• Nenhum resultado encontrado

CAPÍTULO III: Apresentação e Análise dos Resultados

3.5. Valores Previstos da volatilidade e VaR

Resumindo a análise das duas subseções anteriores e considerando a subamostra, constatamos que, de entre os modelos apresentados, o mais RiskMetrics apresenta boa

performance na previsão do VaR, segundo os testes de Backtesting utilizados. Segundo a

estatística HMSE, o modelo RisKMetrics é adequado na previsão da volatilidade quer ao nível 95%, quer ao nível 99%. De acordo com as estatísticas MSE, MAD, MAE e HMSE, o modelo GARCH(1,1) com distribuição normal é o mais adequado na previsão da volatilidade a um dia, para os níveis de confiança 95% e 99%.

Os valores obtidos para a previsão out-of-sample da volatilidade a um passo através dos modelos RiskMetrics e GARCH(1,1) com distribuição normal constam nos gráficos 3.9. e 3.10. .009 .010 .011 .012 .013 .014 9 16 23 30 6 13 20 27 5 12 19 26 2 9 16 23 30 7 14 21 28 2012m1 2012m2 2012m3 2012m4 2012m5 VF1

Figura 3.9 – Previsão da Volatilidade a um dia a 99% de confiança – RiskMetrics .00004 .00008 .00012 .00016 .00020 .00024 .00028 9 16 23 30 6 13 20 27 5 12 19 26 2 9 16 23 30 7 14 21 28 2012m1 2012m2 2012m3 2012m4 2012m5 VF1

- 81 -

Os valores obtidos para a previsão out-of-sample do VaR (posição short e posição

long) a um passo através dos modelos RiskMetrics e GARCH(1,1) com distribuição

normal constam nos gráficos 3.11. e 3.12.

-.04 -.03 -.02 -.01 .00 .01 .02 .03 .04 9 16 23 30 6 13 20 27 5 12 19 26 2 9 16 23 30 7 14 21 28 2012m1 2012m2 2012m3 2012m4 2012m5

RENDIBILIDADES VARL1 VARS1

Figura 3.11 – Previsão do VaR a um dia a 99% de confiança – RisKMetrics

-.04 -.03 -.02 -.01 .00 .01 .02 .03 .04 9 16 23 30 6 13 20 27 5 12 19 26 2 9 16 23 30 7 14 21 28 2012m1 2012m2 2012m3 2012m4 2012m5

RENDIBILIDADES VARS VARL

- 82 -

4. Conclusões

Neste estudo apresentámos alguns modelos pertencentes à família GARCH, propostos inicialmente por Bollerslev (1986), com o intuito de estimar a volatilidade e, consequentemente obter previsões do VaR.

Demonstrámos que a série apresenta uma quebra de estrutura através do teste de Perron (2009), pelo que, procedemos a um estudo comparativo dos modelos considerando a amostra completa e a subamostra após a quebra.

Detetámos a presença de clusters na volatilidade através de testes estatísticos e estimámos os parâmetros dos modelos através do método de máxima verosimilhança.

Concluímos que os modelos apresentam diferentes performances na predição do VaR dependendo do horizonte temporal, nível de confiança e o tipo de posição. Para avaliar a performance dos modelos, foram efetuados os testes de backtesting de Kupiec e de Christoffersen.

Para o horizonte temporal mais curto (1 dia), quer para o nível de confiança de 95%, quer para o nível de 99%, os modelos revelaram-se adequados na predição do VaR, segundo aqueles últimos testes. Considerando os horizontes de tempo de 5 e 10 dias, os modelos aplicados demonstraram ser menos eficientes.

Em termos gerais, os modelos com melhor desempenho são o RiskMetrics e o GARCH com distribuição normal, para a série de rendibilidades da subamostra obtida após a quebra de estrutura. Este resultado não é inesperado, pois o RiskMetrics é o modelo com a melhor performance, em termos práticos, para uma série simétrica (como é o caso da séries das rendibilidades da subamostra).

A realização deste estudo permitiu corroborar a existência de dificuldades na modelação e estimação da volatilidade e, consequentemente, na previsão do VaR.

Tendo em conta os resultados obtidos, apontamos algumas sugestões para futuros estudos e aprofundamentos relacionados com o tema central desta tese:

- desenvolvimento de um estudo pormenorizado sobre a quebra de estrutura e combinação de modelos do tipo Markov-Switching com GARCH;

- análise da dependência entre a dimensão das janelas móveis utilizadas na previsão e a qualidade de previsão, com o objetivo de obter uma melhor performance na previsão do VaR para intervalos de tempo superiores a 1 dia.

- 83 -

REFERÊNCIAS BIBLIOGRÁFICAS

Altissimo, F. e Corradi, V. (2003). Strong rules for detecting the number of breaks in a

time series. Journal of Econometrics 117.

Andersen, T.G., Bollerslev, T. (1997). Heterogeneous information arrivals and return

volatility dynamics: uncovering the long-run in high frequency returns. Journal of

Finance 52, 975–1005.

Andersen, T.G., Bollerslev, T., Diebold, F.X., Labys, P. (2003). Modeling and

forecasting realized volatility. Econometrica, Vol 71, 529–626.

Andrews, D.W.K. (1993). Tests for parameter instability and structural change with

unknown change point. Econometrica, Vol. 61, 821–856.

Andrews, D.W.K. e Ploberger, W. (1994). Optimal Tests when a Nuisance Parameter is

Only Under the Alternative, Econometrica, Vol.62. Issue 6.

Andrews, D. Lee, I. e Ploberger, W. (1996). Optimal change point tests for normal

linear regression. Journal of Econometrics 7.

Artzner, P., Delbaen, F., Eber, J.M. e Heath, D. (1998). Coherent measures of risk. Mathematical Finance 9.

Bai, J.(1997). Estimating multiple breaks one at a time. Econometric Theory. Vol 13, 315–352.

Bai, J. (1998). A note on spurious breaks. Econometric Theory, Vol. 14, 663– 669.

Bai, J. e Perron, P.(1998). Estimating and testing linear models with multiple structural

changes. Econometrica, Vol. 66, Nº. 1, 47– 78.

Bai, J., Perron, P. (2003). Computation and Analysis of Multiple Structural Change

Models. Journal of Applied Econometrics, Vol. 18, 1–22.

Barndorff-Nielsen, O., Shephard, N. (2004). Power and bi-power variation with

stochastic volatility and jumps. Journal of Financial Econometrics, v. 2, p. 1-37.

Basak, S., Shapiro, A. (2001). Value-at-Risk-Based Risk Management: Optimal Policies

and Asset Prices. Review of Financial Studies Summer, Vol.14, Nº.2.

Basel Committee on Banking Supervision. (1996). Amendment to the Capital Accord to

incorporate market risks.

Basel II. (2005). International convergence of capital measurement and captial

standards, Basel Committee on Banking Supervision.

Basel Committee on Banking Supervision. (2009). Revisions to the Basel II market risk

framework.

Beder, T. (2005). VaR seductive but dangerous. Financial Analysts Journal, 12-24.

Morana, C., Beltratti, A. (2002). Structural Change and Long Range Dependence in

Volatility of Exchange Rates: Either, Neither or Both? Mimeo.

Billio, M., Pelizzon, L. (2000). Value-at-risk: a Multivariate Switching Regime Model. Greta WP 00.04.

Black, F, Scholes, M. (1973). The pricing of Options and Corporate Liabilities. Journal of Political Economy, vol.81.

Bollerslev, T.(1986). Generalized Autoregressive Conditional Heteroskedasticity, Journal of Econometrics, 31, 309–328.

Bollerslev, T., Chou, R.Y., Kroner, K.F. (1992). ARCH Modeling in Finance: A Selective

Review of the Theory and Empirical Evidence. Journal of Econometrics, 52, 5-59.

Chysels, E., Harvey, A.C., Renault, E. (1996). Stochastic volatility. Gaddala and Rao, eds, Handbook of Statistics, 14, 119-191.

Bollerslev, T., Wooldridge, J.M. (1992). Quasi-Maximum Likelihood Estimation and

Inference in Dynamic Models with Time Varying Covariances. Econometric Reviews, 11,

143-172.

Boudt, K.; Croux, C.; Laurent, S. (2008). Robust estimation of intraweek periodicity in

- 84 -

Box, G. E. P; Jenkings, G.,M. (1976). Time Series Analysis: Forecasting and Control. San Francisco: Holden Day.

Brailsford, T. J., Faff, R. W. (1996). An Evaluation of Volatility Forecasting Techniques. Journal of Banking and Finance, 20, 419-438.

Brooks, C. e Persand, G. (2000). Value-at-risk and market crashes. The Journal of Risk, Volume 2/Number 4, Summer 2000.

Brooks, C., Persand, G. (2003). Volatility Forecasting for Risk Management. Journal of Forecasting, 22.

Brooks, C, et al. (2005). A comparison of extreme value theory approaches for

determining value-at-risk. Journal of Emprirical Finance, v. 12, n. 2, p. 339-352

Burns, P.(2002). The Quality of Value-at-Risk via Univariate GARCH. Mimeo.

Cabedo, J. D., Moya, I. (2003). Estimating oil price ‘Value at Risk’ using the historical

simulation approach. Energy Economics, 25, 239-253.

Campbell, S. (2005). A Review of Backtesting and Backtesting Procedures, Journal of Risk, http://www.federalreserve.gov/pubs/feds/2005/200521/200521pap.pdf.

Campbell, R., Huisman, R., Koedjik, K. (2001). Optimal portfolio selection in a Value-

at-Risk framework. Journal of Banking e Finance 25.

Chatfield C. (2001). Time Series Forecasting. Chapman e Hall CRC, 181-214.

Christoffersen, P. (1998). Evaluating interval forecasts. International Economic Review, 39, 841-862.

Christoffersen, P. (2003). Elements of Financial Risk Management. Academic Press, Elsevier Science.

CMVM (1989). Relatório Anual de 1989 sobre a Atividade da CMVM e sobre os

Mercados de Valores Mobiliários, Lisboa, CMVM (online),

In: http://www.cmvm.pt/CMVM/Publicacoes/Relatorios/Relatório1989/Pages/Default.aspx.

CMVM (1993). Relatório Anual de 1993 sobre a Atividade da CMVM e sobre os

Mercados de Valores Mobiliários, Lisboa, CMVM (online),

In: http://www.cmvm.pt/CMVM/Publicacoes/Relatorios/Relatório1993/Pages/Default.aspx.

CMVM (2002). Relatório Anual de 2002 sobre a Atividade da CMVM e sobre os

Mercados de Valores Mobiliários, Lisboa, CMVM (online),

In: http://www.cmvm.pt/CMVM/Publicacoes/Relatorios/Relatório2002/Pages/Default.aspx.

CMVM (2003). Relatório Anual de 2003 sobre a Atividade da CMVM e sobre os

Mercados de Valores Mobiliários, Lisboa, CMVM (online),

In: http://www.cmvm.pt/CMVM/Publicacoes/Relatorios/Relatório2003/Pages/Default.aspx.

CMVM (2004). Relatório Anual de 2004 sobre a Atividade da CMVM e sobre os

Mercados de Valores Mobiliários, Lisboa, CMVM (online),

In: http://www.cmvm.pt/CMVM/Publicacoes/Relatorios/Relatório2004/Pages/Default.aspx.

CMVM (2005). Relatório Anual de 2005 sobre a Atividade da CMVM e sobre os

Mercados de Valores Mobiliários, Lisboa, CMVM (online),

In: http://www.cmvm.pt/CMVM/Publicacoes/Relatorios/Relatório2005/Pages/Default.aspx.

CMVM (2006). Relatório Anual de 2006 sobre a Atividade da CMVM e sobre os

Mercados de Valores Mobiliários, Lisboa, CMVM (online),

In: http://www.cmvm.pt/CMVM/Publicacoes/Relatorios/Relatório2006/Pages/Default.aspx.

CMVM (2007). Relatório Anual de 2007 sobre a Atividade da CMVM e sobre os

Mercados de Valores Mobiliários, Lisboa, CMVM (online),

In: http://www.cmvm.pt/CMVM/Publicacoes/Relatorios/Relatório2007/Pages/Default.aspx.

CMVM (2008). Relatório Anual de 2008 sobre a Atividade da CMVM e sobre os

Mercados de Valores Mobiliários, Lisboa, CMVM (online),

In: http://www.cmvm.pt/CMVM/Publicacoes/Relatorios/Relatório2008/Pages/Default.aspx.

CMVM (2009). Relatório Anual de 2009 sobre a Atividade da CMVM e sobre os

Mercados de Valores Mobiliários, Lisboa, CMVM (online),

- 85 -

CMVM (2010). Relatório Anual de 2010 sobre a Atividade da CMVM e sobre os

Mercados de Valores Mobiliários, Lisboa, CMVM (online),

In: http://www.cmvm.pt/CMVM/Publicacoes/Relatorios/RelatórioAnual2010/Pages/Default.aspx.

CMVM (2011). Relatório Anual de 2011 sobre a Atividade da CMVM e sobre os

Mercados de Valores Mobiliários, Lisboa, CMVM (online), In:

http://www.cmvm.pt/cmvm/publicacoes/relatorios/relatórioanual2011/Pages/RelatórioAnual2011.aspx.

Danielsson, J. et al. (2001). An Academic Response to Basel II. LSE Financial Markets Group.

Danielsson, J. Hartmann, P. e C.G.de Vries. (1998). The Cost of Conservatism: Extreme

Returns, Value-at-Risk, and the Basel “Multiplication Factor” Risk Jan.1998.

Danielsson, J., C.G. de Vries. (2000). Value-at-Risk and Extreme Returns.

Danielsson, J. e Shin, H.S. (2001). Asset Price Dynamics with Value-at-Risk Constrained

Traders. FMG LSE www.RiskResearch.org.

Danielsson, J., Morimoto, Y. (2000). Forecasting extreme financial risk: A critical

analysis of practical methods for the Japanese market, Discussion Paper Series,

Monetary and Economic Studies, IMES.

Dickey, D.A; Fuller, W.A. (1979). Distribution of the estimator for auto-regressive time

series with a unit root, Journal of the American Statistical Association, 74:427-31.

Diebold, F.X., Mariano, R.S., (1995). Comparing predictive accuracy. Journal of Business and Statistics 13,253– 263.

Diebold, F.X. e Inoue, A. (2001). Long memory and regime switching. Journal of Econometrics 105, 131-159.

Diebold, F.X., Schuermann, T. e Stroughair, J.D. (1998). Pitfalls and opportunities in the

use of Extreme Value Theory in risk management. Wharton Financial Institutions

Center 98-10.

Enders, W. (2004). Applied Econometric Times Series. Wiley, New Jersey, 2nd edition. Endrész, M. (2004). Structural breaks and financial risk management. MNB Working

Paper, Magyar Nemzeti Bank.

Engle, R. F. (1982). Autoregresssive conditional heteroskedasticity with estimates of the

variance of United Kinddom inflation, Econometrica, 50, 987-1007.

Engle, R.F., Patton, A.J. (2001). What Good is a Volatility Model?.

Engle, R.F., Kraft, D. (1983). Multiperiod forecast error variances of inflation estimated

from ARCH models. A. Zellner, ed., 293-301.

French, k. R., Schwert,W., Stambaugh, R. (1987). Expected Stock Returns and Volatility, Journal of Financial Economics, 19, 3-29.

Frey, R., Michaud, P. (1997). The effect of GARCH-type volatilities on prices and payoff-

distributions of derivative assets – a simulation study.ETH Zurich, UBS Zurich.

Granger C.W.J. e Hyung N. (1999). Occasional structural breaks and long memory. University of California, San Diego, Discussion Papers 99-14.

Granger, C.W. J. & Newbold, P. (1986). Forecasting Economic Time Series. Academic Press, New York.

Giot, P. (2003) “The Asian financial crisis: the start of a regime switch in volatility”. Giot, P.Laurent, S. (2003). Market risk in commodity markets: A VaR approach. Energy

Economics, 25, 435-457.

Giot, P.Laurent, S. (2003). Value-at-risk for long and short trading positions. Journal of Applied Econometrics, 18, 641-664.

Hamilton, J.D. (1994). Time Series Analysis. New Jersey: Princeton University Press Hansen, B.E. (2000). Testing for structural change in conditional models. Journal of

Econometrics 97.

Hansen, B.E. (2001). The New Econometrics of Structural Change: Dating Breaks in

- 86 -

Hansen, P. R., Lunde, A. (2005). Realized variance and market microstructure noise. Journal of Business and Economic Statistics.

Hendricks D.(1996). Evaluation of Value-at-Risk Models using Historical Data. FRBNY Economic Policy Review, April 1996.

Hoppe, R. (1998). VaR and the unreal world. RisK, 11, 45-50.

Hsu, C.C. (2005). Long memory or structural changes: an empirical examination on

inflation rates. Economics Letters 88, 289–294.

Inclan C., Tiao G.C. (1994). Use of Cumulative Sums of Squares for Retrospective

Detection of Changes of Variance. Journal of the American Statistical Association,

Vol. 89, Issue 427.

Jorion, P. (1998).Value at Risk: A Nova Fonte de Referência para o Controle de Risco de

Mercado, São Paulo: Bolsa de Mercadorias e Futuros.

Jorion, P. (2007), Value at Risk, 3rd Ed, Publisher: McGraw-Hill, 3 edition.

Jorion, P. (2000). Value at Risk: The new benchmark for managing financial risk. MacGraw Hill Text, 2

nd

edition.

Kim, C.J., Nelson, C. R. (1999). State-Space Models with Regime Switching. MIT Press Kim, S., Shephard, G. (1998). Stochastic volatility: likelihood inference and comparision

with arch models. Review of Economic Studies 65, 361-393.

Kim, D., Perron, P. (2009). Unit root tests allowing for break in the trend function at

unknown time under both the null and alternative hypotheses. Journal of Econometrics

148, 1-13.

Kupiec, P. H. (1995). Techniques for Verifying the Accuracy of Risk Measurement

Models. Journal of Derivatives. New York.v.3.Winter.

Lambadiaris, G., Papadopoulou, L., Skiadopoulos, G., Zoulis, Y. (2003). VaR: history or

simulation?. RisK 2003, 23-26.

Lambert, P., Laurent, S. (2001). Modelling financial time series using GARCH-Type

models and skewed student density. Mimeo, Université de Liége.

Lamoreaux, C.G., Lastrapes, W.D. (1990). Persistence in variance, structural change

and the GARCH model. Journal of Business and Economic Statistics, 8

Lee, S. S., Mykland, P. A. (2007). Jumps in financial markets: a new nonparametric test

and jump dynamics. Oxford University Press, The Society for Financial Studies.

Li, M.Y., Lin, W. (2004). Estimating value-at-risk via Markov switching ARCH models –

an empirical study on stock index returns. Applied Economics Letters 11,679-691.

Lopez, J.A. Regulatory Evaluation of Value-at-Risk Models. Journal of Risk, 1:37-64 Yao, Y.C.(1988). Estimating the number of change-points via Schwarz criterion. Statistics e Probability Letters 6, 181–189.

Markowitz, H. (1952). Portfolio selection. The Journal of Finance, v.7, n.1, p. 77-91. Mikosch, T., Starica, C.. (1999). Change of structure in financial time series, long range

dependence and the GARCH Model, Working paper. The Wharton School, Chalmers

University of Technology.

Mikosch, T., Starica, C. (2000). Long-range dependence effects and ARCH modelling Morgan, J.P. (1995). RiskMetricsTM–Technical Documentation. Release 1-3, J.P. Morgan,

New York.

Nelson, D.B. (1991). Conditional heteroskedasticity in asset returns: A new approach. Econometrica, 59: 347-370.

Ñíguez, T. M. (2008). Volatility and VaR Forecasting in the Madrid Stock Exchange, Spanish Economic Review, vol. 10, 169-196.

Ohara, H. I. (1999). A unit root test with multiple trend breaks: A theory and application

to US and Japanese macroeconomic time series. The Japanese Economic Review,

- 87 -

Pagan, A. R., Schwert, G. W. (1990). Alternative models for conditional stock volatility. Journal of Econometrics, 45, 267-290.

Perron, P. (1989).The great crash, the oil price shock, and the unit root hypothesis. Econometrica,57, 1361-1401.

Perron, P.; Vogelsang, T. J. (1992). Nonstationary and level shifts with an application to

purchasing power parity . Journal of Business and Economic Statistics, 10, 301-320.

Pesaran, M. H.; Timmermann, A. (2004). How costly is it to ignore breaks when

forecasting the direction of a time series?. International Journal of Forecasting, vol.

20, 411– 425.

Phillips, P., Perron, P. (1988). Testing for a Unit Root in Time Series Regression. Biometrica 75(2), 335-346.

Rapach, D. E., Strauss, J. K. (2007). Forecasting Real Housing price Growth in the

Eighth District States. Federal Reserve Bank of St. Louis Regional Economic

Development 3, 33-42.

Starica, C, Granger, C. (2005). Nonstationarities in Stock Returns. Review of Economics and Statistics, 87, 503-522.

So, M.K.P., Yu, P.L.H. (2006). Empirical analysis of GARCH models in value at risk estimation. Journal of International Financial Markets, Institution and Money 16, 180-197 Stock , J. H., Watson, M.W. (2002). Macroeconomic forecasting using diffusion indexes. Journal of Business and Economic Statistics, 20:147-162.

Tang, T. L., Shieh, S. J. (2006). Long memory in stock index futures markets: A value-at- risk approach. Physica A, 366, 437-448.

Taylor, S.J. (1986). Modeling Financial Time Series. UK: John Wiley and Sons.

Tsay, R. S. (2005). Analysis of Financial Time Series. Second Edition. Wiley-Interscience Pesaran, M.H., Timmermann, A. (1999). Model instability and choice of observation

window. University of California, San Diego Discussion Paper, 99-19.

Pesaran, M. H., Timmermann, A. (2003). How costly is to ignore breaks when

forecasting the direction of a time series. International Journal of Forecasting.

Pesaran, M.H., Timmermann, A. (2004). Small Sample Properties of Forecasts from

Autoregressive Models under Structural Breaks. Forthcoming in Journal of

Econometrics.

Pitarakis, J.Y. (2003). Least Squares Estimation and Tests of Breaks in Mean and

Variance under Misspecification. Econometrics Journal, Vol. 7.

Timmermann A. (2001). Structural breaks, incomplete information and stock prices. University of California, San Diego, Discussion Paper No 2.

Turner, C. (1997). VaR as an Industrial Tool. In: VaR: Understanding and Applying

Value-at-Risk. KPMG Risk Publications, Financial Engineering Ltd, London.

Vlaar, P. (2000). Value at Risk models for Dutch bond portfolios. Journal of Banking and Finane, 24, 131-154.

Venkataraman, S. (1997). Value at Risk for a mixture of normal distributions: the use of

quasi Bayesian estimation techniques. FRBC Economic Perpective, 2-13

Vogelsang, T.J., Perron, P. (1998). Additional tests for a unit root allowing for a break in

the trend function at unknown time. International Economic Review 39, 1073-1100.

Sharpe, W. F. (1964). Capital asset prices: A theory of market equilibrium under

conditions of risk. The Journal of Finance, v. 19, n. 3, p. 425-442.

Zakoian, J., M. (1994). Thershold heteroskedastic models. Journal of Economic Dynamics and Control.

Zivot, E.; Andrews, D. (1992). Further evidence on the great crash, the oil-price shock

- 88 -

ANEXOS

Anexo A – Estimação dos parâmetros do modelo GARCH (subamostra)

Dependent Variable: DLPSISUB

Method: ML - ARCH (Marquardt) - Normal distribution Date: Time:

Sample (adjusted): 6/09/2008 5/28/2012 Included observations: 1036 after adjustments Convergence achieved after 16 iterations

Bollerslev-Wooldridge robust standard errors & covariance Presample variance: backcast (parameter = 0.7)

GARCH = C(2) + C(3)*RESID(-1)^2 + C(4)*GARCH(-1)

Variable Coefficient Std. Error z-Statistic Prob.

C 5.49E-05 0.000334 0.164095 0.8697

Variance Equation

C 6.81E-06 2.80E-06 2.428798 0.0151

RESID(-1)^2 0.153551 0.030267 5.073245 0.0000 GARCH(-1) 0.820617 0.031952 25.68286 0.0000 R-squared -0.002579 Mean dependent var -0.000711 Adjusted R-squared -0.002579 S.D. dependent var 0.015090 S.E. of regression 0.015110 Akaike info criterion -5.846385 Sum squared resid 0.236296 Schwarz criterion -5.827299 Log likelihood 3032.427 Hannan-Quinn criter. -5.839143 Durbin-Watson stat 1.903213

Anexo B – Análise aos resíduos do modelo GARCH(1,1)

0 20 40 60 80 100 120 140 -5 -4 -3 -2 -1 0 1 2 3 Series: RESIDGARCH11NORMAL Sample 6/06/2008 5/28/2012 Observations 1036 Mean -0.054779 Median -0.004963 Maximum 3.653421 Minimum -4.944449 Std. Dev. 0.998991 Skewness -0.326342 Kurtosis 3.871307 Jarque-Bera 51.16000 Probability 0.000000 -4 -3 -2 -1 0 1 2 3 4 -6 -4 -2 0 2 4 Quantiles of RESIDGARCH11NORMAL Q u a n ti le s o f N o rm a l

- 89 -

Anexo C – Estatísticas de avaliação da performance dos modelos na previsão do VaR, ao nível de confiança 99%, considerando a subamostra

Performance dos modelos na previsão da subamostra – Nível de Confiança 99%

Modelos MSE MAD MAE HMSE

GARCH(1,1) Normal H1 4,09770714375100e-08 0,0132730838656111 0,000112996417911023 8,68519995442365e-05 2,02227297059417 H5 2,22000976724745e-05 0,0236612953114966 0,000566506048282047 0,000117766821626924 156,482464990630 H10 0,000152917488104012 0,0320002428736523 0,00136380132913591 0,000180398625257455 604,199936643524 GARCH t-Sutdent H1 4,39261247887079e-08 0,0133220621374493 0,000113139214611335 8,90346654322591e-05 1,88907968126159 H5 2,22172940809455e-05 0,0236956669231769 0,000566156431036774 0,000119006070700535 152,445752947357 H10 0,000153265108513182 0,0319851995354481 0,00136315422809617 0,000174150383548890 590,838611399801 EGARCH Normal H1 1,64857422621011e-07 0,0140235927384041 0,000121363065190636 0,000101240765396731 1,45610288282450 H5 2,12750994295975e-05 0,0240020395757492 0,000563232769187716 0,000133645432093810 116,197596336772 H10 0,000153191382802358 0,0320104838788263 0,00136145184533646 0,000166900276288599 540,571134539157 EGARCH t-Student H1 1,63567253287431e-07 0,0140295211075412 0,000121356767603172 0,000102091679352317 1,43412869310234 H5 2,15762787342136e-05 0,0239242138402404 0,000563493841827322 0,000131156024919864 119,037662311411 H10 0,000154727662913747 0,0318612247193023 0,00136281820052638 0,000158231375323360 574,639591853425 RiskMetrics H1 0,0116829049656053 0,105063210692987 0,0106501766089579 0,0104915079218034 0,979629168526681 H5 0,0538228802065254 0,161993179214658 0,0233166347621515 0,0230558997943660 0,950068788234909 H10 0,0979743651361606 0,197040883317303 0,0322843689758979 0,0327683159321272 0,918519342096557 GJR Normal H1 9,43617510513031e-08 0,0136217453618917 0,000117323205524818 9,09599214929728e-05 1,78634495861932 H5 2,16873196853472e-05 0,0237509973708771 0,000562579229423420 0,000119005053007205 138,364228173212 H10 0,000152909475196219 0,0319385841343690 0,00135949067637730 0,000170756147575038 578,255215941826 GJR t-Student H1 9,19938320888008e-08 0,0136301636024743 0,000116910523352904 9,25810233044239e-05 1,71331563459100 H5 2,19006442289034e-05 0,0237243002676351 0,000562782726962272 0,000119391844568280 138,001690460974 H10 0,000153963676231245 0,0318546360689100 0,00136023975477608 0,000169340976363036 579,887955584531 H1: Previsão a um dia; H5: Previsão a cinco dias; H10: Previsão a dez dias.

- 90 -

Anexo D – Resultados dos testes de Kupiec e de Christoffersen na previsão do VaR a um dia, ao nível de confiança 99%, considerando a subamostra

Performance dos modelos na previsão do VaR 1 dia Posição Long – Subamostra – Nível de Confiança 99%

Modelos PF TUFF LRUC LRIND LRCC

GARCH Normal 0,0291262135922330 18 2,51262764095080 1,447033276234e-06 2,51262908798407 GARCH t-Student 0,00970873786407767 44 0,000891220776809353 0,00365980108002391 0,00455102185683327 EGARCH Normal 0,00970873786407767 44 0,000891220776809353 0,00365980108002391 0,00455102185683327 EGARCH t-Student 0,00970873786407767 44 0,000891220776809353 0,00365980108002391 0,00455102185683327 RiskMetrics 0,0291262135922330 44 2,51262764095080 1,447033276234e-06 2,51262908798407 GJR Normal 0,0194174757281553 18 0,723610135228878 5,518641106202e-05 0,723665321639940 GJR t-Student 0,00970873786407767 44 0,000891220776809353 0,00365980108002391 0,00455102185683327

PF: Percentage of Failures; Christoffersen (2003) test for correct conditional coverage: TUFF: Time Until First Failure; LRUC: Unconditional Coverage;

LRIND: Independence Coverage; LRCC: Conditional Coverage.

Performance dos modelos na previsão do VaR 1 dia a 99% - Posição Short – Subamostra

Modelos PF TUFF LRUC LRIND LRCC

GARCH-Normal 0 103 2,07036918582130 1 3,07036918582130 GARCH-t-Student 0 103 2,07036918582130 1 3,07036918582130 EGARCH-Normal 0 103 2,07036918582130 1 3,07036918582130 EGARCH-t-Student 0 103 2,07036918582130 1 3,07036918582130 RiskMetrics 0 103 2,07036918582130 1 3,07036918582130 GJR-Normal 0 103 2,07036918582130 1 3,07036918582130 GJR-t-Student 0 103 2,07036918582130 1 3,07036918582130

Anexo E – Resultados dos testes de Kupiec e de Christoffersen na previsão do VaR a cinco dias, ao nível de confiança 99%, considerando a subamostra

Performance dos modelos na previsão do VaR 5 dias a 99% – Posição Long – Subamostra

Modelos PF TUFF LRUC LRIND LRCC

GARCH-Normal 0,151515151515152 14 55,6285599151251 22,6404874785430 78,2690473936681 GARCH-t-Student 0,121212121212121 14 39,1448848163842 21,7537291501775 60,8986139665617 EGARCH-Normal 0,131313131313131 14 44,4657705254471 24,1452733595937 68,6110438850408 EGARCH-t-Student 0,121212121212121 14 39,1448848163842 21,7537291501775 60,8986139665617 RiskMetrics 0,0505050505050505 90 8,34123286479211 20,7784050402631 29,1196379050553 GJR-Normal 0,131313131313131 14 44,4657705254471 24,1452733595937 68,6110438850408 GJR-t-Student 0,111111111111111 14 34,0138482250339 25,6086720980289 59,6225203230628

Performance dos modelos na previsão do VaR a 5 dias a 99% Posição Short – Subamostra

Modelos PF TUFF LRUC LRIND LRCC

GARCH-Normal 0,0606060606060606 20 11,8622937312018 4,37848187065979 16,2407756018616 GARCH-t-Student 0,0303030303030303 20 2,67348176698524 11,0412204207640 13,7147021877492 EGARCH-Normal 0,0404040404040404 20 5,24415926648307 8,04824334751705 13,2924026140001 EGARCH-t-Student 0,0404040404040404 20 5,24415926648307 8,04824334751705 13,2924026140001 RiskMetrics 0 99 1,98996649899329 1 2,98996649899329 GJR-Normal 0,0404040404040404 20 5,24415926648307 8,04824334751705 13,2924026140001 GJR-t-Student 0,0404040404040404 20 5,24415926648307 8,04824334751705 13,2924026140001

- 91 -

Anexo F – Resultados dos testes de Kupiec e de Christoffersen na previsão do VaR a dez dias, ao nível de confiança 99%, considerando a subamostra

Performance dos modelos na previsão do VaR a 10 dias a 99% - Posição Long – Subamostra

Modelos PF TUFF LRUC LRIND LRCC

GARCH-Normal 0,276595744680851 56 129,970344161764 48,2950943380845 178,265438499848 GARCH-t-Student 0,212765957446809 56 88,3857628154579 24,9932873563746 113,379050171832 EGARCH-Normal 0,255319148936170 56 115,651714623769 40,3614067976058 156,013121421375 EGARCH-t-Student 0,212765957446809 56 88,3857628154579 24,9932873563746 113,379050171832 RiskMetrics 0,0851063829787234 87 20,6907612983317 32,9756076980984 53,6663689964301 GJR-Normal 0,255319148936170 56 115,651714623769 40,3614067976058 156,013121421375 GJR-t-Student 0,212765957446809 56 88,3857628154579 24,9932873563746 113,379050171832

Performance dos modelos na previsão do VaR a 10 dias a 99% - Posição Short – Subamostra

Modelos PF TUFF LRUC LRIND LRCC

GARCH-Normal 0,0744680851063830 16 16,3924767082537 28,2599820122714 44,6524587205252 GARCH-t-Student 0,0425531914893617 16 5,56709842318110 7,84114835234604 13,4082467755271 EGARCH-Normal 0,0851063829787234 16 20,6907612983317 23,1836684348859 43,8744297332175 EGARCH-t-Student 0,0531914893617021 16 8,77289551170532 12,1002304391720 20,8731259508774 RiskMetrics 0 94 1,88946314045827 1 2,88946314045827 GJR-Normal 0,0744680851063830 16 16,3924767082537 28,2599820122714 44,6524587205252 GJR-t-Student 0,0531914893617021 16 8,77289551170532 12,1002304391720 20,8731259508774

- 92 -

Anexo G – Estatísticas de avaliação da performance dos modelos na previsão do VaR, ao nível de confiança 95%, considerando a subamostra

Performance dos modelos na estimação utilizando a subamostra – Nível de Confiança 95%

Modelos MSE MAD MAE HMSE

GARCH- Normal H1 4,09770714375100e-08 0,0132730838656111 0,000112996417911023 8,68519995442365e-05 2,02227297059417 H5 2,22000976724745e-05 0,0236612953114966 0,000566506048282047 0,000117766821626924 156,482464990630 H10 0,000152917488104012 0,0320002428736523 0,00136380132913591 0,000180398625257455 604,199936643524 GARCH- t-Sutdent H1 4,39261247887079e-08 0,0133220621374493 0,000113139214611335 8,90346654322591e-05 1,88907968126159 H5 2,22172940809455e-05 0,0236956669231769 0,000566156431036774 0,000119006070700535 152,445752947357 H10 0,000153265108513182 0,0319851995354481 0,00136315422809617 0,000174150383548890 590,838611399801 EGARCH- Normal H1 1,64857422621011e-07 0,0140235927384041 0,000121363065190636 0,000101240765396731 1,45610288282450 H5 2,12750994295975e-05 0,0240020395757492 0,000563232769187716 0,000133645432093810 116,197596336772 H10 0,000153191382802358 0,0320104838788263 0,00136145184533646 0,000166900276288599 540,571134539157 EGARCH- t-Student H1 1,63567253287431e-07 0,0140295211075412 0,000121356767603172 0,000102091679352317 1,43412869310234 H5 2,15762787342136e-05 0,0239242138402404 0,000563493841827322 0,000131156024919864 119,037662311411 H10 0,000154727662913747 0,0318612247193023 0,00136281820052638 0,000158231375323360 574,639591853425 RiskMetrics H1 0,0116829049656053 0,105063210692987 0,0106501766089579 0,0104915079218034 0,979629168526681 H5 0,0538228802065254 0,161993179214658 0,0233166347621515 0,0230558997943660 0,950068788234909 H10 0,0979743651361606 0,197040883317303 0,0322843689758979 0,0327683159321272 0,918519342096557 GJR- Normal H1 9,43617510513031e-08 0,0136217453618917 0,000117323205524818 9,09599214929728e-05 1,78634495861932 H5 2,16873196853472e-05 0,0237509973708771 0,000562579229423420 0,000119005053007205 138,364228173212 H10 0,000152909475196219 0,0319385841343690 0,00135949067637730 0,000170756147575038 578,255215941826 GJR- t-Student H1 9,19938320888008e-08 0,0136301636024743 0,000116910523352904 9,25810233044239e-05 1,71331563459100 H5 2,19006442289034e-05 0,0237243002676351 0,000562782726962272 0,000119391844568280 138,001690460974 H10 0,000153963676231245 0,0318546360689100 0,00136023975477608 0,000169340976363036 579,887955584531

- 93 -

Anexo H – Resultados dos testes de Kupiec e de Christoffersen na previsão do VaR a um dia, ao nível de confiança 95%, considerando a subamostra

Performance dos modelos na previsão do VaR 1 dia a 95%– Posição Long – Subamostra

Modelos PF TUFF LRUC LRIND LRCC

GARCH Normal 0,0776699029126214 18 1,43094480617362 1,2654670119e-12 1,43094480617489 GARCH t-Student 0,0679611650485437 18 0,631987625459554 1,3677869020e-11 0,631987625473231 EGARCH- Normal 0,0485436893203884 18 0,00464180396795023 2,7697348082e-09 0,00464180673768504 EGARCH- t-Student 0,0388349514563107 18 0,291844117469901 5,4941465099e-08 0,291844172411366 RiskMetrics 0,0873786407766990 18 2,50161015233905 4,58464182036463 7,08625197270369 GJR- Normal 0,0776699029126214 18 1,43094480617362 1,2654670119e-12 1,43094480617489 GJR- t-Student 0,0388349514563107 18 0,291844117469901 5,4941465099e-08 0,291844172411366

Performance dos modelos na previsão do VaR 1 dia a 95% - Posição Short – Subamostra

Modelos PF TUFF LRUC LRIND LRCC

GARCH- Normal 0 103 10,5664186438354 1 11,5664186438354 GARCH- t-Student 0 103 10,5664186438354 1 11,5664186438354 EGARCH- Normal 0,00970873786407767 25 5,19557893685463 0,00365980108002391 5,19923873793466 EGARCH- t-Student 0 103 10,5664186438354 1 11,5664186438354

Documentos relacionados