OF ENERGY’S OFFICE OF ENERGY EFFICIENCY AND RENEWABLE ENERGY. Statistics Show Bearing Problems Cause the Majority of Wind Turbine Gearbox Failures. Disponível em: <https://energy.gov/eere/wind/articles/statistics- show-bearing-problems-cause-majority-wind-turbine-gearbox-failures>. Acesso em: 3 fev. 2018.

VENCL, A.; GAŠIĆ, V.; STOJANOVIĆ, B. Fault tree analysis of most common rolling bearing tribological failures. IOP Conference Series: Materials Science and Engineering, v. 174, n. 1, 2017.

WORLD WIND ENERGY ASSOCIATION. WIND POWER CAPACITY REACHES 539 GW, 52,6 GW ADDED IN 2017. Disponível em: <http://www.wwindea.org/2017-statistics/>. Acesso em: 17 fev. 2018.

WU, S. DE et al. Bearing fault diagnosis based on multiscale permutation entropy and support vector machine. Entropy, v. 14, n. 8, p. 1343–1356, 2012.

WU, Z.; HUANG, N. E. Ensemble Empirical Mode Decomposition: a Noise-Assisted Data Analysis Method. Advances in Adaptive Data Analysis, v. 01, n. 01, p. 1–41, 2009.

XIAO, Y. et al. Misalignment fault diagnosis of DFWT based on IEMD energy entropy and PSO-SVM. Entropy, v. 19, n. 1, 2017.

YAN, R.; LIU, Y.; GAO, R. X. Permutation entropy: A nonlinear statistical measure for status characterization of rotary machines. Mechanical Systems and Signal Processing, v. 29, p. 474–484, 2012.

YANG, W. et al. Information entropy: an effective approach for wind turbine condition monitoring. EWEA 2012 - European Wind Energy Conference & Exhibition. Anais...2012 YEUNG, R. W. A first course in information theory. [s.l.] Springer, 2002.

YU, W. H. Vibration Signal of Generator Features and its Fault Diagnosis Application Wang Hui Yu. v. 637, p. 906–909, 2014.

ZAMORA, F. O. Medida de Información de Fisher y Distribución Causal De Probabilidad de Bandt Y Pompe: Aplicaciones al Análisis de Sistemas Dinámicos Caóticos. [s.l.] Universidad Nacional de la Plata, 2013.

ZANIN, M. et al. Permutation entropy and its main biomedical and econophysics applications: A review. Entropy, v. 14, n. 8, p. 1553–1577, 2012.

ZHANG, X. et al. A New Feature Extraction Method for Gear Fault Diagnosis and Prognosis. Maintenance and Reliability, v. 16, n. 2, p. 295–300, 2014.

ZHU, J. et al. Online Condition monitoring and remaining useful life prediction of particle contaminated lubrication Oil. PHM 2013 - 2013 IEEE International Conference on Prognostics and Health Management, Conference Proceedings, 2013a.

ZHU, J. et al. Lubrication Oil Condition Monitoring and Remaining Useful Life Prediction with Particle Filtering. International Journal of Prognostics and Health Management, v. 4, n. 2008, p. 1–15, 2013b.

ZHU, J. et al. Online particle-contaminated lubrication oil condition monitoring and remaining useful life prediction for wind turbines. Wind Energy, n. 18, p. 1131–1149, 2015.

ANEXO A - ROTINAS DESENVOLVIDAS

Relação das rotinas principais desenvolvidas na tese de doutorado: “DIAGNÓSTICO DE FALHAS EM COMPONENTES DE TURBINAS EÓLICAS ATRAVÉS DA APLICAÇÃO DE QUANTIFICADORES DA TEORIA DA INFORMAÇÃO”

Rotinas R Descrição

histograma.R Análise de série temporal e histograma

de uma série aleatória e uma série constante

renyi_fisher_bernoulli.R Análise da entropia de Rényi e informação de Fisher para vários valores de alfa para a distribuição de Bernoulli

rotina_teste_logistic.R logistic_map.R

Análise do mapa logístico e das PMFs para os valores de r igual a 2,5, 3,5 e 3,9 periodic_radom_data_evaluation_port.R Análise dos dados periódico-aleatórios, series temporais, PMFs e plano entropia-complexidade

synthetic_data_evaluation.R Cálculo da entropia de Shannon, Rényi e divergência de Jensen-Rényi para as PMF(PS, BP, WPT e EEMD)

my_fft.R Cálculo da FFT de um sinal 𝒙(𝒕) com

frequência de amostragem 𝒇𝒔

PMF_PS.R Cálculo da PMF baseada no método da

potência espectral

PMF_BP.R Cálculo da PMF baseada no método de

Bandt e Pompe

PMF_WPT.R Cálculo da PMF baseada no método

wavelet packet tree

PMF_EEMD.R Cálculo da PMF baseada no método

ensemble empirical mode decomposition shannon_entropy.R Cálculo da entropia de Shannon para

uma dada PMF

rényi_entropy.R Cálculo da entropia de Rényi para uma

dada PMF e um valor dado para o coeficiente 𝜶

jensen_shannon_divergence.R Cálculo da divergência de Jensen- Shannon

jensen_renyi_divergence.R Cálculo da divergência de Jensen- Rényi

Rotinas Octave Descrição

bearing_simulation_localfault.m Geração dos dados sintéticos de rolamentos com falhas a partir do princípio da cicloestacionariedade

ANEXO B - ZOOM DOS PLANOS ENTROPIA-COMPLEXIDADE E ENTROPIA-INFORMAÇÃO DE FISHER Figura 96 – Zoom do plano entropia de Shannon-complexidade para o rolamento 3 do banco de dados 1.

Figura 97 – Zoom do plano entropia de Shannon-complexidade para o rolamento 4 do banco de dados 1.

Figura 98 – Zoom do plano entropia de Shannon-complexidade para o rolamento 1 do banco de dados 2.

Figura 99 – Zoom do plano entropia de Rényi-complexidade para o rolamento 3 do banco de dados 1.

Figura 100 – Zoom do plano entropia de Rényi-complexidade para o rolamento 4 do banco de dados 1.

Figura 101 – Zoom do plano entropia de Rényi-complexidade para o rolamento 1 do banco de dados 2.

Figura 102 – Zoom do plano entropia de Shannon-Informação de Fisher para os rolamentos 3 e 4 do banco de dados 1 e rolamento 1 do banco de dados 2.

Documentos relacionados