• Nenhum resultado encontrado

• Realizar análise de DRX nos extratos utilizados na síntese catalítica.

• Realizar a separação dos nanotubos de carbono e o catalisador utilizado na reação.

• Realizar as caracterizações dos nanotubos de carbono, como a análise de DRX para

identificação das fases, e TGA para quantificar o carbono formado, espectroscopia

Raman para especificar as paredes dos nanotubos.

REFERÊNCIAS BIBLIOGRÁFICAS

A.C., M.; R.C., O. Medicamentos Fitoter{á}picos na odontologia: evid{ê}ncias e perspectivas

sobre o uso da aroeira-do-sert{ã}o (Myracrodruon urundeuva Allem{ã}o). Revista Brasileira

de Plantas Medicinais, p. 283–289, 2014.

ABBAS, H. F.; WAN DAUD, W. M. A. Hydrogen production by methane decomposition:

A reviewInternational Journal of Hydrogen Energy, 2010.

ABDULLAH, B.; ABD GHANI, N. A.; VO, D. V. N. Recent advances in dry reforming of

methane over Ni-based catalystsJournal of Cleaner Production, 2017.

AMIN, A. M.; CROISET, E.; CONSTANTINOU, C.; EPLING, W. Methane cracking using

Ni supported on porous and non-porous alumina catalysts. International Journal of Hydrogen

Energy, 2012.

ANSARI, F.; BAZARGANIPOUR, M.; SALAVATI-NIASARI, M. NiTiO3/NiFe2O4

nanocomposites: Simple sol-gel auto-combustion synthesis and characterization by utilizing

onion extract as a novel fuel and green capping agent. Materials Science in Semiconductor

Processing, 2016.

ASHIK, U. P. M.; WAN DAUD, W. M. A.; ABBAS, H. F. Production of greenhouse gas

free hydrogen by thermocatalytic decomposition of methane - A reviewRenewable and

Sustainable Energy Reviews, 2015.

BAYAT, N.; REZAEI, M.; MESHKANI, F. Methane decomposition over Ni-Fe/Al2O3

catalysts for production of COx-free hydrogen and carbon nanofiber. International Journal of

Hydrogen Energy, 2016.

BENRABAA, R.; LÖFBERG, A.; RUBBENS, A.; BORDES-RICHARD, E.; VANNIER, R.

N.; BARAMA, A. Structure , reactivity and catalytic properties of nanoparticles of nickel ferrite

in the dry reforming of methane. Catalysis Today, v. 203, p. 188–195, 2013.

CARVALHO, A. F. M. DE. Desenvolvimento de catalisadores de Ni e Co suportados em

LaAlO3 para reforma a seco de metano: Estudo da influência do Co na estabilidade e

formação de coque. [s.l.] Universidade Federal do Rio Grande do Norte, 2016.

CESÁRIO, M. R. Reforma a Vapor Catalítica do Metano: Otimização da Produção e

Seletividade em Hidrogênio por Absroção in situ do CO2 produzido. [s.l.] Universidade

Federal do Rio Grande do Norte, 2013.

CHARLOTTE RYAN E WILLIAM MATHIS, DA B. Airbus quer ter aviões comerciais

movidos a hidrogênio em 5 anos. Disponível em:

<https://exame.com/inovacao/airbus-quer-ter-avioes-comerciais-movidos-a-hidrogenio-em-5-anos/>. Acesso em: 28 mar. 2021.

CLEVENGER, T.; LASHOF, D. 7 Ways the Biden Administration Can Reverse Climate

Rollbacks. Disponível em:

<https://www.wri.org/blog/2021/01/7-ways-biden-administration-can-reverse-climate-rollbacks>. Acesso em: 24 mar. 2021.

DAN LASHOF, DEVASHREE SAHA, KARL HAUSKER, GREG CARLOCK, K. K. AND

T. C. Unpacking the US CLEAN Future Act. Disponível em:

<https://www.wri.org/blog/2021/03/clean-future-act-climate-crisis-us>. Acesso em: 21 mar.

2021.

DEMUYNCK, J.; PAEPE, M. DE; HUISSEUNE, H.; SIERENS, R.; VANCOILLIE, J.;

VERHELST, S. On the applicability of empirical heat transfer models for hydrogen combustion

engines. International Journal of Hydrogen Energy, 2011.

DRUMOND, M. A. Aroeira. Disponível em:

<https://www.agencia.cnptia.embrapa.br/gestor/bioma_caatinga/arvore/CONT000g798rt3n02

wx5ok0wtedt3d3jjsda.html>. Acesso em: 23 abr. 2021.

FIGUEREDO, G. P.; MEDEIROS, R. L. B. A.; MACEDO, H. P.; OLIVEIRA, Â. A. S. DE;

BRAGA, R. M.; MERCURY, J. M. R.; MELO, M. A. F.; MELO, D. M. A. A comparative

study of dry reforming of methane over nickel catalysts supported on perovskite-type

LaAlO3 and commercial Α-Al2O3International Journal of Hydrogen Energy, 2018.

GENG, S.; HAN, Z.; HU, Y.; CUI, Y.; YUE, J.; YU, J.; XU, G. Methane Decomposition

Kinetics over Fe2O3 Catalyst in Micro Fluidized Bed Reaction Analyzer. Industrial and

Engineering Chemistry Research, 2018.

Global hydrogen production in the Sustainable Development Scenario, 2019-2070.

Disponível em:

<https://www.iea.org/data-and-statistics/charts/global-hydrogen-production-in-the-sustainable-development-scenario-2019-2070>. Acesso em: 29 mar. 2021.

GROOTE, A. M. DE; FROMENT, G. F. Simulation of the catalytic partial oxidation of

methane to synthesis gas. Applied Catalysis A: General, 1996.

HECHT, D. S.; THOMAS, D.; HU, L.; LADOUS, C.; LAM, T.; PARK, Y.; IRVIN, G.;

DRZAIC, P. Carbon-nanotube film on plastic as transparent electrode for resistive touch

screens. Journal of the Society for Information Display, 2009.

Instituto Brasileiro de Geografia e Estatística. Disponível em:

<https://www.ibge.gov.br/estatisticas/economicas/agricultura-e-pecuaria/9107-producao-da-pecuaria-municipal.html?=&t=destaques>. Acesso em: 28 mar. 2021.

Internation Energy Agency. Disponível em:

<https://www.iea.org/reports/the-future-of-hydrogen>. Acesso em: 14 jul. 2020.

KARUNAKARAN, G.; JAGATHAMBAL, M.; MINH, N. VAN; KOLESNIKOV, E.;

KUZNETSOV, D. Green Synthesis of NiFe2O4 Spinel-Structured Nanoparticles Using

Hydrangea paniculata Flower Extract with Excellent Magnetic Property. JOM, 2018.

KEIPI, T.; TOLVANEN, K. E. S.; TOLVANEN, H.; KONTTINEN, J. Thermo-catalytic

decomposition of methane: The effect of reaction parameters on process design and the

utilization possibilities of the produced carbon. Energy Conversion and Management, 2016.

KIILL, L. H. P. Plantas da Caatinga Ameaçadas de Extinção e Sua Associação Com

Polinizadores. Anais da Semana dos polinizadores, p. 59–71, 2010.

KIM, S.; YIM, J.; WANG, X.; BRADLEY, D. D. C.; LEE, S.; DEMELLO, J. C. Spin-and

spray-deposited single-walled carbon-nanotube electrodes for organic solar cells. Advanced

Functional Materials, 2010.

KOMBAIAH, K.; VIJAYA, J. J.; KENNEDY, L. J.; BOUOUDINA, M.; RAMALINGAM, R.

J.; AL-LOHEDAN, H. A. Okra extract-assisted green synthesis of CoFe2O4 nanoparticles and

their optical, magnetic, and antimicrobial properties. Materials Chemistry and Physics, 2018.

KOMBAIAH, K.; VIJAYA, J. J.; KENNEDY, L. J.; KAVIYARASU, K. Catalytic studies of

NiFe2O4 nanoparticles prepared by conventional and microwave combustion method.

Materials Chemistry and Physics, 2019.

partial oxidation of methane: Modeling and simulation. International Journal of Hydrogen

Energy, 2009.

LAOKUL, P.; AMORNKITBAMRUNG, V.; SERAPHIN, S.; MAENSIRI, S. Characterization

and magnetic properties of nanocrystalline CuFe 2O4, NiFe2O4, ZnFe2O 4 powders prepared

by the Aloe vera extract solution. Current Applied Physics, 2011.

MENDES, M. S. DA S. Métodos “verdes” de produção de nanomateriais que promovem

nanotecnologias sustentáveis. p. 178, 2015.

MONDAL, K. C.; RAMESH CHANDRAN, S. Evaluation of the economic impact of hydrogen

production by methane decomposition with steam reforming of methane process. International

Journal of Hydrogen Energy, 2014.

P. SIVAKUMAR; RAMESH, R.; RAMANAND, A.; PONNUSAMY, S.;

MUTHAMIZHCHELVAN, C. Synthesis and characterization of NiFe2O4 nanoparticles and

nanorods. Journal of Alloys and Compounds, 2013.

PANCINI, L. Novo trem movido a hidrogênio vai ser testado na Alemanha. Disponível em:

<https://exame.com/inovacao/novo-trem-movido-a-hidrogenio-vai-ser-testado-na-alemanha/>. Acesso em: 28 mar. 2021.

PIMENTEL, S. Energix assina acordo com empresa de engenharia para estudos para

planta de hidrogênio verde no Ceará. Disponível em:

<https://www.opovo.com.br/noticias/economia/2021/03/18/energix-assina-acordo-com-empresa-de-engenharia-para-estudos-para-planta-de-hidrogenio-verde-no-ceara.html>. Acesso

em: 28 mar. 2021.

PUDUKUDY, M.; YAAKOB, Z.; AKMAL, Z. S. Direct decomposition of methane over

SBA-15 supported Ni, Co and Fe based bimetallic catalysts. Applied Surface Science, 2015.

PUDUKUDY, M.; YAAKOB, Z.; TAKRIFF, M. S. Methane decomposition over unsupported

mesoporous nickel ferrites: Effect of reaction temperature on the catalytic activity and

properties of the produced nanocarbon. RSC Advances, v. 6, n. 72, p. 68081–68091, 2016.

RAMASUBRAMANIAN, V.; RAMSURN, H.; PRICE, G. L. Hydrogen production by

catalytic decomposition of methane over Fe based bi-metallic catalysts supported on CeO2–

ZrO2. International Journal of Hydrogen Energy, v. 45, n. 21, p. 12026–12036, 2020.

RATHINAVEL, S.; PRIYADHARSHIN, K.; PANDA, D. A review on carbon nanotube: An

overview of synthesis, properties, functionalization, characterization, and application.pdf.

Materials Science and Engineering B 268, 2021.

SELVARAJAH, K.; PHUC, N. H. H.; ABDULLAH, B.; ALENAZEY, F.; VO, D. V. N. Syngas

production from methane dry reforming over Ni/Al2O3 catalyst. Research on Chemical

Intermediates, 2016.

SERRANO-LOTINA, A.; DAZA, L. Influence of the operating parameters over dry

reforming of methane to syngasInternational Journal of Hydrogen Energy. Anais...2014

SHAH, N.; PANJALA, D.; HUFFMAN, G. P. Hydrogen production by catalytic decomposition

of methane. Energy and Fuels, 2001.

SIERRA GALLEGO, G.; BARRAULT, J.; BATIOT-DUPEYRAT, C.; MONDRAGÓN, F.

Production of hydrogen and MWCNTs by methane decomposition over catalysts originated

from LaNiO3 perovskite. Catalysis Today, 2010.

SIKANDER, U.; SAMSUDIN, M. F.; SUFIAN, S.; KUSHAARI, K. Z.; KAIT, C. F.; NAQVI,

S. R.; CHEN, W. H. Tailored hydrotalcite-based Mg-Ni-Al catalyst for hydrogen production

via methane decomposition: Effect of nickel concentration and spinel-like structures.

International Journal of Hydrogen Energy, 2019.

SILVA, M. I. G.; MELO, C. T. V. DE; VASCONCELOS, L. F.; CARVALHO, A. M. R. DE;

SOUSA, F. C. F. Bioactivity and potential therapeutic benefi ts 22(1): 193-207, Jan./Feb. 2012

of some medicinal plants from the Caatinga (semi-arid) vegetation of Northeast Brazil: a review

of the literature. Brazilian Journal of Pharmacognosy, v. 22, n. 1, p. 193–207, 2005.

Sistema de Estimativas de Emissões de Gases do Efeito Estufa. Disponível em:

<http://plataforma.seeg.eco.br/total_emission#>. Acesso em: 13 jul. 2020.

SUELVES, I.; PINILLA, J. L.; LÁZARO, M. J.; MOLINER, R.; PALACIOS, J. M. Effects of

reaction conditions on hydrogen production and carbon nanofiber properties generated by

methane decomposition in a fixed bed reactor using a NiCuAl catalyst. Journal of Power

Sources, 2009.

SUN, B. G.; ZHANG, D. S.; LIU, F. S. Cycle variations in a hydrogen internal combustion

engine. International Journal of Hydrogen Energy, 2013.

THOMAS HEMMERDINGER. Hidrogênio, um ativo para a transição energética.

Disponível em:

<https://storymaps.arcgis.com/stories/843bdd26d252498eb1044b67e2699fa1>. Acesso em: 27

mar. 2021.

THOSTENSON, E. T.; REN, Z.; CHOU, T. W. Advances in the science and technology of

carbon nanotubes and their composites: A review. Composites Science and Technology, 2001.

TSANG, S. C.; CLARIDGE, J. B.; GREEN, M. L. H. Recent advances in the conversion of

methane to synthesis gas. Catalysis Today, 1995.

UDHAYA, P. A.; MEENA, M. Albumen Assisted Green Synthesis of NiFe2O4 Nanoparticles

and Their Physico-Chemical Properties. Materials Today: Proceedings, 2019.

URASAKI, K.; SEKINE, Y.; KAWABE, S.; KIKUCHI, E.; MATSUKATA, M. Catalytic

activities and coking resistance of Ni/perovskites in steam reforming of methane. Applied

Catalysis A: General, 2005.

WANG, G.; JIN, Y.; LIU, G.; LI, Y. Production of hydrogen and nanocarbon from catalytic

decomposition of methane over a Ni-Fe/Al2O3 catalystEnergy and Fuels. Anais...2013

YANG, Z.; CHEN, T.; HE, R.; GUAN, G.; LI, H.; QIU, L.; PENG, H. Aligned carbon nanotube

sheets for the electrodes of organic solar cells. Advanced Materials, 2011.

ZHANG, J.; LI, X.; CHEN, H.; QI, M.; ZHANG, G.; HU, H.; MA, X. Hydrogen production

by catalytic methane decomposition: Carbon materials as catalysts or catalyst

Documentos relacionados