• Nenhum resultado encontrado

A heparin-like compound isolated from a marine crab rich in glucuronic acid 2-O-sulfate presents low anticoagulant activity

N/A
N/A
Protected

Academic year: 2017

Share "A heparin-like compound isolated from a marine crab rich in glucuronic acid 2-O-sulfate presents low anticoagulant activity"

Copied!
8
0
0

Texto

(1)

ContentslistsavailableatSciVerseScienceDirect

Carbohydrate

Polymers

j our na l h o me p ag e : w w w . e l s e v i e r . c o m / l o c a t e / c a r b p o l

A

heparin-like

compound

isolated

from

a

marine

crab

rich

in

glucuronic

acid

2-

O

-sulfate

presents

low

anticoagulant

activity

Giulianna

P.V.

Andrade

a

,

Marcelo

A.

Lima

b,c

,

Airton

A.

de

Souza

Junior

b,d

,

Jawed

Fareed

e

,

Debra

A.

Hoppensteadt

e

,

Elizeu

A.

Santos

a

,

Suely

F.

Chavante

a

,

Fernanda

W.

Oliveira

a

,

Hugo

A.O.

Rocha

a

,

Helena

B.

Nader

b,∗

aDepartamentodeBioquímica,UniversidadeFederaldoRioGrandedoNorte,Natal,RN,Brazil bDepartamentodeBioquímica,UniversidadeFederaldeSãoPaulo,SãoPaulo,SP,Brazil

cDepartmentofStructuralandChemicalBiology,UniversityofLiverpool,CrownStreet,LiverpoolL697ZB,UK dDepartamentodeBiologia,InstitutoFederaldoRioGrandedoNorte,Natal,RN,Brazil

eDepartmentofPathology,LoyolaMedicalSchool,Maywood,IL,USA

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received27November2012

Receivedinrevisedform21January2013 Accepted22January2013

Available online 29 January 2013

InhonorofProf.CarlP.Dietrich.

Keywords: Heparin Heparansulfate

Nuclearmagneticresonance Heparinases

Anticoagulantactivity Hemorrhagiceffect

a

b

s

t

r

a

c

t

Anaturalheparin-likecompoundisolatedfromthecrabGoniopsiscruentatawasstructurally character-izedanditsanticoagulantandhemorrhagicactivitiesweredetermined.Enzymaticandnuclearmagnetic resonanceanalysisrevealedthatitsstructureisrichindisulfateddisaccharides,possessingsignificant amountsof2-O-sulfated-␤-d-glucuronicacidunits.Furthermore,lowamountsoftrisulfateddisaccharide

unitscontaining2-O-sulfated-␣-l-iduronicacidweredetected,whencomparedtomammalianheparin.

Inaddition,thisheparin-likestructureshowednegligibleinvitroanticoagulantactivityandlowbleeding potency,factsthatmakeitasuitablecandidateforthedevelopmentofstructure-driven,heparinbased therapeuticagentswithfewerundesirableeffects.

© 2013 Elsevier Ltd.

1. Introduction

Heparinandlowmolecularweightheparinsarethemain anti-coagulantandantithromboticdrugscurrentlyusedinmedicine. Besidesits well-describedanticoagulant/antithrombotic actions, heparinand heparin-like moleculesare knowntointeractwith multipleproteinsmodulating severalbiologicalprocesses (Brito etal.,2008;Dreyfussetal.,2010;Paredes-Gameroetal.,2010), however,itsfurtherclinicaluseisimpairedbyitsstrong anticoag-ulantactivityandhemorrhagiccomplications.

Heparinandheparansulfatesharestructuralfeatures,yet,they canbedifferentiatedbythelevelsofglucosamineN-acetylation, totalsulfateandglucuronic/iduronicacidratio(Casu,Naggi,&Torri, 2010).Furthermore,heparansulfatesareubiquitouscomponents ofalltissue-organizedanimallifeforms(Cassaro&Dietrich,1977; Medeirosetal.,2000;Sampaioetal.,2006;Toledo&Dietrich,1977),

Correspondingauthorat:MolecularBiology,DepartamentodeBioquímica, Uni-versidadeFederaldeSãoPaulo,RuaTrêsdeMaio,100,CEP04044-020,SãoPaulo, SP,Brazil.Tel.:+551155703175;fax:+551155736407.

E-mailaddress:hbnader.bioq@epm.br(H.B.Nader).

whereasheparinshowsapeculiardistributioninmammalianand othervertebrates,aswellasininvertebrates(Nader,Lopes,Rocha, Santos,&Dietrich,2004).

Ininvertebrates,heparinisfoundinsomespeciesofmollusk, crustacean,annelid,echinodermate,tunicateandurochordatelife (Cassaro&Dietrich,1977;Cavalcanteetal.,2000;Dietrichetal., 1985;Luppi,Cesaretti,&Volpi,2005;Medeirosetal.,2000;Pejler etal.,1987;Sampaioetal.,2006).Insomeinvertebrates,the pres-enceofheparin-like structureswithsimilarities toheparinbut, withsomestructuralpeculiarities,havebeendescribed(Britoetal., 2008;Chavante etal.,2000;Dietrichet al.,1999a;Naderetal., 2004).Thesepreviousstudieshave shown thattheirstructures vary according tothe species and that such differences reside, mainly,intherelativeabundanceofthedifferentdisaccharideunits (Naderetal.,2004).Additionally,theseheparin-likecompounds showvariablebiologicalactivities(Boucasetal.,2006;Britoetal., 2008; Cassaro&Dietrich, 1977;Chavante et al., 2000;Dietrich etal.,1999a;Dreyfussetal.,2010;Medeirosetal.,2000;Santos et al., 2007). Thus, each heparin/heparin-like compound from invertebratetissuestendstobeahithertounknowncompound withuniquestructuralfeaturesandapotentialnoveltherapeutic agent.

0144-8617© 2013 Elsevier Ltd.

http://dx.doi.org/10.1016/j.carbpol.2013.01.069

Open access under the Elsevier OA license.

(2)

2. Materialsandmethods

2.1. Materials

Heparansulfatefrombovinepancreasandheparinfrombovine intestinalmucosaweregiftsfromthelateDr.P.Bianchini(Opocrin ResearchLaboratories,Corlo,Modena,Italy).Heparinfromporcine intestinalmucosa wasobtainedfromKin Master (PassoFundo, RS,Brazil)andenoxaparin(lowmolecularweightheparin)from Sanofi-Aventis (Maison-Alford, France). Chondroitin 4- and 6-sulfate and dermatan sulfate were purchased from Seikagaku Kogyo(Tokyo,Japan).Heparinase(HeparinaseI,EC4.2.2.7), hep-aritinasesIandIIwerepreparedfromFlavobacteriumheparinum as previously described (Nader et al., 1990). Ethylenediamine (1,2-diaminoethane)andpropylenediamine(1,3-diaminopropane) werepurchased fromSigma–AldrichCo. (Milwaukee, WI,USA). Low-Mr agarose was purchased from Bio-Rad (Richmond, CA, USA). Maxatase, a protease from Sporobacillus, was purchased from Biocon do Brasil Industrial Ltd. (Rio de Janeiro, RJ, Brazil).

2.2. Extractionandpurificationofcrabheparin-like

TheAnimal Ethics AdvisoryCommitteeapproved all experi-mentsinvolvinganimals inaccordance to theBrazilian Federal Law(11,794/2008)fortheuseand careof animalsfor scientific purposes.Adult specimens ofG. cruentata (Latreill,1803) were collectedatPotengiriverestuary(Macaíba,RN,Brazil), immedi-atelykilledandstoredat−20◦C.Sulfatedglycosaminoglycanswere extractedafterproteolysisandionexchangefractionation.Ten kilo-gramsofcrabweregroundwith2volumesofcold0.5MNaClin ablender.ThepHofthemixturewasadjustedto8.0withNaOH andMaxatasewasadded(3.5mg/kgwetweight).After incubat-ingfor24hat60◦C,withagitationandperiodicpHadjustments, themixturewasfilteredandLewatitionexchangeresin(Bayer, SP,Brazil) wasadded (60mg/kgwetweight), and theresulting mixturewasagitatedfor24hat60◦Cundera layerof toluene. Thesuspensionwasagainfilteredandtheresinretained,washed with10 volumes of water at 60◦C and, subsequently, washed with10volumesof0.5MNaClatroomtemperature.Thewashed resinwasthensuspendedin2volumesof1MNaCl,agitatedfor 3hand filteredagain. Thisprocedurewasrepeated usingwith 2 and 3M NaCl.The filtrates were maintainedfor 24hat 4◦C after the addition of 2 volumes of methanol and the precipi-tateformedwascollectedbycentrifugation(10,000×g,20min),

driedundervacuum,suspendedindistilledwater,andanalyzed byagarosegelelectrophoresis.Fractions elutedwith2 and3M NaCl,whichshowedthepresenceofcompoundsmigratingas hep-arinandheparansulfatewerepooled,dialyzedanddried.These compoundswere furtherdissolvedin 0.15MNaCl and 0.5 vol-umesofice-coldacetonewasaddedtothesolutionundergentle agitation and maintained at 4◦C for 24h. The precipitate was collectedbycentrifugationat4◦C. Thisprocedurewasrepeated successivelybyadditiontothesupernatantof0.6,0.7,0.8,0.9,1.0 and2.0volumesofacetoneaccordingtothevolumeofthe ini-tialsolution.Theresultingprecipitatesweredialyzed,driedand analyzed. Fractions precipitatedwith 0.6 volumes and 0.7 vol-umesof acetone correspondedto90% of thetotal heparin-like compound.

ent buffers: 0.05M1,3-diaminopropane–acetate buffer, pH 9.0, discontinuous buffer 0.04M barium acetate, pH 4.0/0.05M diaminopropane–acetate,pH9.0or0.06MTris–acetatebuffer,pH 8.0,aspreviouslydescribed(Bianchinietal.,1980).Aliquotsofthe fractions(about10␮g)wereappliedtothegelandsubjectedto electrophoresis.Thegelswerefixedwith0.1% cetyltrimethylam-moniumbromide(CETAVLON)solutionfor4h,driedandstainedfor 15minwith0.1%toluidinebluein1%aceticacidin50%ethanoland furtherdestainedwiththesamesolutionwithoutthedye. Quantifi-cationwascarriedoutbydensitometryat530nmofthetoluidine blue-stainedelectrophoreticslide.Theextinctioncoefficientsofthe GAGswerecalculatedusingstandardsofchondroitinsulfate(CS), dermatansulfate(DS)andheparansulfate(HS).Theerrorofthe methodwasintheorderof5%.IdentificationofthesulfatedGAGs wasinitiallybasedonthemigrationofthecompoundscompared withthoseofstandards.

2.4. Enzymaticdegradation

Sampleswereincubatedwithdifferentheparinlyases (hepari-naseI,heparitinaseIandII,2.5mIUeach)aswellaswithamixture ofallenzymes.Thedisaccharidesproducedbytheenzymaticaction wereresolvedona150×4.6mmPhenosphereSAXcolumn

(Phen-omenex,Torrance,CA,USA)usingaNaClgradientof0–1Mduring 30minwitha1mL/minfluxandUVdetectionat232nm.

2.5. NMRspectroscopy

NMRspectrawererecordedeitherusingaBrukerDRX600witha tripleresonance5-mmprobeorinanAgilent600MHzSystemwith 5-mmColdProbe.Thespectrawererecordedateither60or25◦C withHODsuppressionbypre-saturation.COSY,TOCSYand1H/13C

heteronuclear correlation (HSQC) spectra were recorded using states-timeproportionphaseincrementforquadraturedetection intheindirectdimension.Allchemicalshiftswererelativeto exter-naltrimethylsilyl-propionicacidand[13C]-methanol.

2.6. Invitroanticoagulantactivity

Allcoagulationassays(aPTT,PT,TTandHEPTEST®)were per-formedusingacoagulometerasdescribedearlier(Dietrichetal., 1999a)usingcitratednormalhumanplasma.Allassayswere per-formedinduplicateandrepeatedatleastthreetimesondifferent days(n=6).GenerationofthrombinandfactorXawasmeasured by amidolyticassays using thespecific chromogenic substrates (SpectrozymeTHandSpectrozymeFXa,AmericanDiagnosticaInc., Stamford,CT)accordingtoamethodpreviouslydescribed(Kaiser etal.,1992).Allassayswereperformedonafastkineticcentrifugal analyzer(ACL-300,Lexington,MA,USA).

2.7. Hemorrhagiceffect

(3)

94 (2013) 647–654 649

Fig.1.Electrophoreticbehaviorofthecrabsulfatedglycosaminoglycansinagarosegels.About5–20␮goftheglycosaminoglycanspurifiedfromcrabtissuesweresubjected toelectrophoresisindifferentbuffers.Aftertherun,thecompoundswereprecipitatedandthegelsdriedandstainedwithtoluidineblue.(a)Fractionselutedfromtheion exchangechromatographywereevaluatedusing1,3-diaminopropane-acetate(PDA).1M,2Mand3Mfractionswereelutedfromionexchangechromatographywith1.0, 2.0and3.0MofNaCl,respectively.(b)Fractions2Mand3Mwerepooledandfractionatedwithacetone,andtheelectrophoreticmobilityofthecompoundsevaluatedusing thediscontinuousbufferbariumacetate/PDA.Electrophoreticmobilityoftheheparin-likecompoundsprecipitatedwith0.6and0.7volumesofacetoneindifferentbuffers: (c)PDAbuffer,(d)tris-acetateand(e)discontinuousbufferbariumacetate/PDA.M,mixtureofstandardsulfatedglycosaminoglycanscontaining5␮gofchondroitinsulfate (CS),dermatansulfate(DS)andheparansulfate(HS);Hep,porcineintestinalmucosaheparinandS,I,F,slow,intermediateandfastmovingcomponents,respectively;Or, origin.

2minandwashedextensivelywithsaline.Thetreatedtailswere then immersed in isotonic saline solution, and the amount of bloodoozedwasmeasuredbyproteincontent.Thebleedingwas observedwiththeuseofastereoscope.Allexperimentswere per-formedat37◦C. Thebleeding wascalculated asthesumofthe proteinvaluesofeachtubeminustheamountofproteinpresent beforetheexposuretothetestsubstances.Bleedingpotencywas expressedasthecumulativeamountofproteinreleasedfromthe woundsafterexposuretothecompoundsrelativetothecontrol (absenceofdrug).

2.8. Othermethods

Hexosamine wasdetermined afteracid hydrolysis (4M HCl, 100◦C,6h)bytheRondle–Morganprocedure(Rondle&Morgan,

1955)and uronicacidbythecarbazolereaction(Dische,1947). Total sulfate was measuredby a method previously described (Dodgson &Price,1962).For molecularweightanalysis,300␮g ofeachsamplewasanalyzedbyGPC-HPLCona300mm×7.8mm

BioSepSECTMS-2000LCColumn.Thesamplesweresubmittedto

anisocraticelution(0.3MNa2SO4 mobilephase)ata flowrate

of1mL/minandUVdetectionat205nm.Thecolumnwas previ-ouslycalibratedwithpolysaccharidesofknownmolecularweights (1.7kDa,4kDa,10kDa,16kDaand20kDa).

2.9. Statisticalanalysis

TheSPSSsoftware package (release16.0; SPSSInc.,Chicago, IL,USA)wasusedforstatisticalanalysis.Thedifferencebetween thegroups wasevaluated using thenon-parametric two-tailed

Mann–WhitneyU-test.P<0.05wasconsideredstatistically signif-icant.

3. Resultsanddiscussion

3.1. Purificationofthecrabheparin-likecompound

(4)

UA-NAc UA-NS UA-NAc(6S) UA(2S)-NAc UA-NS(6S) UA(2S)-NS UA(2S)-NAc(6S) UA(2S)-NS(6S)

≤1 45.9 8.1 7.5 5.1 18.0 3.0 12.0

Fig.2.1Hspectraat600MHzofthecrabheparin-like,heparansulfateandheparinrecordedat60Cand25Crespectively.(a)Crabheparin-likecompound(Hepn)1H

spectrum;(b)1HspectraanomericregionofcrabHepn,heparansulfatefrombovinepancreasandheparinfromporcineintestinalmucosa.A

NS,N-sulfatedglucosamine;

ANAc,N-acetylatedglucosamine;G,glucuronicacid;G2S,2-O-sulfatedglucuronicacid;I2S,2-Osulfatediduronicacid;I,iduronicacid;G,glucuronicacid.

crustaceanArtemiafranciscana,anunusualheparansulfatewith similarelectrophoreticbehaviortothecrabcompoundthat pre-sentedahighdegreeofN-sulfation.Ontheotherhand,acompound fromtheshrimpPenaeusbrasiliensiswithsimilarelectrophoretic behaviorwasisolatedandcharacterizedasanaturallowmolecular weightheparin(Dietrichetal.,1999a).

3.2. Chemicalanalysisandmolecularmass

Themolecularmassandthemolarratiosofhexosamine,uronic acidand sulfate present in the heparin-like compounds, mam-malianheparinandheparansulfatewerealsoanalyzed.Thecrab compoundsshowedanaveragemolecularmass(∼19kDa)similar

toporcineheparin(∼16kDa)andlowerwhencomparedtobovine

heparansulfate(∼25kDa).Furthermore,bothcompoundsshowed

similarmolarratioofsulfate/hexosamineof2.1:1.0,respectively. Theseratiosarebetweenthevaluesdescribedforheparansulfate (sulfate/hexosamine,1.6:1.0)(Dietrich&Nader,1974)andheparin (sulfate/hexosamine,2.8:1.0)(Dietrichetal.,1985).Neutralsugars werenotdetected.Overall,thedatasuggestedthatthetwo frac-tionscorrespondedtothesamecompound.Thetwofractionswere pooledandhereafterisreferredtoasHepn.

3.3. Enzymaticanalysis

Some structural characteristics of the Hepn were exam-ined with enzymes purified from F. heparinum. Heparitinase I, which acts upon N-acetyl or N-sulfate glucosamine-glucuronic acid linkages (Desai, Wang, & Linhardt, 1993; Dietrich et al., 1999a; Silva & Dietrich, 1974), degraded less than 5% of the

Fig.3. 1H/13CHSQC(b)and1H/1HCOSY(b)spectraofthecrabheparin-likecompoundrecordedat60C.A

(5)

94 (2013) 647–654 651

Table2

1Hchemicalshiftsfortheheparin-likecompoundofthecrabG.cruentata.

Unit 1Hchemicalshiftsa

Uronicacid Glucosamine

H1 H2 H3 H4 H5 H1 H2 H3 H4 H5 H6

a(-GlcA)(-d-GlcNS-6S) (I)(A) 4.60 3.31 3.71 3.88 3.79 5.57 3.18 3.65 3.85 4.04 4.14 b-GlcA→␣-d-GlcNS-6S 4.58 3.36 3.82 3.84 3.78 5.56 3.27 3.67 3.70 3.96 4.37/4.17 a(-GlcA)(-d-GlcNS) (I′)(A) 4.58 3.28 3.70 3.88 3.79 5.57 3.18 3.65 3.65 3.75 3.80

b-GlcA→␣-d-GlcNS 4.55 3.41 3.83 3.90 3.83 5.58 3.27 3.68 3.68 3.79 3.81/3.83 a(-GlcA-2S)(-d-GlcNS) (H)→(B) 4.67 4.12 ∼4.03 ∼3.97 – 5.55 3.24 3.62 3.86 3.72 3.92

c-GlcA-2S→␣-d-GlcNS 4.69 4.12 3.99 3.83 – 5.45 3.23 3.75 3.64 3.93 3.88

a(-GlcA-2S)(-d-GlcNS-6S)(H′)(B) 4.70 4.12 4.03 3.97 5.55 3.24 3.62 3.86 4.04 4.14

b-GlcA-2S→␣-d-GlcNS-6S 4.74 4.14 3.98 3.85 3.88 5.44 – – – – –

a(-IdoA-2S)(-d-GlcNS-6S)(F)(C) 5.20 4.28 4.22 4.08 5.01 5.48 3.19 4.40 d-IdoA-2S→␣-d-GlcNS-6S 5.23 4.37 4.22 4.14 4.82 5.42 3.31 3.69 3.79 4.05 4.42/4.30

a(-GlcA-2S)(-d-GlcNAc-6S)(G)(D) 4.73 4.08 5.32 3.83 3.92 3.77 4.15 4.25 e-GlcA-2S→␣-d-GlcNAc-6S 4.76 4.14 3.92 5.42/5.32 4.03/3.93 3.85 3.57 4.04 4.48/4.22 e(-GlcA)(-d-GlcNAc-6S) 4.52 3.34 3.65 3.78 3.82 5.32 3.80 – – 4.15 4.47 (G′)(D) f-GlcA→␣-d-GlcNAc 4.64 3.41 3.66 3.75 5.35 3.91 3.75 3.70 3.99 a(-GlcA)(-d-GlcNAc) (J)→(E) 4.49 3.34 3.65 3.78 3.82 5.28 3.85 3.98 3.48 3.90 3.89

b-GlcA→␣-d-GlcNAc 4.48 3.37 3.69 3.78 3.78 5.36 3.89 3.86 3.64 3.82 3.84/3.84 Valuesinitalictypeindicatepositionsbearingasulfateester.AtoF,spinsystems.

aDatapresentedinthispaper. bCasuetal.(1994).

c Yamadaetal.(1995). d Yatesetal.(1996). eGuerrinietal.(2005). f Yamadaetal.(1999).

crab heparin-like product, producing few N-acetylated and N -sulfated disaccharides linked to non-sulfated glucuronic acid (UGlcA-GlcNSand UGlcA-GlcNAc).On the otherhand, hep-arinasedegradedthecrabcompoundproducing thesametypes of products obtained from the mammalian heparin, although in different proportions. This enzyme acts upon glycosidic linkages containing ␣-d-glucosamine-N-sulfate linked to ␣-l -iduronicacid-2-sulfateanddoesnotactwhentheuronicacidis

glucuronicacid2-Oor 3-Osulfate,or whenthe glucosamineis N-acetylated(Naderetal.,1999).Thus,an importantdifference betweenmammalianheparinandthecrabpolymerisitslowerlevel oftrisulfateddisaccharides.In addition,thehighlevelsof hexa-andtetra-saccharidespresentindicatedoligosaccharideblocksthat areresistanttotheactionofheparinase.Furthermore, hepariti-naseIIwhich actsupon glucosaminido-glucuronicacidlinkages where the N-acetyl or N-sulfate glucosamine is preferentially

Table3

13Cchemicalshiftsfortheheparin-likecompoundofthecrabG.cruentata.

Unit 13Cchemicalshiftsa

Uronicacid Glucosamine

C1 C2 C3 C4 C5 C1 C2 C3 C4 C5 C6

a(-GlcA)→␣-d-GlcNS-6S (I)→(A) 105.0 76.2 80.1 79.8 80.1 102.0 61.2 73.1 81.2 70.0 69.0

b-GlcA→␣-d-GlcNS-6S 105.5 76.4 79.5 79.8 80.3 100.8 61.1 73.1 80.6 72.3 69.5

a(-GlcA)(-d-GlcNS) (I)→(A′) 105.0 76.2 80.1 79.8 80.1 101.5 61.2 73.1 82.1 74.5 63.2

b-GlcA→␣-d-GlcNS 105.1 75.6 78.7 78.8 79.3 99.9 60.5 72.4 80.7 73.3 62.4

a(-GlcA-2S)(-d-GlcNS) (H)→(B/B′) 103.8 83.0 77.8 77.8 101.8 61.0 73.0 72.0 70.0 62.0

a(-GlcA-2S)(-d-GlcNS-6S)(H)(B/B) 103.8 83.0 101.8 61.0 73.0 72.0 74.2 69.0

b-GlcA-2S→␣-d-GlcNS-6S 102.8 82.3 77.3 79.1 79.5 100.9 a(-IdoA-2S)(-d-GlcNS-6S) (F)→(C) 101.8 78.8 72.0 79.5 71.8 100.5 ∼61 – – – 70.1

d-IdoA-2S→␣-d-GlcNS-6S 102.1 78.9 72.1 79.0 72.3 99.5 60.7 72.5 78.8 72.0 69.2 a(-GlcA-2S)(-d-GlcNAc-6S)(G)→(D) 103.8 82.8 – – – 100.8 56.4 – – – 71.7

e-GlcA-2S→␣-d-GlcNAc-6S 103.0 82.4 77.4 78.8/79.5 79.2/79.5 99.8 56.0 72.1 80.5 72.0 68.8

a(-GlcA)(-d-GlcNAc-6S) (G′)(D) 105.5 76.2 79.0 78.9 79.7 100.8 56.8 69.8 70.0

a(-GlcA)(-d-GlcNAc) (J)(E) 105.5 76.2 79.0 78.9 79.7 101.7 56.7 77.9 73.2 72.1 63.0 b-GlcA→␣-d-GlcNAc 105.2 76.3 78.9 79.1 79.1 99.6 56.1 73.5 81.1 72.0 62.2 Valuesinitalictypeindicatepositionsbearingasulfateester.AtoF,Spinsystems.

aDatapresentedinthispaper. bCasuetal.(1994).

(6)

Fig.4.Effectofthecrabheparin-likecompoundoncoagulationusingdifferentinvitroassays.(),crabHepn;(),UFH;(),enoxaparin(lowmolecularweightheparin). ResultsinaPPTandanti-IIaarestatisticallydifferentforthe3compounds(P<0.5).Significantdifferences(P<0.5)inPT,TT,HEPTESTandanti-XabetweenHepnandheparin, aswellasHepnandenoxaparin.

sulfatedattheC-6position(Dietrichetal.,1999a;Naderetal., 1990),producedmainlydisulfateddisaccharides(UA-GlcNS,6S/

UA,2S-GlcNAc,6S/ UA,2S-GlcNS). Since the useof individual enzymesledtotheformation of oligosaccharides,a mixture of allthreelyaseswasthenusedtoascertainthetotaldisaccharide compositionoftheHepn(Table1).Thisresultcontrastswithdata obtainedforheparin,whereabout80%allofdisaccharidesarethe

UA,2S-GlcNS,6S,aswellasfor heparansulfateswherearound 50–60%ofalldisaccharidesareUA-GlcNAc/UA-GlcNS(Dietrich etal.,1998;Zhang,Xie,Liu,Liu,&Linhardt,2009).

3.4. NMRspectroscopy

The1HNMRspectrumforHepnisshowninFig.2a.Thesignal

at5.22ppmfromH-1of2-O-sulfatediduronicacidwasfoundin thecrabheparin-likeproduct.Theotheranomericprotonsshowed twomainregionsfrom5.28to5.57ppmand4.5to5.2ppmthat correspondtoanomericprotonsofthehexosamineanduronicacid residues,respectively(Yatesetal.,1996).Thesignalat2.04ppmdue

totheacetylgroupswasprominentintheHepn.Fig.2bshowsthe anomericregionforporcineheparin,bovineheparansulfateand thecrabHepn.Itisclearthatthesameanomericsignalspresentin heparinandheparansulfatearepresentinHepn.Nevertheless,as intheenzymaticdegradationresults,theyarepresentindifferent relativeproportions.

(7)

94 (2013) 647–654 653

respectively,andthesignalat5.2/101.8ppmindicates2-O-sulfated IdoAlinkedtoN-sulfatedglucosamine(Guerrini,Naggi,Guglieri, Santarsiero,&Torri,2005;Yatesetal.,1996).Traceablespin sys-tems arealso shown onthe homonuclearproton–proton COSY spectrumexhibitingthespin–spincoupledprotons(Fig.3b).

Thecrabheparin-likecompoundexhibitedNMRspectra con-taining similar characteristics to mammalian heparan sulfate, includingahighintensitysignalattributedtotheacetylgroups andhighintensitysignals ofH-1fromglucuronicacidresidues. Additionally, the signals attributed to the anomeric proton of 2-O-sulfatediduronicacidresidues(5.2ppm),commonto mam-malianheparin(Casuetal.,1994;Mulloyetal.,1994;Yatesetal., 1996),werealsodetected,yet,these2-O-sulfatediduronic acid residuesarelinkedeithertoN-sulfated,6-hydroxylorN-acetylated, 6-O-sulfatedglucosamine(Fig.2b).Furthermore,chemicalshifts at 4.7–4.73ppm attributed to the 2-O-sulfated glucuronic acid werealso present. Accordingto theliterature, low amounts of 2-O-sulfatedglucuronic acidresidues are foundin natural gly-cosaminoglycans, but this residue is usually not detectable in unfractionatedheparins(Guerrinietal.,2005;Yamada,Murakami, Tsuda,Yoshida,&Sugahara,1995).Tothebestofourknowledge, thisisthefirstreportofa2-O-sulfatedglucuronicacid-rich heparin-likecompound.

The NMR signals attributed toN,3,6-trisulfated glucosamine residue,atypicalmarkerofthepentasaccharidesequenceofthe activesiteofheparinandheparansulfatesforantithrombin bind-ing(Casuetal.,1996;Kusche,Torri,Casu,&Lindahl,1990;Lindahl etal.,2005;Sieetal.,1988),werenotdetectedinthespectraof thecrabheparin-likecompound,suggestingthatsuchcompound islikelytoexhibitreducedanticoagulantactivitywhencompared toheparin.

3.5. Invitroanticoagulantassays

Invitroanticoagulantactivityofthecrabheparin-likecompound isshowninFig.4.TheHepnexhibitedananticoagulantactivity around33IU/mgusingtheactivatedpartialthromboplastintime (aPTT)assay.Thismethodshowsthatthecompound,when com-paredtoheparin (193IU/mg), is atleast 5times less potentin preventinginvitroclotformationbytheintrinsicpathway.Thecrab compoundhadnoeffectintheextrinsicpathway,confirmedbythe prothrombintime(PT),dramaticallycontrastingwithmammalian heparin.Hepnhasnoeffectontheabilityofthrombintodegrade fibrinogenmeasuredbythethrombintime(TT),contrastingonce moretheeffectobservedwithheparin.TheHEPTESTtestmeasures theactionofthecompoundsuponheparincofactorII.Theresults indicatedthatHepnisatleast12timeslesspotentthanheparinin thisassay.Usingbiochemicallydefinedconditionsonafastkinetic centrifugalanalyzer,theeffectsoftheheparin-like,heparinand enoxaparinonthrombinandfactorXagenerationwerealso inves-tigated.Itisevidentthattheheparin-likecompoundismuchless potentinthedirectgenerationofthrombinandfactorXawhen comparedtoheparinandenoxaparin.Consequently,theseresults indicatedthatHepnfromG.cruentataisaless potent anticoag-ulantagentthanmammalianheparinandLMW-heparin(Fig.4). Thisloweranticoagulantactivitycanberelatedtoitslowerdegree ofsulfation,inparticular,thelackofN,3,6-trisulfatedglucosamine residues,atypicalmarkerofthepentasaccharidesequenceactive forantithrombin(Lindahletal.,2005).

3.6. Hemorrhagiceffect

CrabHepnwasalsotestedasapossibleinhibitorof hemosta-sis.Thecrabcompound,likeheparin,alsodisruptedthenormal controlofbleeding.Nevertheless,theextentofbleedinginthe ani-malsexposedtothecrabcompoundwaslesspronouncedthanthe

Fig.5.Bleedingactivityofthecrabheparin-likecompoundandporcine intesti-nalmucosaheparin.(),Hepn;(),mammalianheparin.Theresultsforthetwo compoundsarestatisticallydifferent(P<0.5).

heparintreatment(Fig.5).Thiscouldberelatedtothelower con-tent ofcriticalsulfation attheC-6positionoftheglucosamine. Studiesconductedwithdisaccharidesderivedfromheparin, hep-aransulfateandchondroitinsulfateshowedthatasulfateatthe C-6positionoftheglucosamineiscrucialfortheantihemostatic activity(Dietrich,Tersariol, Da Silva,Bianchini,&Nader,1991). Thefindingsthatothersulfateddisaccharides,withthesame sul-fate/hexosamine/uronicacidratiosbearingasulfateatadifferent position(C-2)orwithadifferentglycosidiclinkage(1–3),were inactiveasinhibitorsofhemostasisindicatingthataspecific struc-tureisneededforsuchaneffect(Dietrichetal.,1991).Ontheother hand,thisinhibitoryactivitydoesnotseemtoberelatedtothe anticoagulantactivityofthecompounds(Boucasetal.,2012)since structureswithnoanticoagulantactivityarepotentantihemostatic agents(Nader,Tersariol,&Dietrich,1989).

4. Conclusion

In summary, ourresultsindicate that theheparin-like com-poundisolated fromthecrabG.cruentatapresent intermediate structure betweenheparin andheparansulfate.In addition,the crabheparin-likeisrichin2-O-sulfatedglucuronicacidresidues, possesses low levels of trisulfated disaccharides and lacks the defined pentasaccharide structure related to the antithrombin binding site. To the best of our knowledge, this is the first studycharacterizinga natural 2-O-sulfatedglucuronicacid-rich heparin-like glycosaminoglycan using chemical, enzymatic and spectroscopicanalyses.Furthermore,concerningsome pharmaco-logicalactivities,ithasbeendemonstratedthat,thecrabcompound showednegligibleinvitroanticoagulantactivityandlowerbleeding effectcomparedtomammalianheparin.Consequently,itsunusual structuralfeatures,insignificantinvitroanticoagulantactivityand lower bleeding risk, make this compound a suitable candidate forthedevelopmentstructure-drivenheparinbasedtherapeutic agentswithlessundesirableeffects.

Acknowledgments

(8)

References

Bianchini,P., Nader, H.B., Takahashi, H.K., Osima,B., Straus,A. H.,& Diet-rich,C.P.(1980).Fractionationandidentificationofheparinandotheracidic mucopolysaccharidebyanewdiscontinuouseletroforeticmethod.Journalof Chromatography,196,455–462.

Boucas,R.I.,Jarrouge-Boucas,T.R.,Lima,M.A.,Trindade,E.S.,Moraes,F.A., Cav-alheiro,R.P.,etal.(2012).Glycosaminoglycanbackboneisnotrequiredfor themodulationofhemostasis:Effectofdifferentheparinderivativesand non-glycosaminoglycananalogs.MatrixBiology,31(5),308–316.

Boucas,R.I.,Sampaio,L.O.,Andrade,G.P.V.,Lopes,C.C.,Nascimento,F.D.,Tersariol,I. L.S.,etal.(2006).Heparinandheparinderivativesandtheireffectonhemostasis. InH.Verli(Ed.),Insightsintocarbohydratestructureandbiologicalfunction(pp. 25–50).Kerala,India:TransworldResearchNetwork.

Brito,A.S.,Arimateia,D.S.,Souza,L.R.,Lima,M.A.,Santos,V.O.,Medeiros,V.P., etal.(2008).Anti-inflammatorypropertiesofaheparin-likeglycosaminoglycan withreducedanti-coagulantactivityisolatedfromamarineshrimp.Bioorganic andMedicinalChemistry,16(21),9588–9595.

Cassaro,C.M.,&Dietrich,C.P.(1977).Distributionofsulfatedmucopolysaccharides ininvertebrates.JournalofBiologicalChemistry,252(7),2254–2261.

Casu,B.,Grazioli,G.,Razi,N.,Guerrini,M.,Naggi,A.,Torri,G.,etal.(1994). Heparin-likecompoundspreparedbychemicalmodificationofcapsularpolysaccharide fromE.coliK5.CarbohydrateResearch,263(2),271–284.

Casu,B.,Guerrini,M.,Naggi,A.,Torri,G.,De-Ambrosi,L.,Boveri,G.,etal.(1996). Char-acterizationofsulfationpatternsofbeefandpigmucosalheparinsbynuclear magneticresonancespectroscopy.Arzneimittel-Forschung,46(5),472–477. Casu,B.,Naggi,A.,&Torri,G.(2010).Heparin-derivedheparansulfatemimics

tomodulateheparansulfate–proteininteractionininflammationandcancer. MatrixBiology,29(6),442–452.

Cavalcante,M.C.,Allodi,S.,Valente,A.P.,Straus,A.H.,Takahashi,H.K.,Mourao,P.A., etal.(2000).Occurrenceofheparinintheinvertebratestyelaplicata(Tunicata) isrestrictedtocelllayersfacingtheoutsideenvironment.Anancientrolein defense?JournalofBiologicalChemistry,275(46),36186–36189.

Chavante,S.F.,Santos,E.A.,Oliveira,F.W.,Guerrini,M.,Torri,G.,Casu,B.,etal. (2000).AnovelheparansulphatewithhighdegreeofN-sulphationandhigh heparincofactor-IIactivityfromthebrineshrimpArtemiafranciscana. Interna-tionalJournalofBiologicalMacromolecules,27(1),49–57.

Desai,U.R.,Wang,H.M.,&Linhardt,R.J.(1993).Specificitystudiesontheheparin lyasesfromFlavobacteriumheparinum.Biochemistry,32(32),8140–8145. Dietrich,C.P.,dePaiva,J.F.,Moraes,C.T.,Takahashi,H.K.,Porcionatto,M.A.,&Nader,

H.B.(1985).Isolationandcharacterizationofaheparinwithhighanticoagulant activityfromAnomalocardiabrasiliana.BiochimicaetBiophysicaActa,843(1-2), 1–7.

Dietrich,C.P.,&Nader,H.B.(1974).Fractionationandpropertiesoffour hepar-itinsulfatesfrombeeflungtissue.Isolationandpartialcharacterizationofa hemogeneousspeciesofheparitinsulfate.BiochimicaetBiophysicaActa,343(1), 34–44.

Dietrich,C.P.,Paiva,J.F.,Castro,R.A.,Chavante,S.F.,Jeske,W.,Fareed,J.,etal.(1999). Structuralfeaturesandanticoagulantactivitiesofanovelnaturallowmolecular weightheparinfromtheshrimpPenaeusbrasiliensis.BiochimicaetBiophysica Acta,1428(2-3),273–283.

Dietrich,C.P.,Shinjo,S.K.,Moraes,F.A.,Castro,R.A.,Mendes,A.,Gouvea,T.C.,etal. (1999).Structuralfeaturesandbleedingactivityofcommerciallowmolecular weightheparins:NeutralizationbyATPandprotamine.SeminarsinThrombosis andHemostasis,25(Suppl3),43–50.

Dietrich,C.P.,Tersariol,I.L.,DaSilva,R.G.,Bianchini,P.,&Nader,H.B.(1991). DependenceoftheC-6sulfateoftheglucosaminemoietyand1–4glycosidic linkageofheparindisaccharidesforproductionofhemorrhage:Reversalofthe antihemostaticactivityofheparinandtheirfragmentsbyadenosine triphos-phateandmyosin.SeminarsinThrombosisandHemostasis,17(Suppl1),65–73. Dietrich,C.P.,Tersariol,I.L.,Toma,L.,Moraes,C.T.,Porcionatto,M.A.,Oliveira,F.W.,

etal.(1998).Structureofheparansulfate:Identificationofvariableandconstant oligosaccharidedomainsineightheparansulfatesofdifferentorigins.Celland MolecularBiology(Noisy-le-grand),44(3),417–429.

Dische,Z.A.(1947).Anewspecificcolorreactionofhexuronicacid.Journalof Bio-logicalChemistry,167,189–193.

Dodgson, K. S., & Price, R. G. (1962). A note on the determination of the estersulphatecontentofsulphatedpolysaccharides.BiochemicalJournal,84, 106–110.

Dreyfuss,J.L.,Regatieri,C.V.,Lima,M.A.,Paredes-Gamero,E.J.,Brito,A.S.,Chavante, S.F.,etal.(2010).Aheparinmimeticisolatedfromamarineshrimpsuppresses neovascularization.JournalofThrombosisandHaemostasis,8(8),1828–1837.

thrombinandfactorXagenerationinextrinsicandintrinsicactivatedsystems. ThrombosisResearch,65(2),157–164.

Kusche,M.,Torri,G.,Casu,B.,&Lindahl,U.(1990).Biosynthesisofheparin. Availabil-ityofglucosaminyl3-O-sulfationsites.JournalofBiologicalChemistry,265(13), 7292–7300.

Lindahl,U.,Li,J.P.,Kusche-Gullberg,M.,Salmivirta,M.,Alaranta,S.,Veromaa,T., etal.(2005).Generationof“neoheparin”fromE.coliK5capsularpolysaccharide. JournalofMedicinalChemistry,48(2),349–352.

Luppi,E.,Cesaretti,M.,&Volpi,N.(2005).Purificationandcharacterizationofheparin fromtheItalianclamCallistachione.Biomacromolecules,6(3),1672–1678. Medeiros,G.F.,Mendes,A.,Castro,R.A.,Bau,E.C.,Nader,H.B.,&Dietrich,C.P.

(2000).Distributionofsulfatedglycosaminoglycansintheanimalkingdom: Widespreadoccurrenceofheparin-likecompoundsininvertebrates.Biochimica etBiophysicaActa,1475(3),287–294.

Mulloy,B.,Forster,M.J.,Jones,C.,Drake,A.F.,Johnson,E.A.,&Davies,D.B.(1994). Theeffectofvariationofsubstitutiononthesolutionconformationofheparin:A spectroscopicandmolecularmodellingstudy.CarbohydrateResearch,255,1–26. Nader,H.B.,Kobayashi,E.Y.,Chavante,S.F.,Tersariol,I.L.,Castro,R.A.,Shinjo,S.K., etal.(1999).Newinsightsonthespecificityofheparinandheparansulfatelyases fromFlavobacteriumheparinumrevealedbytheuseofsyntheticderivativesofK5 polysaccharidefromE.coliand2-O-desulfatedheparin.GlycoconjugateJournal, 16(6),265–270.

Nader,H.B.,Lopes,C.C.,Rocha,H.A.,Santos,E.A.,&Dietrich,C.P.(2004).Heparins andheparinoids:Occurrence,structureandmechanismofantithromboticand hemorrhagicactivities.CurrentPharmaceuticalDesign,10(9),951–966. Nader,H.B.,Porcionatto,M.A.,Tersariol,I.L.,Pinhal,M.A.,Oliveira,F.W.,Moraes,

C.T.,etal.(1990).PurificationandsubstratespecificityofheparitinaseIand heparitinaseIIfromFlavobacteriumheparinum.Analysesoftheheparinand hep-aransulfatedegradationproductsby13CNMRspectroscopy.JournalofBiological Chemistry,265(28),16807–16813.

Nader,H.B.,Tersariol,I.L.,&Dietrich,C.P.(1989).Antihemostaticactivityofheparin disaccharidesandoligosaccharidesobtainedbychemicalandenzymatic frag-mentation:ReversalofthehemorrhagicactivitybyATPandmyosin.Thrombosis Research,54(3),207–214.

Paredes-Gamero,E.J.,Medeiros,V.P.,Farias,E.H.,Justo,G.Z.,Trindade,E.S., Andrade-Lopes,A.L.,etal.(2010).Heparininducesrataortarelaxationvia integrin-dependentactivationofmuscarinicM3receptors.Hypertension,56(4), 713–721.

Pejler,G.,Danielsson,A.,Bjork,I.,Lindahl,U.,Nader,H.B.,&Dietrich,C.P.(1987). Structureandantithrombin-bindingpropertiesofheparinisolatedfromthe clamsAnomalocardiabrasilianaandTivelamactroides.JournalofBiological Chem-istry,262(24),11413–11421.

Rondle,C.J.,&Morgan,W.T.(1955).Thedeterminationofglucosamineand galac-tosamine.BiochemicalJournal,61(4),586–589.

Sampaio,L.O.,Tersariol,I.L.S.,Lopes,C.C.,Bouc¸as,R.I.,Nascimento,F.D.,Rocha,H. A.,etal.(2006).Heparinandheparansulfates.Structuredistributionandprotein interactions.InH.Verli(Ed.),Insightsintocarbohydratestructureandbiological function(pp.1–24).Kerala,India:TransworldResearchNetwork.

Santos,J.C.,Mesquita,J.M.,Belmiro,C.L.,daSilveira,C.B.,Viskov,C.,Mourier,P.A., etal.(2007).Isolationandcharacterizationofaheparinwithlowantithrombin activityfromthebodyofStyelaplicata(Chordata-Tunicata).Distincteffectson venousandarterialmodelsofthrombosis.ThrombosisResearch,121(2),213–223. Sie,P.,Petitou,M.,Lormeau,J.C.,Dupouy,D.,Boneu,B.,&Choay,J.(1988).Studieson thestructuralrequirementsofheparinforthecatalysisofthrombininhibition byheparincofactorII.BiochimicaetBiophysicaActa,966(2),188–195. Silva,M.E.,&Dietrich,C.P.(1974).Isolationandpartialcharacterizationofthree

inducedenzymesfromFlavobacteriumheparinuminvolvedinthedegradation ofheparinandheparitinsulfates.BiochemicalandBiophysicalResearch Commu-nications,56(4),965–972.

Toledo,O. M.,&Dietrich, C.P. (1977).Tissuespecific distributionofsulfated mucopolysaccharides in mammals. Biochimica et Biophysica Acta, 498(1), 114–122.

Yamada,S.,Murakami,T.,Tsuda,H.,Yoshida,K.,&Sugahara,K.(1995).Isolationof theporcineheparintetrasaccharideswithglucuronate2-O-sulfate.Heparinase cleavesglucuronate2-O-sulfate-containingdisaccharidesinhighlysulfated blocksinheparin.JournalofBiologicalChemistry,270(15),8696–8705. Yates,E.A.,Santini,F.,Guerrini,M.,Naggi,A.,Torri,G.,&Casu,B.(1996).1Hand

13CNMRspectralassignmentsofthemajorsequencesoftwelvesystematically modifiedheparinderivatives.CarbohydrateResearch,294,15–27.

Referências

Documentos relacionados

Assim, as diferenças significativas encontradas nas variaveis VOP_cd, pPAS, pPAD, cPAS, cPAD, PP entre o repouso e a medida retirada imediatamente após a aplicação do

O Sistema Único de Saúde deve atender a todos os cidadãos, de acordo com as suas necessidades; deve atuar de maneira integral, com as ações de saúde voltadas para

protein from the venom of the Iranian snake species Agkistrodon halys that exhibits.. anticoagulant activity on

Our in vitro and in vivo experiments showed that bothropic antivenom neutralizes the thrombin-like activity of crotalic snake venom and this cross-reaction was demonstrated

In this section we review the main techniques that we have employed in order to derive the results of the previous section: branch point twist fields in relation to

The results of the present study also suggested that the presence or absence of anticoagulant activity among fractions obtained by ion-exchange

Annona squamosa seeds extracts showed anthelmintic activity against Haemonchus contortus, the main nematode of sheep and goat in Northeastern Brazil.. A compound 1 was isolated

No sistema ABC calculam-se primeiramente os custos das atividades individuais e imputa-se de seguida para o objeto do custo, na base de várias atividades