• Nenhum resultado encontrado

Theoretical aspects and expressions for appare

N/A
N/A
Protected

Academic year: 2023

Share "Theoretical aspects and expressions for appare"

Copied!
6
0
0

Texto

(1)

ContentslistsavailableatScienceDirect

Journal of Photochemistry and Photobiology A:

Chemistry

jou rn a l h o m e pa g e:w w w. e l s e v i e r . c o m / l o c a t e / j p h o t o c h e m

Acid–base equilibrium of drugs in time-resolved fluorescence measurements:

Theoretical aspects and expressions for apparent pK a shifts

Fabricio Casarejos Lopes Luiz, Sonia Renaux Wanderley Louro

DepartmentofPhysics,PontificalCatholicUniversityofRiodeJaneiro,RiodeJaneiro,Brazil

a r t i c l e i n f o

Articlehistory:

Received28May2010

Receivedinrevisedform3March2011 Accepted13March2011

Available online 21 March 2011

Keywords:

Acid–baseequilibrium pKshift

Time-resolvedfluorescence Fluorescencelifetime Dibucaine

Levofloxacin

a b s t r a c t

Spectroscopicpropertiesofmoleculeswhichundergoacid–baseequilibriumaregreatlyinfluencedby thelocalpH.Theiracid–baseequilibriumconstantscanbeexperimentally obtainedunderdifferent environmentsbymeasuringspectroscopicparameterssuchasabsorbance,fluorescenceintensityand fluorescencelifetimesasafunctionofpH.ThepKavaluesareobtainedfittingthedatawiththewell knownHenderson–Hasselbalchequation.Decaycurvesobtainedwithtime-resolvedpulsefluorometry areusuallyanalyzedintermsofmulti-exponentialfunctionscharacterizedbythepre-exponentialfac- torsorbytheintegratedfractionalfluorescenceintensitiesassociatedwitheachlifetime,thislastbeing analogoustothesteadystatefluorescencecontributions.Inthispaperweshowthatundernormalcondi- tionsformanyfluorescentdrugs,atwo-exponentialanalysisisadequate.Wedevelopexpressionsforthe pHdependenceofpre-exponentialfactorsandfractionalfluorescenceintensitiesintime-resolvedpulse fluorometryofafluorophoreundergoingacid–basetransition.WeshowthattheobtainedpKavalues areapparentlyshifted,andgivetheexpressionsforthepK-shifts.Theexpressionsweretestedusingthe fluorescencedecaypropertiesoftwocompounds:thewellcharacterizedlocalanestheticdibucaineand theantibioticlevofloxacin.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Acid–base equilibrium ofvarious substrates,drugsand indi- catorsareofteninvestigatedinhomogeneousandheterogeneous solutions[1–14].Spectroscopicpropertiesaregreatlyaffectedby theionizationstateofmolecules,which canserveasindicators for local pH [1,2,14–19], and local electric potential [2,3,6,20].

Drugsactivityandtoxicityalsofrequentlydependontheionization state.Evaluationofequilibriumconstantsisthereforeimportantfor analyticalapplications,andfortheinvestigationoftheirpharma- cologicalproperties[1,2].

During the past decades time resolved fluorescence experi- mentshasbeenincreasinglyusedinmultidisciplinaryscience[2].

Fluorescent drugs and dyes are known to be useful molecular probes forexamination of interfacialregions and bindingreac- tions[4,6–12].Manyofthemundergoacid–basetransitionswith environment-dependent equilibrium constantspKa. Their spec- troscopic parameters provide important means to observe the acid–baseequilibrium.Themostimportantcharacteristicsofaflu-

Correspondingauthorat:DepartmentofPhysics,PUC-Rio,RuaMarquesdeSao Vicente225,RiodeJaneiro22451900,RJ,Brazil.Tel.:+552135271260;

fax:+552135271269.

E-mailaddress:sonia@fis.puc-rio.br(S.R.W.Louro).

orescentdrugarethefluorescencequantumyieldsandlifetimes.

Thequantumyieldsareassessedbysteadystatemeasurements.

Thelifetimes,whichdeterminethetimethattheexciteddrughas tointeractordiffuseintheenvironmentbeforereturningtothe groundstate,ismeasuredusingphase-modulationorpulsefluo- rometry.

In general,whena fluorescent drugundergoesanacid–base transition,thefluorescencepropertiesofthetwospeciesaredif- ferent. Bothsteadystateandtime-resolvedfluorometryprovide importantparametersthatallowobtainingtheapparentpKaunder differentconditions.Inthecaseofsteadystatefluorescence,the expressionforthefluorescenceintensityatasinglewavelength, orfortheintensityratioattwodifferentwavelengths,asafunc- tionofpHiswellknownandappearsinChapter10,AppendixAof [1].Ontheotherhand,theacid–basepropertiesofamoleculethat absorbslightcanchangewhenthemoleculeisintheexcitedstate.

Theexcitedstateequilibriumconstant,Ka,canbedifferentfrom thatofthegroundstate,Ka.Severalmethodshavebeendescribed toobtainKausingbothsteady-stateandtimeresolvedfluorescence [1,21].

Valeur treatsthe case of a selective excitation of theacidic forminChapter4of[1].Ingeneral,itisnotpossibletoselectively excite oneformbecausemanydrugspresent onlyminordiffer- encesbetweentheacidicandbasicUV–visibleabsorptionspectra.

ExpressionsbasedontheHenderson–Hasselbalchequationareno 1010-6030/$seefrontmatter© 2011 Elsevier B.V. All rights reserved.

doi:10.1016/j.jphotochem.2011.03.006

(2)

curvesobtainedwiththeseparametersgiveshiftedpKavalues.The apparentpKashiftswerefoundasfunctionsofthequantumyields andlifetimesoftheinvolvedspecies.Theexpressionsweretested using thefluorescence ofthe localanesthetic dibucaine and of thefluoroquinoloneantibioticlevofloxacin.Thefluorescencedecay curveswereobtainedbyTCSPCpulsefluorometry.Pre-exponential factorsand fractionalcontributions wereobtained usingglobal analysis.ApparentpKashiftsobtainedfromtheexperimentaltitra- tionplotswerecomparedwiththecalculatedvalues.

2. Theory

Let us consider a molecule undergoing a protonation–deprotonation reaction in aqueous solution. The usualequationforanalyzingpHtitrationcurvesofasingleioniza- tionequilibriuminthegroundstate(Scheme1)isthewellknown Henderson–HasselbalchEq. (1),whereristhemolarfractionof thebasicform,r=[A]/([A]+[AH]),andKaistheapparentacid–base equilibrium constant, Ka=[A].[H]/[AH] (electric charges were omitted).

(Scheme1) pH=pKa+log r

1−r (1)

Ingeneral,themolarfractionrcanbeexpressedasafunctionof spectroscopicparametersoftheacidicandbasicforms.Theacidic andbasicforms ofa drugaredifferently charged.Thedifferent chargedistributionsleadtodifferentphysico-chemicalcharacter- istics.ConsideringaspectroscopicparameterP,

P=(1−r)PAH+rPA (2)

withPAHandPAbeingthevaluesofPwhenallthemoleculesarein theacidicandbasicforms,respectively,Eq.(1)becomes:

pH=pKa+log P−PAH

PA−P (3)

ParameterPisobtainedfromEq.(3)asafunctionofthepH:

P=PAH10pKa+PA10pH

10pKa+10pH (4)

Insteadystatefluorescence,forexample,parameterPisthefluo- rescenceintensityatagivenwavelength,I[1].

TheexcitedstateequilibriumconstantK˛canbedifferentfrom thatofthegroundstate.Theeventsfollowingtheexcitationofboth theacidicandbasicformsofamoleculearedescribedby(Scheme 2).oAHandoAaretheexcitedstatelifetimesoftheacidic(AH*)and basic(A*)forms(electricchargeomitted),respectively,andk1and k1aretherateconstantsfortheexcitedstatedeprotonationand reprotonation,respectively.Theexcitedstateequilibriumconstant isKa=k1/k1.Valeurtreatsthecaseofaselectiveexcitationofthe acidicforminChapter4of[1],butingeneralthisisnotpossible

(Scheme2) Taking into account that H+ is in fact H3O+,the differential equationsexpressingtheevolutionofthespeciesaftera␦-pulse excitationofbothAHandAarewrittenaccordingto(Scheme2):

d[AH]

dt =−(k1+1/AHo )[AH]+k−1 [H3O][A] d[A]

dt =k1[AH]−(k1[H3O]+1/oA)[A]

(5)

In generaltheexcitedstateback-protonationreaction needsto betakenintoaccountonlyifpH≤2or3,becausethisreactionis diffusion-controlled(k1≈5×1010 L mol1 s1)andatpH≈3 thepH-dependentrateisk−1[H3O]≈5×107 s−1.Thereciprocal ofthisvalueismuchgreaterthantheexcited-statelifetimesofmost organicbases[1].Eq.(5)become:

d[AH]

dt =−(k1+1/AHo )[AH] d[A]

dt =k1[AH]−(1/oA)[A]

(6)

The solutions of Eq. (6) when both AH and A are excited, undertheinitialconditionsthat att=0, [AH]=[AH]0; [A]= [A]0;d[AH]/dt=−k1+1/oAH[AH]0;andd[A]/dt=k1[AH]0− 1/oA[A]0,leadstothefollowingexpressionsforthefluorescence intensitiesafterthe␦-pulse:

iAH(t)=krAH[AH](t)=kAHr [AH]0e−ˇ1t

iA(t)=kAr[A](t)=−kAr

k1 ˇ1−ˇ2

[AH]0e−ˇ1t

+kAr

k1 ˇ1−ˇ2

[AH]0+[A]0

e−ˇ2t

(7)

InEq.(7),kAHr andkrAaretherateconstantforradiativede-excitation of AH*and A*,respectively,andˇ1=k1+1/AHo andˇ2=1/oA. Thetotalfluorescenceintensityisthesumofthecontributionsin Eq.(7),havinginmindthatkAHr andkAr mustbetheradiativerate constantsatagivenemissionwavelengthandbandwidth.

i(t)=

krAH−kAr

k1 ˇ1−ˇ2

[AH]0e−ˇ1t

+kAr

k1 ˇ1−ˇ2

[AH]0+[A]0

e−ˇ2t (8)

Eq.(8)tellsthatthedecayisfrequentlybiexponential,withdecay ratesgivenbyˇ1andˇ2.Inthecasethatk1<<1/oAH,thedecay rates correspondtothose of theacidic and basicspecies: ˇ1= 1/oAHandˇ2=1/oA.

ThedecayofthetwospecieswillbeindependentandEq.(8) willreducetoEq.(9)inthecaseoftheadditionalrestrictionk1<<

(1/oAH−1/oA).

i(t)=krAH[AH]0e−ˇ1t+kAr[A]0e−ˇ2t (9)

(3)

Fig.1. Chemicalstructuresofdibucaine(a)andlevofloxacin(b).ThepKaofcircledgroupsare8.8and8.2,respectively.

Inordertoanalyzewhenthiswilloccur,itisworthrecallingthatEq.

(8)isvalidonlyfordiffusion-controlledreprotonation,k1≈5× 1010 L mol1 s−1.Therefore,itispossibletoestimatek1=Kak−1 fromthevaluesofpKa.Forexample,alifetimeoAH≈2×10−9 s givesk1oAH<0.1forpKa>3.Infact,manyfluorescentmolecules satisfythiscondition.Intensitydecaysaretypicallyfittothemulti- exponentialmodel:

I(t)=C+

i

˛iexp−t i

(10)

whereCisaconstantassociatedwiththenoise,iarethelifetimes oftheindividualspeciespresentinthesampleand˛iarethepre- exponentialfactors.Eachlifetimecontributeswithafractionfito thetotalnumberofemittedphotons,fibeingproportionalto˛ii, theareaunderthedecaycurveforeachdecaytime.Itisdemon- strated[1]thatthefractionalcontributionsfirepresentthesteady statefractionalintensitiesofeachfluorophoreattheobservation wavelength.

fi=

˛ii j

˛jj

(11)

WhenEq.(9)isvalid,therewillbenoexcited-stateprotontransfer duringtheexcited-statelifetime,and thedeconvolutedfluores- cencedecayI(t)inpulsefluorometrywillbefittedbyadouble exponentialfunctionandthetime-resolvedspectroscopicparam- eterswillreflectthepresenceofthetwospecies.

TheproportionalityconstantbetweenEqs.(9)and(10)depends onlyontheinstrumentalsetup.Theinitialconcentrationofexcited moleculesinEq.(9),ontheotherhand,dependsontheground stateconcentrations [AH]and [A], and onthemolarabsorption coefficients εAH and εA atthe excitationwavelength. Then, the pre-exponentialfactorsinEq.(9)areproportionalto:

˛AH∝[AH]εAHkAHr and ˛A∝[A]εAkAr (12) TheratiobetweenexpressionsinEq.(12)gives:

r

1−r= [A] [AH] = ˛A

˛AH εAH

εA krAH

kAr

(13)

whichcanbeusedinEq.(1)toexpresstheHenderson–Hasselbalch equationintermsofthepre-exponentialfactors˛AHand˛A. pH=pKa+logεAHkAHr

εAkAr

+log ˛A

˛AH (14)

Eq.(14)indicatesthat,whenusingthepre-exponentialfactorsas spectroscopicparametersinapHtitrationexperiment,thepKawill beapparentlyshiftedtopKa,with

pKa =pKa+logεAHkAHr

εAkAr

(15)

TheradiativerateconstantsKrAHandkAr canbewrittenintermsof thefluorescencequantumyields,AHf andAf,andlifetimesAHand A.

kAHr = AHf

AH and krA=fA

A (16)

whereAHf andAf arethequantumyieldscomputedonlyforthe measuredpartoftheemissionband.UsingexpressionsEq.(16)in Eq.(15),thepKashiftofbecomes:

pKa˛=pKa−pKa=logεAHfAHA

εAAfAH (17)

The normalizedpre-exponential factorsasa functionof pHare obtainedfromEq.(14):

˛AH

AAH)= 10pKa

10pH+10pKa and ˛A

AAH)= 10pH 10pH+10pKa

(18) TheseequationsareequaltoEq.(4),withparameterPgivenbythe normalizedpre-exponentialfactorsandPAH=1,PA=0andPAH=0 and PA=1, respectively. The shifted pKa given by Eq. (17) are obtainedwhenfittingthenormalizedpre-exponentialfactorsas afunctionofpHwiththeHenderson–HasselbalchEq.(4).

Thetime-resolvedparametersassociatedwiththecontributions ofeachspeciesinasteady-statefluorescenceexperimentarethe fractionalintensitiesfi(Eq.(11))[1,2].Equation13canbeexpressed asafunctionofthefractionalintensitiesusingEq.(16):

r

1−r = [A] [AH]= fA

fAH εAHAH

εAA (19)

Hence,theHenderson–HasselbalchEq.(4)intermsofthefractional intensitiesbecomes:

pH=pKa+logεAHAH

εAA +log fA

fAH (20)

Eq.(20)indicatesthat,whenthefractionalintensitiesareusedas spectroscopicparametersinapHtitrationexperiment,therewill beanapparentpKashift,givenby:

pKaf=pKa−pKa=logεAHAH

εAA (21)

The equations used to fit the fractional intensities versus pH obtainedfromEq.(20)are:

fAH

fAH+fA = 10pK

10pH+10pK and fA

fAH+fA = 10pH

10pH+10pK (22) Eq.(22)areequaltoEq.(4),withparameterPgivenbythefractional intensitiesandwithPAH=1,PA=0andPAH=0,PA=1,respectively.

Itisworthnotingthat,althoughthefractionalintensitiesina TCSPCexperimentareequivalenttothesteadystatefluorescence intensities,theygiveshiftedpKavalues,accordingtoEq.(21).This maylookstrange,butitcanbeexplainedbythefactthatinthe steady-stateexperimentthefluorescenceintensityIisthecontri- butionofbothspeciesduringafixedpre-determinedtimeinterval,

(4)

3.1. Materials

Highpuritydibucainehydrochlorideandlevofloxacin(Fig.1) werepurchasedfromSigmaandusedwithoutfurtherpurification.

Concentratedstock solutions(1mM)were preparedin ethanol.

Analyticalgradechemicalswereusedforthepreparationofbuffers andfortheadjustmentofpH.Milli-Qwaterqualitywasusedforall thepreparations.

3.2. Methods

Dibucaineand levofloxacinsolutions(10␮M)atdifferentpH werepreparedinbuffers.Appropriateamountsofthe1mMethanol stocksolutionswerepartiallydriedanddilutedinthebuffersolu- tionssothatthefinalethanolconcentrationswerelessthan0.1%.

The buffers stock solution contained 33mM citric acid, 50mM phosphoric acid, 50mM boric acid and 330mM NaOH. After a 1:15dilution(20mMNa)anddissolutionofthedrug,thepHwas adjustedwithsmallamountsofconcentratedsolutionsofHCland measuredusingaCole-ParmerChemcadet5986–25pHmeterwith anAg/AgClsemimicrocombinationelectrode.pHmeasurements wereperformed immediatelybeforeand after thefluorescence measurements.Spectrophotometric measurementswerecarried outatambienttemperature(24–26C).Opticalabsorptionspectra intherangeof220–800nmwereobtainedwithaHP8452ADiode Arrayspectrophotometer.Fluorescencemeasurementswereper- formedonaPTI–QM1FluorescenceSystemequippedwithatem- peraturecontrollerandmagneticstirrer.Lifetimemeasurements wereperformedonaHoriba–JobinIvon–IBHTCSPCfluorom- eter.Thelightsourceusedfortheexcitationofdibucainewasa 330nmnanoLEDN-16,1.0nsnominalpulseduration,1MHzrepe- titionrate.ComputerprogramssuppliedbyHoribaJobinIvonIBH wereemployedintheprocessingofthetimeresolvedfluorescence data.Fluorescenceintensitydecaycurveswerefittedusingtwo-or three-exponentialexpressions,withaglobalanalysisprocedure.

4. Resultsanddiscussion

Thefluorescenceoftwodrugs,e.g.thelocalanestheticdibucaine andtheantibioticlevofloxacin,are usedtotest theexpressions obtainedinthesection“TheoreticalSurvey”.Steady-stateandtime resolvedfluorescence measurements were performedfor dibu- caine(threepHtitrationseries)offorlevofloxacin(twopHtitration series).Thetitrationseriesforeachdruggavesimilarresultswith differencesinpKavaluesoftheorderof0.1,atmost.Theerrors presentedbelowarethestandarderrorsgivenbytheleastsquares fittingprocedure.

SteadystatefluorescencespectraofdibucaineatdifferentpH arepresentedinFig.2.Theinsetdepictsthefluorescenceat405nm (peakatpH7)asafunctionofthepH.ThedatawasfittedusingEq.

(4),withapKa=8.78±0.02.

TCSPCfluorescencedecaycurvesofdibucainewereobtainedfor eachpH.Fig.3showstypicalresults.Foreachtitrationsequence, allthecurvesatdifferentpHweresubmittedtoaglobalanalysis usingthemulti-exponentialexpressionofEq.(10).

Since the data was not conveniently fitted using a two- exponential function,a three-exponentialexpression wasused.

Usingglobalanalysis,itwaspossibletofindasetofthreelifetimes (1=3.14ns,2=0.67nsand3=0.23ns)tofitallthefluorescence

Fig.2.Steadystatefluorescencespectraofdibucaine(excitationat330nm)atdif- ferentpH(6.2,6.9,7.5,8.0,8.6,8.8,9.0,9.3,9.7,10.0,10.4,10.9,12.1,fromtopto bottomasindicatedbythearrow).Theinsetshowsthefluorescenceat405nmasa functionofpH;thesolidlineistheleast-squaresfitobtainedusingEq.(4),withPAH, PAandpKaasfittingparameters.ThepKawas8.78±0.02.

decaycurvesinthealkalinepHrange,from7.3to12.1.Theglobal 2valuewas∼1.2andthesetoflifetimeswasconsistentwiththe individualanalysisinitiallyperformed.

Thefractionalcontributionsf1,f2 andf3,calculatedfromthe pre-exponentialfactors˛12and˛3andcorrespondinglifetimes accordingtoEq.(11),appearin theinsetofFig.3asafunction ofpH.Itcanbeobservedthatthelargestlifetime1=3.14nsis duetoprotonateddibucaine,since both˛1andf1 decreasewith increasingpH.Thelifetime2=0.67nsisduetotheneutral,unpro- tonateddrug,andthesmalllifetime,3,isusuallyintroducedin amulti-exponentialanalysistoaccountforsomescattering.Since f3displayedthesamepatternasthefractionalintensityf2dueto unprotonateddibucaine,itwasattributedtoaggregationofneu- traldibucainemolecules,developedintheabsenceofelectrostatic repulsion.Accordingtothisinterpretation,f2plusf3intheinsetof Fig.3isthetotalcontributionofneutralmolecules.

Thefractionalintensitiesf1,andf2+f3fittedusingEq.(4)gavea pKaof9.8±0.1,whichgivesapositivepKaof1.0relativetothe

Fig.3. DibucainefluorescencedecaycurvesatdifferentpH(7.5,8.8,9.4,10.0,10.6, 10.9,11.4,fromtoptobottom).Excitationat330nm,emissionat405nm.The solidlinesrepresentthe3-exponentialfitsobtainedfromtheglobalanalysiswith 1=3.14ns,2=0.67nsand3=0.23ns.Theinsetshowsthecorrespondingfrac- tionalintensities:(䊉)f1,attributedtoprotonateddibucaine,(+)f2;(×)f3,and( ) f2+f3,attributedtoneutraldibucaine.

(5)

Fig.4. Typicalsteadystate fluorescencespectra oflevofloxacin (excitation at 330nm)atdifferentpH(7.1,7.5,7.9,8.4,9.1,9.4,10.0,10.6,fromtoptobottom asindicatedbythearrow).Theinsetshowsthefluorescenceintensityasafunction ofpHfortwodifferentseriesofmeasurements:(䊉)at457nm,and( )at448nm.

Thesolidanddottedlinesaretheleast-squaresfitsusingEq.(4),withPAH,PAandpKa

asfittingparameters.TheobtainedpKavalueswere8.25±0.02( )and8.32±0.03 (䊉).

steadystatefluorescence.Thenormalizedpre-exponentialfactor

˛1/(˛123)plottedasafunctionofthepH(resultsnotshown) gaveapKaof9.0±0.1,withpKa=0.2relativetothatobtainedby steadystatefluorescence.

Fordibucaine,themolarabsorptioncoefficientsfortheneutral andprotonatedspeciesaresimilar(εAHA);thequantumyields are˚A=0.04and AH=0.27[2]andthelifetimesA=0.67nsand AH=3.14nswerefoundinthis work.Using thesevalues inEq.

(21)andEq.(17),theexpectedapparentpKshiftsare:pKaf=0.83 andpKa˛=0.16,forthefractionalintensityandpre-exponential factor,whichareverysimilartothevaluesobtainedfromthefits oftheexperimentalresults.

Vanderkooi[3]alsoobtainedexperimentalpKashiftsfordibu- caineinplotsoftheapparentphaseandmodulationlifetimesasa functionofpHobtainedfromphase-modulationfluorometry,and performedtheoreticalcomputationsforthedifferentcurvesfound uponusingthelifetimesPappandappM ,obtainedfromphasedelays andrelativemodulations,respectively.

InthecaseoflevofloxacintheexperimentalpKashiftsobtained usingthefluorescencedecayparameterswerealsoexplainedby Eqs.(17)and(21).Typicalsteadystatefluorescencespectraoflev- ofloxacinatdifferentpHarepresentedinFig.4.Theinsetpresents thefluorescenceintensity(at457nm,meanwavelengthbetween peaksatpH7and11,foroneoftheexperimentalseries,andat 448nm,peakatpH7,fortheotherseries)asafunctionofthepH.

TheleastsquaresfitofthedatausingEq.(4)gaveapKa=8.32±0.03 and8.25±0.02.Thedifferencebetweenthetwovaluesshowsthat theexperimentalerrorsaresmall.

Typicalfluorescencedecaycurvesoflevofloxacinarepresented in Fig.5for severalpHvalues. Foreach titration sequence, the curvesatdifferentpHweresubmittedtoaglobalanalysisusing atwo-exponentialexpression(Eq.(10),withi=1,2).Foronetitra- tionsequence,thetwolifetimesthatfittedthefluorescencedecay curvesinthealkalinepHrangewere1=6.1ns(zwiterioniclev- ofloxacin)and2=0.7ns(anioniclevofloxacin).Thesevalueswere differentfortheothertitrationsequence(1=5.4nsand2=0.6ns), probablybecauseofthedifferentambienttemperaturesduringthe measurements.Nevertheless,theobtainedpKawereverysimilar forbothtitrationsequences.

Fig.5.TypicalfluorescencedecaycurvesoflevofloxacinatdifferentpH(7.5,8.8,9.4, 10.0,10.6,10.9,11.4,fromtoptobottom).Excitationat330nm,emissionat448nm.

Thesolidlinesrepresentthe2-exponentialfitsobtainedfromtheglobalanalysis with1=5.4ns(zwiterionic)and2=0.6ns(anionic).Theinsetshowsthenormal- izedpre-exponentialfactor˛1(䊉)andthefractionalintensityf1()ofzwiterionic levofloxacinasafunctionofthepH.Thedottedandsolidlinesaretheleast-squares fitsusingEq.(4),withpKavalues8.39±0.02and9.26±0.03,respectively.

The inset of Fig. 5 shows the plots of the normalized pre- exponentialfactor˛1/(˛12)andofthefractionalcontributions f1asafunctionofpH.Thefractionalintensityf1fittedusingEq.(4) gaveapKaof9.26±0.03,whichgivesapositivepKaof∼1.0rel- ativetothatobtainedwiththesteadystatefluorescence.Theplot ofthenormalizedpre-exponentialfactorgaveapKaof8.39±0.02, withalmostnopKshiftrelativetothesteadystatefluorescence.

ThepKshiftspredictedbyEqs.(17)and(21)arecalculatedas follows:forlevofloxacin,themolarabsorptioncoefficientsforthe anionicand zwitterionicspeciesaresimilar(␧AH=␧A);theratio of thequantum yields are obtainedfrom the steady state flu- orescence results AH/ A=11, and thelifetimes ␶A=0.7nsand

AH=6.1nswereobtained.UsingthesevaluesinEqs.(21)and(17), theexpectedapparentpKshiftsare:pKaf=1.0andpKa˛=0.1.

Theyarealsoverysimilartotheobtainedexperimentalvalues.

It is worth calling attentionto thefact that, in general,the pre-exponentialfactorsgivesmallerpKashiftsthanthefractional intensities.Inconclusion,thisworkconcernstocorrectionsthat havetobemadewhenusingtime-resolvedfluorometryparame- tersinanalyticalapplications.Expressionstocorrecttheacid–base equilibriumconstantsobtainedwithpre-exponentialfactorsand fractional intensitieswereobtained, and theirlimits ofvalidity werediscussed.Theexpressionswereshowntoexplaintheexper- imentallyobtainedpKashiftsoftwodifferentdrugs.

Acknowledgments

ThisworkhasbeenpartiallysupportedbytheBrazilianAgencies FAPERJandCNPq.

References

[1]B.Valeur,MolecularFluorescence,1sted,2ndreprint,Wiley-VCH,Weinheim, FederalRepublicofGermany,2005.

[2]J.R.Lakowicz,PrinciplesofFluorescenceSpectroscopy,3rded.,Springer,New York,2006.

[3]G.Vanderkooi,Dibucainefluorescenceandlifetimeinaqueousmediaasafunc- tionofpH,Photochem.Photobiol.39(1984)762–775.

[4]S.R.W.Louro,O.R.Nascimento,M.Tabak,ChargeandpHdependentbinding sitefordibucaineinionicmicelles:afluorescencestudy,Biochim.Biophys.

Acta1190(1994)319–328.

[5] M.Mondal,A.Chakrabarti,S.Basak,Photophysicalstudyoflocalanestheticsin reversemicellesandwater-ethanolmixtures,J.Fluoresc.13(2003)307–314.

(6)

Photobiol.A200(2008)402–409.

[9]J.Zhang,T.Hadlock,A.Gent,G.R.Strichartz,Tetracaine-membraneinterac- tions:effectsoflipidcompositionandphaseondrugpartitioning,location, andionization,Biophys.J.92(2007)3988–4001.

[10] E.M.S.Castanheira,A.M.R.Pinto,M.J.R.P.Queiroz,Fluorescenceofabenzoth- ienopyridopyrimidoneinsolutionandinlipidvesicles,J.Fluoresc.16(2006) 251–257.

[11]W.Caetano,M.Tabak,Interactionofchlorpromazineandtrifluoperazinewith anionicsodiumdodecylsulfate(SDS)micelles:electronicabsorptionandfluo- rescencestudies,J.ColloidInterfaceSci.225(2000)69–81.

[12] S.Z.Topal,F.Yuksel,A.G.Gurek,K.Ertekin,B.Yenigul,V.Ahnsen,Spectroscopic probingofacid–basepropertiesandphotocharacterizationofphthlocyanines inorganicsolventsandpolymermatrices,J.Photochem.Photobiol.A202(2009) 205–213.

[13]P.M.Navajas,H.Garcia,Complexesofbasictricyclicdyesintheiracidandbasic formswithcucurbit[7]uril:DeterminationofpKaandassociationconstantsin

neutral pH fluorescent probe for monitoring minor pH changes: imag- ing in living HepG2 and HL-7702 cells, J. Am. Chem. Soc. 131 (2009) 3016–3023.

[17]M.Tian,X.Peng,F.Feng,S.Meng,J.Fan,S.Sun,FluorescentpHprobesbased onborondipyrromethenedyes,DyesPigm.81(2009)58–62.

[18]H.J.Lin,P.Herman,J.S.Kang,J.Lakowicz,Fluorescencelifetimecharacterization ofnovellow-pHprobes,Anal.Biochem.294(2001)118–125.

[19]M.Baruah,W.Qin,C.Flors,J.Hofkens,R.A.L.Vallée,D.Beljonne,M.V.Auweraer, W.M.Borggraeve,N.Boens,SolventandpHdependentfluorescentproperties ofadimethylaminostyrylborondipyrromethenedyeinsolution,J.Phys.Chem.

A110(2006)5998–6009.

[20] B. Ehrenberg,L.M. Loew,Absolute spectroscopic determinationof cross- membranepotential,J.Fluoresc.3(1993)265–269.

[21]Determinationof pK*inexcited state protontransfer (ESPT) reaction:a rearrangementofWellerˇısequation;advantageofdualluminescence.J.Pho- tochem.Plotobiol.A88(1995)1–4,andreferencescitedtherein.

Referências

Documentos relacionados

Após a pesquisa inicial, foram selecionados 6 artigos de língua inglesa e portuguesa, que continham estudos experimentais, relacionando os efeitos da suplementação de ácido