• Nenhum resultado encontrado

Rev. bras. farmacogn. vol.26 número3

N/A
N/A
Protected

Academic year: 2018

Share "Rev. bras. farmacogn. vol.26 número3"

Copied!
11
0
0

Texto

(1)

w ww . e l s e v i e r . c o m / l o c a t e / b j p

Original

article

Isolation

and

characterization

of

2-hydroxy-9,10-anthraquinone

from

Streptomyces

olivochromogenes

(ERINLG-261)

with

antimicrobial

and

antiproliferative

properties

Chandrasekar

Balachandran

a,b,∗

,

Veeramuthu

Duraipandiyan

a,c

,

Yuvaraj

Arun

d

,

Balachandran

Sangeetha

e

,

Nobuhiko

Emi

b

,

Naif

Abdullah

Al-Dhabi

c

,

Savarimuthu

Ignacimuthu

a,f

,

Yoko

Inaguma

b

,

Akinao

Okamoto

b

,

Paramasivan

T.

Perumal

d

aDivisionofMicrobiologyandCancerBiology,EntomologyResearchInstitute,LoyolaCollege,Chennai,India bDepartmentofHematology,FujitaHealthUniversity,Toyoake,Aichi,Japan

cDepartmentofBotanyandMicrobiology,AddirriyahChairforEnvironmentalStudies,CollegeofScience,KingSaudUniversity,Riyadh,SaudiArabia dOrganicChemistryDivision,CSIR-CentralLeatherResearchInstitute,Chennai,India

eDepartmentofToxicology,AdvinusTherapeuticsLtd,Bangalore,India

fVisitingProfessorProgramme,DeanshipofScientificResearch,CollegeofScience,KingSaudUniversity,Riyadh,SaudiArabia

a

r

t

i

c

l

e

i

n

f

o

Articlehistory: Received28August2015 Accepted21December2015 Availableonline29January2016

Keywords:

Streptomycesolivochromogenes Antimicrobial

Cytotoxic Moleculardocking

2-Hydroxy-9,10-anthraquinone

a

b

s

t

r

a

c

t

CurrentlyStreptomycesisoneofthemostimportantantibioticproducingmicroorganismsagainst sev-eraldiseases.InthepresentstudyStreptomycesolivochromogenesERINLG-261wasisolatedfromthesoil samplesoftheMudumalaihills,WesternGhats,India.Morphological,physiological,biochemicaland 16SrRNAstudiesstronglysuggestedthatthisisolatebelongedtothegenusStreptomyces.ERINLG-261 showedgoodantimicrobialactivityagainstdifferentbacteriaandfungiinMicromonosporafermentation medium.Theactiveethylacetateextractwaspackedincolumnchromatographyoversilicagelwhich ledtotheisolationof2-hydroxy-9,10-anthraquinoneastheactiveprinciple.Theisolatedcompound showedgoodantimicrobialactivityagainsttestedbacteriaandfungiinminimuminhibitory concen-tration(MIC)andminimumbactericidalconcentration(MBC)studies.Thecompoundshowedmoderate

invitroantiproliferativeactivityagainstA549andCOLO320cells.Thecompoundwassubjectedto molec-ulardockingstudiesfortheinhibitionofTopoisomerase,TtgRandBeta-lactamaseenzymeswhichare targetsforantimicrobials.Dockingresultsofthecompoundshowedlowdockingenergywiththese enzymesindicatingitsusefulnessasantimicrobialagent.Thisisthefirstreportofantimicrobialand antiproliferativeactivityof2-hydroxy-9,10-anthraquinoneisolatedfromStreptomycesolivochromogenes

alongwithmoleculardockingstudies.

©2016SociedadeBrasileiradeFarmacognosia.PublishedbyElsevierEditoraLtda.Allrightsreserved.

Introduction

Actinomyceteshavebeenespeciallyusefultothe pharmaceu-ticalindustry fortheirseeminglyunlimitedcapacity toproduce secondarymetaboliteswithdiversechemicalstructuresand bio-logical activities. Actinomycetes are Gram-positive filamentous bacteria,characterizedbyacomplexmorphologicdifferentiation

cycle accompanied by the production of numerous

extracel-lular enzymes as well as many kinds of bioactive secondary

metabolites having great structural and functional diversity

Correspondingauthor.

E-mail:balasang@fujita-hu.ac.jp(C.Balachandran).

(Williams et al., 1983).Actinomycetesare known producersof structurally diverse metabolites namely, ␤-lactam antibiotics, thienamycin,macrolides,streptomycin, erythromycin, anthracy-clines,daunorubicin,doxorubicin,polyketides,rapamycin,FK-506, peptideantibiotics,virginiamycin,pristinamycin,aminoglycosides, gentamicin and kanamycin(Demain,1999).Secondary metabo-lites are potent antibiotics which have made Streptomyces the primaryantibioticproducingorganismsexploitedbythe pharma-ceuticalindustry(RajaandPrabakaran,2011).Streptomycesisone of themost major sources of antibioticproducing microorgan-ismsand back-boneforcuringimportantdiseases.Streptomyces

are known to be producers of many secondary metabolites

which have different biological activities such as antibacterial, antifungal,antiparasitic,antitumor,inflammatoryresponsesand

http://dx.doi.org/10.1016/j.bjp.2015.12.003

(2)

immunosuppressiveactions(Demain,1999;Sanghvietal.,2014; Rambabu et al., 2014; Balachandran et al., 2015). In recent times,Streptomyces hasbeencalledas antibioticstore roomor library.More than 23,000bioactivesecondary metabolites

pro-ducedby microorganismshave beenreported and over 10,000

of these compounds are produced by actinomycetes (Raja and Prabakaran, 2011). Among actinomycetes, around 7600 com-poundsareproducedbyStreptomycesspecies(RajaandPrabakaran, 2011). Aouiche et al. (2014) had reported saquayamycins iso-latedfromStreptomycesspp.PAL114whichshowedgoodactivity againstCandidaalbicansM3andBacillussubtilisATCC6633.Huang etal.(2015)reportedtheisolationofnewcompoundsandfour

knowncompounds wereisolatedfromthemarineStreptomyces

griseusRSH0407suchasbutylhomononactate,butylnonactate, 8-actyl homononactic acid, homononactic acids, nonactic acid,

homononactylnonactate,homononactylhomononactate.Among

thesesevencompoundsbutylhomononactateshowedgood cyto-toxicproperties againstHCT-8, A2780,BGC-823, BEL-7402,and A549cells.

Naturally occurring anthraquinones form the largest group of plant and microbial secondary metabolites. Anthraquinone derivativesare wellrecognizedas important biologicallyactive componentsfrom microbesand plants (Ankeet al., 1980).The anthraquinonestypeofcompoundsshowedactivityagainstcertain diseases including antifungal, antibacterial, anticancer, antioxi-dant,antiviral,anti-inflammatoryandantihumancytomegalovirus (Barnardetal.,1995;Agarwaletal.,2000;Iizukaetal.,2004;Chen etal.,2007;Ifesanetal.,2009).Inthepresentstudyantibacterial, cytotoxicand moleculardocking properties of 2-hydroxy-9,10-anthraquinone (1)isolated from Streptomyces olivochromogenes

(ERINLG-261)wereassessed.

Materialsandmethods

IsolationofStreptomycesolivochromogenes

Thesoilsampleswerecollectedfromthedepthof5–15cmat Mudumalaihills,Nilgiris,WesternGhatsofTamilNadu,India. Iso-lationofStreptomycesolivochromogeneswasperformedbyserial dilutionusingdilutionplatetechnique(Balachandranetal.,2014a).

Morphologicalandbiochemicalobservations

CulturalandmorphologicalfeaturesofERINLG-261were char-acterizedfollowingthedirectionsgivenbytheISP(Shirlingand Gottlieb,1966)andtheBergey’sManualofSystematicBacteriology. Culturalcharacteristicsofpureisolatesinvariousmedia(ISP1–7) wererecordedafterincubationat30◦Cfor7–14days.Theshapeof cell,Gram-stain,color,thepresenceofsporesandcolony morphol-ogywereassessedonsolidISPagarmedium.Biochemicalreactions, differenttemperatures,NaClconcentration,pHlevel,pigment pro-duction,enzymereactionandacidorgasproductionweredone followingthemethodsofBalachandranetal.(2012,2014a,b).

16SrRNAgeneamplification

Genomic DNA of ERINLG-261 was isolated using the

meth-ods of Hipura Streptomyces DNA spin kit-MB 527-20pr from

Hi-media.The 16S ribosomal RNA gene was amplified by PCR

method using primers 27f (51AGTTTGATCCTGGCTCAG31) and

1492r(51ACGGCTACCTTGTTACGACTT31).EachPCRmixturein a finalvolumeof20␮lcontained10mMTris–HCl(pH.8.3),50mM KCl,1.5mMMgCl2,200␮MofeachdNTP,10pmolofeachprimer,

50ng of genomic DNA and 1U of Taq DNA Polymerase (New

EnglandBiolabsInc).PCRamplificationwasdetectedby1%agarose

gelelectrophoresisandwasvisualizedbyultraviolet(UV) fluores-cenceafterethidiumbromidestaining.ThePCRproductobtained wassequencedbyanautomatedsequencer(GeneticAnalyser3130, AppliedBiosystem,andUSA).Thesameprimersasabovewereused forthispurpose.Thesequencewascomparedforsimilaritywiththe referencespeciesofbacteriacontainedingenomicdatabasebanks usingtheNCBIBLASTavailableathttp://www.ncbinlm-nih.gov/. Thepartial16S rRNAgene sequence of isolateERINLG-261 has beendepositedintheGenBankdatabaseunderaccessionnumber KF061091.Aphylogenetictreewasconstructedusingthe neighbor-joiningDNAdistancealgorithmusingsoftwareMEGA(version4.1) (Tamuraetal.,2007).

Primaryantimicrobialscreening

PrimaryantimicrobialactivitywasevaluatedonModified

Nutri-entGlucose Agar medium (MNGA)by thecross streakmethod

againstvariouspathogenicmicroorganisms(Balachandranetal., 2014b).

Mediaoptimization

Four fermentation mediawere used for mediaoptimization suchasStreptomycesmedia-1(tryptone:17g,peptone:3g,NaCl: 5g,K2HPO4: 1.25g, pH7 and H2O: 1000ml), NutrientGlucose media-2(glucose:10g,peptone:5g,yeastextract:3g,NaCl:3g, beefextract:3g,pH7andH2O:1000ml),Bennettmedia-3 (glu-cose:10g,peptone:2g,yeastextract:1g,maltextract:1g,pH7 andH2O:1000ml),Micromonosporamedia-4(glucose:10g,starch: 24g,peptone:3g,meatextract:3g,yeastextract:5g,CaCO3:4g, pH7andH2O: 1000ml).ActivecultureERINLG-261 was inocu-latedinthesefourfermentationmediaandincubatedfor0day,2nd day,4thday,6thday,8thday,10thdayand12thday.After incuba-tionsecondarymetaboliteswereextractedusingCHCl3,EtOAcand butanol(1:1v/v).Alltheextractswerecheckedforantimicrobial activityagainstbacteriaandfungi.

Extractionofsecondarymetabolites

CultureinoculateoftheisolateERINLG-261wastakenin500ml Erlenmeyerflaskscontaining150mlofmedia-4andincubatedat 30◦Cinashaker(200rpm)for10days.After10thdaytheculture brothwascentrifugedat8000×gfor20mintoremovethebiomass. EqualvolumeofCHCl3,EtOAcandbutanol(1:1v/v)wereadded andshakeninaseparatingfunnel.Theprocesswasrepeatedthrice andtheextractswerecombined.Theextractwasdriedover anhy-droussodiumsulphateanddistilledinarotaryevaporatorandthe redresidueobtainedwasfinallydriedinvacuum.Thesecondary metaboliteproductionwascontinuedupto20l.

Columnchromatography

TheactiveEtOAcextract(9g)wassubjectedtosilicagel col-umnchromatography(Acme’s100–200mesh)(columnsize-60cm length/2.5cm).Thecolumnwassuccessivelyelutedwithhexane, hexane:EtOAcmixtureswithincreasingpolarityandfinallywith

EtOAc:MeOH andMeOH (eachfractionbeing100ml).Based on

(3)

Table1

CulturecharacteristicsofStreptomycesolivochromogenes(ERINLG-261)indifferentmedia.

Medium Growth Substratemycelium Aerialmycelium Spores Pigmentcolor

ISP1 Good Goldenyellow Darkgray Present Red

ISP2 Good Goldenyellow Darkgray Present Red

ISP3 Good Yellow Gray Moderate Red

ISP4 Good Yellow Gray Present Lightred

ISP5 Good Yellow Gray Present Red

ISP6 Good Yellow Gray Present Lightred

ISP7 Poor Poor Gray Poor Moderate

MNGA Good Yellow Darkgray Present Lightred

ISP1–7:InternationalStreptomycesProject;MNGA:modifiednutrientglucoseagar;+:present.−:absent.

250mmwithinternaldiameterof6.0mmandwasfilledwith sil-icaparticlesof15␮mdiameterbondedwithoctadecylsilane(YMC packODSA(250×6.0mm),15␮m).Themobilephasewas com-posedofACNandaqueousHOAc(15:85,v/v);itwasisocratically elutedataflow-rateof3ml/minandinjectionvolumewas100␮l. Elutionwasmonitoredat254nmandpeakfractionwascollected accordingtotheelutionprofile.Thepurecompoundwasobtained asyellowcrystalfromMeOH(97.66%)(retentiontime14.008and elutiontime20min).

Microbialorganisms

ThefollowingGramnegativeandGrampositivebacteria, clin-ical isolates and fungi were used for the experiment. Seven Gramnegativebacteria:EnterobacteraerogenesMTCC111,Shigella

flexneriMTCC1457,Salmonellaparatyphi-B,Klebsiellapneumonia

MTCC109, Pseudomonas aeruginosa MTCC741, Proteus vulgaris

MTCC1771andSalmonellatyphimuriumMTCC1251;fourGram

positive bacteria: Bacillus subtilis MTCC441, Micrococcus luteus

MTCC 106, Staphylococcus aureus MTCC 96 and Staphylococcus

epidermidis MTCC 3615; seven clinical isolates (isolated from

patient’s urine samples): Escherichia coli (ESBL-3984, Extended SpectrumBetaLactamase),Escherichiacoli(ESBL-3904),Klebsiella

pneumoniae (ESBL-3971), Klebsiella pneumoniae (ESBL-75799),

Klebsiellapneumoniae (ESBL-3894),Klebsiella pneumoniae

(ESBL-3967) and Staphylococcus aureus (MRSA− methicillin resistant, clinicalpathogen).Thereferencecultureswereobtainedfromthe Instituteof MicrobialTechnology (IMTECH), Chandigarh,

India-160036;CandidaalbicansMTCC227,Malassesiapachydermatisand

AspergillusflavuswereobtainedfromtheDepartmentof

Microbiol-ogy,ChristianMedicalCollege,Vellore,TamilNadu,India.Bacterial inoculumswerepreparedbygrowingcellsinMuellerHintonbroth (MHB)(Himedia) for 24hat 37◦C. Thefilamentous fungiwere grownonSabourauddextroseagar(SDA)slantsat28◦Cfor10days andthesporeswerecollectedusingsteriledoubleddistilledwater andhomogenized.YeastwasgrownonSabourauddextrosebroth (SDB)at28◦Cfor48h.

Antimicrobialassay

Antibacterialandantifungalactivitieswerecarriedoutusing diskdiffusionmethod(Balachandranetal.,2013).Zonesof inhibi-tionwererecordedinmillimetersandtheexperimentwasrepeated thrice.

Minimuminhibitoryconcentration(MIC)

MICstudiesoftheisolatedcompoundwereperformed accord-ingtothestandardreferencemethodsforbacteria(Balachandran etal.,2014a,b),filamentousfungi(CLSI,2008),andyeasts(NCCLS, 1999,2002).Therequiredconcentrations(100,50,25,12.5,6.25 and3.125␮g/ml)ofthecompoundweredissolvedinDMSO.

Minimumbactericidalconcentration(MBC)

Freshlypreparedtubescontainingserialtwofolddilutionsof thecompoundin5mlofMHB(range,100,50,25,12.5,6.25and 3.13␮g/ml)wereinoculatedbeneaththesurfacewith5×105 to 1×106cellsin0.1mlofMHB,mixedbyflushingsandincubated withoutshakingoragitation.After20hofincubation,allbroths wereexaminedfor visualturbidityorgrowthof smallcolonies at thebottomof tubesand againvortexed.The tubeswere re-incubatedforafurther4handvortexedagainuntilalltubeswere foundtobewithoutvisualturbidity.TheMBCwasconsideredas thelowestconcentrationofisolatedcompoundwhichprevented growthandreducedtheinoculumby≥99.9%within24h, irrespec-tiveofcountsofsurvivorsathigherantibioticconcentrationsand

Table2

Physiologicaland biochemicalcharacteristicsof Streptomycesolivochromogenes (ERINLG-261).

Characteristics Results

Gramstaining Positive

Shapeandgrowth Filamentousaerialgrowth

Productionofdiffusiblepigment + Rangeoftemperatureforgrowth 25–37◦C

Optimumtemperature 30◦C

RangeofpHforgrowth 6–10

NormalpH 7

H2Sproduction −

Amylase +

Chitinase +

Protease +

Gelatinase −

Indoleproduction +

GrowthinthepresenceofNaCl 1–7%

Sugaranalysis

Glucose ++

Galactose +

Lactose −

Mannitol −

Sucrose ++

Xylose +

Rhamnose ++

Ribose +

Arabinose −

Mannose ++

Maltose ++

Starch ++

Standardantibiotics

Ciprofloxacin S

Gentamicin S

Ampicillin S

Cephaloridine S

Streptomycin S

Erythromycin S

Vencomycin S

Amikacin S

Penicillin S

Rifamycin S

Norfloxacin S

(4)

KF061091/ERINLG-261/ (Streptomyces ol...

FJ007405.1| Streptomyces scabiei

AB741446.1| Streptomyces olivochromog...

HE577950.1| Streptomyces sp. IMCr03 C...

JQ670769.1| Streptomyces sp. 075013 C...

EU360178.1| Streptomyces sp. 18(2008)...

JQ289352.1| Streptomyces sp. GCTTACCA...

JX312315.1| Streptomyces sp. MCR26 CA...

FJ532409.1| Streptomyces olivochromog...

AB184737.1| Streptomyces olivochromog...

EU603343.1| Streptomyces sp. MJM3509 ...

GU045529.1| Streptomyces sp. SXY43 AT...

HE617217.1| Streptomyces sp. CTTAACAC...

JN866626.1| Streptomyces sp. TGCAGTCG...

EU370088.1| Streptomyces sp. AGTCGAAC...

EU054368.1| Streptomyces sp. ACATGCAG...

HQ398415.1| Streptomyces sp. CO178 AC...

AB045868.1| Streptomyces fimbriatus G...

JF728875.1| Streptomyces chartreusis ...

HQ607437.1| Streptomyces flavovariabi...

FJ481059.1| Streptomyces chartreusis ...

FJ796459.1| Streptomyces pseudovenezu...

GQ924491.1| Streptomyces sp. GSENDO-0...

AJ399481.1| Streptomyces pseudovenezu...

JF439617.1| Streptomyces plumbiresist...

EU603348.1| Streptomyces sp. MJM4120 ...

FR692114.1| Streptomyces sp. BK189 TT...

AF112159 Streptomyces sp. EF-52 TCACG... 82

87 99 99 99

67 68

75 61

66

Fig.1. Phylogenetictreederivedfrom16SrRNAgenesequencesshowingtherelationshipbetweenStreptomycesolivochromogenes(ERINLG-261)andtheotherspecies belongingtothegenusStreptomycesconstructedusingtheneighbor-joiningmethod.Bootstrapvalueswereexpressedaspercentagesof1000replications.

thelowest concentrationofthecompoundinhibitingthevisual growthofthetestculturesontheagarplate.Forfungi,theplates wereincubatedfor48–72hat28◦Candforbacteriatheplateswere incubatedfor24hat37◦C(ChennakesavaRaoetal.,2014).

Cytotoxicproperties

A549lungadenocarcinomacancercelllineandCOLO320 can-cercelllinewereobtainedfromNationalInstituteofCellSciences, Pune. A549 cell line was maintained in complete tissue

cul-turemedium Dulbecco’sModified Eagle’sMedium(DMEM) and

COLO320cancercelllineRoswellParkMemorialInstitutemedium (RPMI)with10%FetalBovineSerumand2mMl-Glutamine,along

with antibiotics (about 100 International Unit/ml of penicillin, 100␮g/mlofstreptomycin)withthepHadjustedto7.2.The cyto-toxicitywasdeterminedaccordingtothemethod(SaravanaKumar etal.,2014)withsomechanges.Cells(5000cells/well)wereseeded in96wellplatescontainingmediumwithdifferentconcentrations suchas500, 400,300,200,and100␮g/ml.Thecellswere culti-vatedat37◦Cwith5%CO2and95%airin100%relativehumidity. Aftervariousdurationsofcultivation,thesolutioninthemedium wasremoved.Analiquotof100␮lofmediumcontaining1mg/ml of3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazoliumbromide wasloadedintheplate.Thecellswereculturedfor4handthenthe solutioninthemediumwasremoved.Analiquotof100␮lofDMSO wasaddedtotheplate,whichwasshakenuntilthecrystalswere dissolved.Thecytotoxicityagainstcancercellswasdeterminedby

measuringtheabsorbanceoftheconverteddyeat540nminan enzymelinkedimmunesorbantassayreader.Cytotoxicityofeach samplewasexpressedasthehalfmaximalinhibitoryconcentration (IC50)value.TheIC50valueistheconcentrationoftestsamplethat causes50%inhibitionofcellgrowth,averagedfromthreereplicate experiments.Thepercentageofgrowthinhibitionwascalculated usingthefollowingformula;inhibition(%)=A−B/A×100(A– Con-trolgroupandB–Treatedgroup).

Moleculardockingstudies

MoleculardockingstudiesweredoneusingtheAutoDockTools (ADT)version1.5.6andAutoDockversion4.2.5.1dockingprogram. DockingstudieswereperformedbyIntel®

corei5CPU(2.53GHz) withWindows7operatingsystem.

Proteinstructurepreparation

DockedreceptorstructuresofDNATopoisomeraseIV(PDBID: 4EMV),TtgR(PDBID:2UXO)andbetalactamase(PDBID:4NK3) were obtainedfrom theProtein Data Bank. The co-crystallized ligandin thereceptor crystalstructure wasremoved.Thenthe

polar hydrogen atoms were added, lower occupancy residue

structures were deleted, and any incomplete side chains were replacedusingtheADT.FurtherADTwasusedtoremove

crys-tal water; Gasteiger charges were added to each atom, and

(5)

distancebetweendonorandacceptoratomsthatformeda hydro-genbondwasdefinedas1.9 ˚Awithatoleranceof0.5 ˚A,andthe acceptor–hydrogen–donoranglewasnotlessthan120◦.The struc-tureswerethen savedinPDBQT fileformat,for furtherstudies inADT.

Ligandstructurepreparation

Ligand 2Dstructure was drawnusing ChemDraw Ultra12.0

(ChemOffice, 2010). Chem3D Ultra 12.0 was used to convert

2D structure into 3D and the energy was minimized using

Chloroform

Microorganism

Microorganism

Microorganism

Microorganism

A

B

C

D

30 25 20

10 5 0

B.s M.l

S.a S.e

S.f S.p

K.p P.a

P.v S.t

C.a A.f

M.p

B.s M.l

S.a S.e

S.f S.p

K.p P.a

P.v S.t

C.a A.f M.p

B.s M.l

S.a S.e

S.f S.p

K.p P.a

P.v S.t

C.a A.f

M.p

B.s M.l

S.a S.e S.f S.p

K.p P.a

P.v S.t

C.a A.f M.p

Control n-Butanol Ethyl acetate Chloroform

n-Butanol Ethyl acetate Chloroform 15

Zone of incubation

Zone of incubation

Zone of incubation

30 25 20

10 5 0 15

30 25 20

10 5 0 15

30 25 20

10 5 0 15

Zone of inhibition

Ethyl acetate n-Butanol Control

Chloroform Ethyl acetate n-Butanol Control

Chloroform Ethyl acetate n-Butanol Control

Chloroform Ethyl acetate n-Butanol Control

Control

n-Butanol Ethyl acetate Chloroform

Control

n-Butanol Ethyl acetate Chloroform

Control

(6)

semi-empiricalAM1method.MinimizedenergytominimumRMS gradientof0.100wassetineachiteration.Allstructuresweresaved asPDBfileformatforinputtoADT.Alltheligandstructureswere thensavedinPDBQTfileformat,tocarryoutdockinginADT.

Gridformation

Agridboxwithdimensionof40×40×40 ˚A3with0.375 ˚A spac-ingandcenteredon(x,y,z)14.789,29.446,7.080;0.856,34.778, 13.333and5.475,13.239,18.265wascreatedaroundthebinding siteofligandonDNATopoisomeraseIV(PDBID:4EMV),TtgR(PDB ID:2UXO)andbetalactamase(PDBID:4NK3),respectively,using ADT.Thecenteroftheboxwassetatligandcenterandgridenergy calculationswerecarriedout.

Dockingprotocol

FortheAutoDockdockingcalculation,defaultparameterswere

used and 50 docked conformations were generated for each

compound.Theenergycalculationsweredoneusinggenetic algo-rithms.TheoutputswereexportedtoPyMolforvisualinspectionof thebindingmodesandinteractionsofthecompoundswithamino acidresiduesintheactivesites(PyMOL,2010).

Statisticalanalysis

Antimicrobial and cytotoxic activities of 2-hydroxy-9,10-anthraquinone(1)werestatisticallyanalyzedbyDuncanmultiple rangetestatp=0.05withthehelpofSPSS11.5versionsoftware package.

Table3

Minimuminhibitoryconcentrationandminimumbactericidalconcentrationof 2-hydroxy-9,10-anthraquinonefromStreptomycesolivochromogenes(ERINLG-261) againstbacteriaandfungi.

Organism MIC(␮g/ml) MBC(␮g/ml) Streptomycin

Gramnegative

E.aerogenes 50 50 25

K.pneumoniae 50 50 25

P.vulgaris 12.5 25 6.25

P.aeruginosa 12.5 12.5 25

S.paratyphi-B 25 25 6.25

S.typhimurium 25 25 25

S.flexneri 12.5 12.5 6.25

Grampositive

B.subtilis >100 >100 12.5

M.luteus >100 >100 6.25

S.aureus >100 >100 6.25

S.epidermidis 50 100 –

Clinicalisolates

E.coli(ESBL-3984) 25 25 25

E.coli(ESBL-3904) 50 100 25

K.pneumoniae (ESBL-3971)

12.5 12.5 6.25

K.pneumoniae (ESBL-75799)

50 50 25

K.pneumoniae (ESBL-3894)

>100 >100 6.25

K.pneumoniae (ESBL-3967)

>100 >100 25

S.aureus(MRSA) 50 100 6.25

Fungi Ketoconazole

C.albicans 50 100 25

A.flavus >100 >100 12.5

M.pachydermatis 25 50 15

Streptomycin–standardantibacterialagent;ketoconazole–standardantifungal agent.

Resultsanddiscussion

Morphologyandbiochemicalstudies

We were isolated 25 strains from different soil samples of theMudumalaihills,Nilgiris,WesternGhatsofTamilNadu,India usinghumic acidvitamin agarmedium.Among the25 isolates ERINLG-261 strain showed good antimicrobial activity in pre-liminary screening. This strain was Gram-positive filamentous bacterium.Thecolorofthesubstratemyceliawasgoldenyellow (Table1).ERINLG-261showedgoodgrowthonmediumamended withsodiumchlorideupto7%;nogrowthwasseenat9%.The temperatureforgrowthrangedfrom25 to37◦Cwithoptimum of30◦CandthepHrangewas6–10withoptimalpHof7. Uti-lizationofvariouscarbonsourcesbyERINLG-261indicatedawide patternofcarbonsourceassimilation.Starch,maltose,mannose, rhamnose,sucroseandglucosesupportedthegrowthofthestrain. ERINLG-261showedsensitivityinalltestedantibiotics(Table2). Theculture,morphologicalcharacteristicsandantimicrobial activ-itiesofdifferentStreptomycesisolateshavebeenreportedbyseveral investigators(Oskayetal.,2004).

16SrRNAgeneamplification

TheresultofthesequencingofERINLG-261wasobtainedinthe formofroughelectrophoregrams.Thephylogenetictreeobtained byapplyingtheneighborjoiningmethodisillustratedinFig.1. Cul-turecharacteristicsand16SrRNAstudiesstronglysuggestedthat ourisolateERINLG-261belongedtothegenusStreptomyces.Studies onthemicrobialdiversityby16SrRNAgeneanalysisshowedthat agroupofhigh-GCGram-positivebacteria(actinomycetes)were dominantinthesoil(Urakawaetal.,1999).Theidentificationof iso-lateERINLG-261wasconfirmedasStreptomycesolivochromogenes

withhomologyof100%.

Antimicrobialactivityofextracts

Streptomycesolivochromogenes(ERINLG-261)wasgrownin dif-ferentfermentationmedia-1to-4andextractedwithCHCl3,EtOAc and butanol. Each extracts(fermentation media1–4) of CHCl3, EtOAcand butanol were testedagainst bacteria and fungi.The EtOAcextract(fermentationmedia-4)showedgoodantibacterial andantifungalactivitiesagainsttestedbacteriaandfungicompared toCHCl3andbutanolextracts(5mg/ml)(Fig.2).Secondary metabo-liteproductionwascheckedindifferentdaysofincubationswith

fermentationmedia-4. Maximumsecondarymetabolite

produc-tionwasobservedon10thdayanditshowedgoodantimicrobial activity(Fig.3).

Chloroform

100

90

80

Secondary metabolite production

70

60

50

40

30

20

10

0

0 2 4 6 8

Days

10 12 14

Ethyl acetate n-Butanol

Fig.3.Selectionofsecondarymetaboliteproductionusingfermentationmedia-4 (Micromonospora)atdifferentdaysofincubation.10thdayshowedgoodsecondary

(7)

Isolationofactiveprinciple

TheactiveprincipleobtainedbypreparativeHPLCfromfraction

6 as themajor compound gave yellowcrystals frommethanol

(50mg); it gave a blue color with alcoholic FeCl3 for phenol andpinkcolorwithalcoholicNaOH.On TLCoversilicagelwith

EtOAc:MeOH (9:1) as the developing system it gave a single

spot(Rf 0.39), yellowin color which onexposureto ammonia vapour turnedpink.The compound was C14H8O3 [M+H]+, m/z 225,onthebasisof1HNMRand13CNMR(dept)andMass.mp 301–302◦C[lit. 298–299C].UV:

maxMeOHnm:225, 249,278 and322.IR:

maxKBrcm−1:3413(hydroxyl),2952,2821,1671 (quinonecarbonyl), 1618,1570,1536, 1373,1331, 1256,1223, 1175,1148,1023,871, 815, 785(aromatic). 1HNMR (ı, CDCl3, 400MHz):8.35(2H,m,H-5andH-8),7.84(2H,m,H-6andH-7), 7.42(1H,d,H-1),6.82(1H,d,H-3),7.08(1H,s,H-4),5.14(1H,s, OH).13CNMR(,CDCl3,100MHz):181.2(C-9,C-10),152.5(C-3), 135.1 (C-6, C-7), 133.5 (C-8a,C-10a), 126.6 (C-9a, C-4a),131.2 (C-5,C-8),130.2(C-1),118.5(C-2),117.5(C-4).The1H and13C

NMRshowedthecompoundtobe2-hydroxy-9,10-anthraquinone

(1). On the basis of the physical and spectroscopic data the

compound was identified as 2-hydroxy-9,10-anthraquinone.

Physical and spectroscopic data (UV, FT-IR, 1H NMR, 13C

NMR and MASS) were compared with literature (Saha et al.,

2013).

A

B

D

C

100

90

80

70

60

50

40

30

20

10

0

50 100 200 300 400 500

Concentration μg/ml

Cytoto

xicity

, %

Fig. 4. Cytotoxicity properties of 2-hydroxy-9,10-anthraquinone (1) against COLO320cells.Dataaremean ± SDofthreeindependentexperimentswitheach experimentconductedintriplicate.Positivecontrol-Cyclophosphamideata con-centrationof90±0.00156␮g/ml(IC50).

OH O

O

1

MICandMBCvaluesofisolatedcompound

The compound showed potent antibacterial and antifungal

activities.TheMIC andMBCvalues ofisolated compound were seenagainstE.aerogenes,S.flexneri,S.paratyphi-B,K.pneumoniae,

P.aeruginosa,P.vulgarisandS.typhimurium;someclinicalisolates wereE.coli(ESBL-3984),E.coli(ESBL-3904),K.pneumoniae (ESBL-3971), K.pneumoniae (ESBL-75799),S.aureus (MRSA)and fungi

M.pachydermatisandC.albicans(Table3).Maximumgrowthand pigmentproductionwereobservedinglucoseasthesolesource of carbon. Theoptimum temperature of30◦C wasfoundto be effectiveforgrowthandpigmentproduction.Maximum antimi-crobialcompoundwasobtainedatpH7.0.Earlierreportshowed thattwelveactinomycetesstrainswereisolatedfromthesoil sam-plesoftheHimalayasandERIH-44showedbothantibacterialand antifungalactivity(Duraipandiyanetal.,2010).Normallyantibiotic production was higher in medium having glucose (1%) as car-bonsource.Streptomycesolivochromogenes(ERINLG-261)showed

A

B

C

100

90

80

70

60

50

40

30

20

10

0

50 100 200 300 400 500

Concentration μg/ml

Cytoto

xicity

, %

(8)

goodantimicrobialactivityinMicromonosporamediumand indi-catedthattheantimicrobialcompoundswereextracellular.Most ofthe secondary metabolitesand antibioticswere extracellular in natureand extracellular productsof actinomycetesshowed potentantimicrobialactivities(Bernanetal.,1994;Haceneetal., 2000).Thestudyoftheinfluenceofdifferentnutritionalmediaand cultureconditions onantimicrobialcompound production indi-catedthat thehighest biologicalactivitieswere obtainedwhen

Micromonosporamediumwasusedasabase.Infact,ithasbeen shownthat thenatureof carbonand nitrogensources strongly affectedantibioticproductionindifferentorganismsandthe antibi-oticproductionwasincreasedbyglucoserichmedium(Cruzetal., 1999). P.aeruginosahas emerged asone of themost problem-aticGram-negativepathogen,withanalarminglyhighantibiotic resistancerate(Bacq-Calberget al., 1999).Evenwith themost effectiveantibioticsagainstthispathogen,namelycarbapenems (imipenemandmeropenem),theresistanceratewasfoundtobe 15–20.4%amongst152P.aeruginosastrains(Savafietal.,2005). Thepresentstudyshowedthattheisolatedcompoundwasactive againstP.aeruginosa.Thisactivitymightbeduetotheirabilityto complexwithbacterialcellwall(Cowan,1999)thus,inhibitingthe microbialgrowthandthemembranedisruptioncouldbesuggested asthemechanismofaction(Arvindetal.,2004).The antimicro-bialcompoundfromStreptomycesolivochromogenes(ERINLG-261) wasrecoveredusing ethyl acetate solvent.Mostof the antimi-crobialcompoundsareextractedusingethylacetate(Sosioetal., 2000).Moreover,threebioactivecompoundsof3-phenylpropionic acid, anthracene-9,10-quinone and 8-hydroxyquinoline showed strong antibacterial and antifungal activities (Narayana et al., 2008).Balachandranetal.(2014)hadreported 2,3-dihydroxy-9,10-anthraquinone isolated from Streptomyces galbus (ERINLG-127)

which showedgoodantimicrobialactivityagainst tested bacte-ria and fungi. Duraipandiyan et al. (2014) had reported novel 1,5,7-trihydroxy-3-hydroxymethylanthraquinoneisolatedfrom terrestrial Streptomyces sp. (ERI-26) which showed significant antimicrobial activity against Staphylococcus aureus, Staphylo-coccus epidermidis, Bacillus subtilis, Epidermophyton floccosum,

Aspergillusniger,Aspergillerflavus,TrichophytonrubrumandBotrytis cinerea.

Cytotoxicpropertiesofisolatedcompound

The isolated compound 2-hydroxy-9,10-anthraquinone (1) showedmoderatecytotoxicactivityinvitroagainstA549lungand COLO320cells.Itshowed62.7%activityatthedoseof500␮g/ml withIC50valueof400␮g/mlagainstCOLO320cells(Fig.4).Isolated compoundshowed54.7%cytotoxicityagainstA549cellsatthedose of500␮g/ml(Fig.5).Allconcentrationsusedintheexperiment decreasedthecellviabilitysignificantly(P<0.05)ina concentra-tiondependentmanner.Anumberofanthraquinoneshavebeen reportedtopossesstumorcellinhibitoryeffectsandarecurrently utilizedasclinicalanticanceragents.Anthraquinoneshavebeen shown toinhibit cancercells through a varietyof mechanisms includinginductionofapoptosis,intercalationand bindingwith cellularDNA, redox-cyclingradicalformation, and inhibition of topoisomerase(Pattersonetal.,1983;Fisheretal.,1990;Barasch etal.,1990;MuellerandStopper,1999;Leeetal.,2001;Lee,2001). Anew,highlyoxygenatedangucyclinonegephyromycinwas iso-latedfromanextractofaStreptomycesgriseusstrain.Gephyromycin exhibitedglutaminergicactivitytowardneuronalcells(Bringmann etal.,2005).

Method validation using crystallised and docked ligand of DNA Topoisomerase IV (4EMV)

A

B

Binding mode of compound with active site amino acids of DNA Topoisomerase IV (4EMV)

(9)

Moleculardockinganalysis

The compound was subjected to molecular docking studies

usingtheAutoDockTools(ADT)version1.5.6andAutoDockversion 4.2.5.1dockingprogram(Sanner,1999)toinvestigatethe poten-tialbindingmodeofinhibitor.Moleculardockingwasperformed withtheDNATopoisomerase IV(PDBID:4EMV),TtgR(PDBID: 2UXO)andbetalactamase(PDBID:4NK3)receptors.DNA topo-isomeraseIVreceptorisrequiredformaintenanceofproperDNA topologyduringtranscriptionandreplicationinbacteria.TtgRis importanttargetforantibioticdrugsbecauseantibioticresistance is a major problemin antimicrobialdrug synthesis. Onemajor mechanismthatunderliesantibioticresistanceinbacteriaisthe activeextrusionoftoxiccompoundsthroughthemembranebound effluxpumpsthatareoftenregulatedatthetranscriptionallevel. TtgR repressesthe transcription of TtgABC, a key effluxpump, whichishighlyresistanttoantibiotics(Manchesteretal.,2012). Beta-lactamskillbacteriabyinhibitingthecellwallconstruction enzymesknownasPBPs.However,somebacteriahavedeveloped enzymesthatcandestroybeta-lactamsbeforetheycaninactivate thePBPs.Theseenzymes,knownasbeta-lactamases,thusenable thebacteriatosurviveeveninthepresenceofhighconcentrations ofbeta-lactams.Hencetargetingthisbeta-lactaseenzymeisvital intheantibacterialdrugdesign(Algueletal.,2007).

In order to verify the reproducibility of the docking calcu-lations,thebound ligandwasextracted from thecomplex and submitted for one-ligand run calculation. This reproduced top scoringconformationfallingwithinroot-mean-squaredeviation (rmsd) value of 0.65 ˚A, 0.74 ˚A and 1.14 ˚A from bound X-ray

conformationof4EMV,2UXOand4NK3respectively,suggesting thatthismethodisvalidenoughtobeusedfordockingstudiesof othercompounds.

Docking of the compound to DNA Topoisomerase IV, TtgR

and beta lactamase was performed using AutoDock, following

thesame protocol used asin that of validation study. Docking was takeninto 2.5 million energy evaluations were performed forthetestmolecule.Dockedligandconformationwasanalyzed intermsofenergy,hydrogenbonding,andhydrophobic interac-tionbetweenligandandreceptor.Detailedanalysesoftheligand receptor interactions werecarried out, and final coordinatesof theligandandreceptorweresaved.PyMolsoftwarewasusedfor displayofthereceptorwiththeligandbindingsite.Fromthe dock-ingscores,thefreeenergyofbinding(FEB)ofthecompoundwas calculated.

Molecular docking of compound with DNA

Topoisome-rase IV (4EMV) receptor showed the binding energy value of

−7.04kcal/molwithtwohydrogenbonds.Inthecompound, hydro-genofO–HinteractswiththeC Ooxygenofaminoacid(ASP-78) andformsahydrogenbondwiththebondlengthof2.2 ˚A. Further-more,oxygenoftheoneofC OinteractswithNH2hydrogenof aminoacid(ASN-51)andformsahydrogenbondwiththebond lengthof2.2 ˚A(Fig.6).Thecompoundshowedthebindingenergy valueof−6.85kcal/molwithtwohydrogenbondswiththedocked TtgR(2UXO)receptor.Inthecompound,oxygenofO–Hinteracts withtheN–Hhydrogenofaminoacid(ASP-172)andformsa hydro-gen bondwith thebond lengthof 2.7 ˚A. Also, hydrogen of the O–HinteractswiththeC Ooxygenoftheaminoacid(PHE-168) andformsahydrogenbondwiththebondlengthof2.1 ˚A(Fig.7).

Method validation using crystallised and docked ligand of TtgR (2UXO)

A

B

Binding mode of compound with active site amino acids of TtgR (2UXO)

(10)

Method validation using crystallised and docked ligand of beta lactamase (4NK3)

A

B

Binding mode of compound with active site amino acids of beta lactamase (4NK3)

Fig.8.Putativebindingposeofcompound2-hydroxy-9,10-anthraquinonewithBeta-lactamase(4NK3).Dockingofcompound2-hydroxy-9,10-anthraquinonewith Beta-lactamase(A–methodvalidationandB–dockingwithaminoacids).

Thecompoundshowedthebindingenergyvalueof−6.26kcal/mol withtwohydrogenbondswiththedockedbetalactamase(4NK3) receptor.Inthecompound,oxygenofO–HinteractswiththeN–H hydrogenofaminoacid(ARG-175)andformsahydrogenbondwith thebondlengthof2.1 ˚A.Also,oxygenoftheC Ointeractswiththe NH2hydrogenofaminoacid(ASN-373)andformsahydrogenbond withthebondlengthof2.4 ˚A(Fig.8).

Conclusion

Streptomycesolivochromogenes(ERINLG-261)wasisolatedfrom

the soil samples of the Mudumalai hills, Nilgiris, Western

Ghats of Tamil Nadu, India. Ethyl acetate extract of ERINLG-261 showed significant antimicrobial activities against tested Grampositive and Gramnegative bacterialpathogens and fila-mentous fungalpathogens. The bioactivityguided fractionation of the ethyl acetate led to the isolation of 2-hydroxy-9,10-anthraquinone(1) as theactive principle. The 2-hydroxy-9,10-anthraquinonewassubjectedtoantimicrobialactivity:itshowed goodantimicrobialactivityagainsttestedbacteriaandfungi.The 2-hydroxy-9,10-anthraquinonewasalsotestedagainstCOLO320

and A549 lung adenocarcinoma cancer cells. The

2-hydroxy-9,10-anthraquinoneshowedmoderatecytotoxicpropertiesagainst testedcells.Moleculardockingstudiesofisolatedcompound

2-hydroxy-9,10-anthraquinone withenzyme Topoisomerase, TtgR

andBeta-lactamaseshowedlowbindingenergy.Thisisthefirst reportfortheantimicrobialandcytotoxicpropertiesof 2-hydroxy-9,10-anthraquinoneisolatedfromStreptomycesolivochromogenes

(ERINLG-261).

Authors’contributions

Conceivedanddesignedtheexperiments:CB,VD,YA,BS,NE, NAAD,SI,YI,AOandPTP.Performedtheexperiments:CB,VD,YA, andBS.Analyzedthedata:CB,VD,YA,BS,NE,NAAD,SI,YI,AOand PTP.Preparedthemanuscript,CB,VD,YA,BSandSI.Allauthors readandapprovedthefinalmanuscript.

Conflictsofinterest

Theauthorsdeclarenoconflictsofinterest.

Acknowledgement

Theauthorswouldliketoextendtheirsincereappreciationto theDeanshipofScientificResearchatKingSaudUniversityforits fundingofthisresearchthroughtheResearchGroupproject num-berRGP-VPP-213.

AppendixA. Supplementarydata

Supplementarydataassociatedwiththisarticlecanbefound,in theonlineversion,atdoi:10.1016/j.bjp.2015.12.003.

References

Agarwal, S.K., Singh, S.S., Verma, S., Kumar, S., 2000. Antifungal activity of anthraquinonederivativesfromRheumemodi.J.Ethnopharmacol.72,43–46. Alguel,Y.,Meng,C.,Terán,W.,Krell,T.,Ramos,J.L.,Gallegos,M.T.,Zhang,X.,2007.

(11)

Anke, H., Kolthoum, I., Zihner, H., Laatsch, H., 1980. Metabolic products of microorganisms185.TheanthraquinonesoftheAspergillusglaucusgroup.I. Occurrence,isolation,identificationandantimicrobialactivity.Arch.Microbiol. 126,223–230.

Aouiche,A.,Bijani,C.,Zitouni,A.,Mathieu,F.,Sabaou,N.,2014.Antimicrobial activ-ityofsaquayamycinsproducedbyStreptomycesspp.PAL114isolatedfroma Saharansoil.J.Med.Mycol.24,17–23.

Arvind,S.,Reg,F.C.,Enzo,A.P.,2004.Identificationofantimicrobialcomponents ofanethanolicextractoftheAustralianmedicinalplant,Eremophiladuttonii. Phytother.Res.18,615–618.

Bacq-Calberg,C.M.,Coyotte,J.,Hoet,P.,Nguyem-Disteeche,M.,1999.Microbiologie. DeBoeckandLarcier,Bruxelles,pp.338.

Balachandran,C.,Duraipandiyan1,V.,Emi,N.,Ignacimuthu,S.,2015.Antimicrobial andcytotoxicpropertiesofStreptomycessp(ERINLG-51)isolatedfromSouthern WesternGhats.SouthIndianJ.Biol.Sci.1,7–14.

Balachandran,C.,Sangeetha,B.,Duraipandiyan,V.,KarunaiRaj,M.,Ignacimuthu,S., Al-Dhabi,N.A.,Balakrishna,K.,Parthasarathy,K.,Arulmozhi,N.M.,ValanArasu, M.,2014a.AflavonoidisolatedfromStreptomycessp(ERINLG-4)induces apo-ptosisinhumanlungcancerA549cellsthroughp53andcytochromecrelease caspase-dependantpathway.Chem.Biol.Interact.224,24–35.

Balachandran, C., Arun, Y., Duraipandiyan, V., Ignacimuthu, S., Balakrishna, K., Al-Dhabi, N.A., 2014b. Antimicrobial and cytotoxicity properties of 2,3-dihydroxy-9,10-anthraquinoneisolatedfromStreptomycesgalbus (ERINLG-127).Appl.Biochem.Biotechnol.172,3513–3528.

Balachandran,C.,Duraipandiyan,V.,Balakrishna,K.,Sundaram,L.R.,Vijayakumar, A.,Ignacimuthu,S.,Al-Dhabi,N.A.,2013.Synthesisandmedicinalpropertiesof plantderivedvilangin.Environ.Chem.Lett.11,303–308.

Balachandran, C., Duraipandiyan, V., Balakrishna, K., Ignacimuthu, S., 2012. Petroleumand polycyclic aromatic hydrocarbons (PAHs) degradation and naphthalenemetabolisminStreptomycessp(ERI-CPDA-1)isolatedfromoil con-taminatedsoil.Bioresour.Technol.112,83–90.

Barasch,D.,Zipori,O.,Ringel,I.,Ginsburg,I.,Samuni,A.,Katzhendler,J.,1990.Novel anthraquinonederivativeswithredoxactivefunctionalgroupscapableof pro-ducingfreeradicalsbymetabolism:arefreeradicalsessentialforcytotoxicity? Eur.J.Med.Chem.34,597–615.

Barnard,D.L.,Fairbairn,D.W.,O’Neill,K.L.,Gage,T.L.,Sidwell,R.W.,1995. Antihu-mancytomegalovirusactivityandtoxicityofsulfonatedanthraquinonesand anthraquinonederivatives.AntiviralRes.28,317–321.

Bernan, V.S., Montenegro,D.A., Korshalla, J.D., Maiese, W.M., Steinberg,D.A., Greenstein,M.,1994.Bioxalomycinsnewantibioticsproducedbythemarine Streptomyces sp. LL-31F508: taxonomy and fermentation. J. Antibiot. 47, 1417–1424.

Bringmann,G.,Lang,G.,Hamm,M.A.,Gulder,T.A.M.,Dieter,A.,Bull,A.T.,Stach, J.E.M.,Kocher,N.,Muller,W.E.G.,Hans-Peter,F.,2005.Gephyromycin,thefirst bridgedangucyclinone,fromStreptomycesgriseusstrainNTK14.Phytochemistry 66,1366–1373.

Chen,S.H.,Lin,K.Y.,Chang,C.C.,Fang,C.L.,Lin,C.P.,2007.Aloeemodininduced apo-ptosisinhumangastriccarcinomacells.Food.Chem.Toxicol.45,2296–2303. ChennakesavaRao,K.,Arun,Y.,Easwaramoorthi,K.,Balachandran,C.,Prakasam,T.,

EswaraYuvaraj,T.,Perumal,P.T.,2014.Synthesis,antimicrobialandmolecular dockingstudiesofenantiomericallypureN-alkylatedb-aminoalcoholsfrom phenylpropanolamines.Bioorg.Med.Chem.Lett.24,3057–3063.

ClinicalandLaboratoryStandardsInstitute(CLSI),2008.ReferenceMethodfor BrothDilutionAntifungalSusceptibilityTestingofFilamentousFungi;Approved StandardSecond–EditionCLSIDocumentM38-A2.ClinicalandLaboratory StandardsInstitute,940,WestvalleyRoad,Suite1400,Wayne,Pennsylvania, 19087-1898USA,ISBN1-56238-668-9.

Cowan,M.M.,1999.Plantproductsasantimicrobialagents.Clin.Microbiol.Rev.12, 564–582.

Cruz,R.,Arias,M.E.,Soliveri,J.,1999.Nutritionalrequirementfortheproductionof PyrazoloisoquinolinoneantibioticsbyStreptomycesgriseocirneusNCIMB40447. Appl.Microbiol.Biotechnol.53,115–119.

Demain,A.L.,1999.Pharmaceuticallyactivesecondarymetabolitesof microorgan-isms.Appl.Microbiol.Biotechnol.52,455–463.

Duraipandiyan,V.,Sasi,A.H.,Islam,V.I.H.,Valanarasu,M.,Ignacimuthu,S.,2010. AntimicrobialpropertiesofactinomycetesfromthesoilofHimalaya.J.Mycol. Med.20,15–20.

Duraipandiyan,V.,AL-Dhabi,N.A.,Balachandran,C.,KarunaiRaj,M.,ValanArasu,M., Ignacimuthu,S.,2014.Novel1,5,7-trihydroxy-3-hydroxymethylanthraquinone isolatedfromterrestrialStreptomycessp(ERI-26)withantimicrobialand molec-ulardockingstudies.Appl.Biochem.Biotechnol.174,1784–1794.

Fisher,G.R.,Brown,J.R.,Patterson,L.H.,1990.Involvementofhydroxylradical for-mationandDNAstrandbreakageinthecytotoxicityofanthraquinoneantitumor agents.Free.Radic.Res.Commun.11,117–125.

Hacene,H.,Daoudi,H.,Bhatnagar,T.,Baratti,J.C.,Lefebvre,G.,2000.H107,anew aminoglycosidaseantiPseudomonasantibioticproducedbyanewstrainof Spir-illosora.Microbios102,69.

Huang,H.,Lan,X.,Wang,Y.,Tian,L.,Fang,Y.,Zhang,L.,Zhang,K.,Zheng,X.,2015. NewbioactivederivativesofnonacticacidfromthemarineStreptomycesgriseus derivedfromtheplantSalicorniasp.Phytochem.Lett.12,190–195.

Ifesan,B.O.,Hamtasin,C.,Mahabusarakam,W.,Voravuthikunchai,S.P.,2009. Assess-mentofantistaphylococcalactivityofpartially purifiedfractionsandpure compoundsfromEleutherineamericana.J.FoodProt.72,354–359.

Iizuka,A.,Iijima,O.T.,Kondo,K.,Itakura,H.,Yoshie,F.,Miyamoto,H.,Kubo,M., Higuchi,M.,Takeda,H.,Matsumiy,T.,2004.Evaluationofrhubarbusing antiox-idativeactivityasanindexofpharmacologicalusefulness.J.Ethnopharmacol. 91,89–94.

Lee,H.Z.,Hsu,S.L.,Liu,M.C.,Wu,C.H.,2001.Effectsandmechanismsofaloeemodin oncelldeathinhumanlungsquamouscellcarcinoma.Eur.J.Pharmacol.431, 287–295.

Lee,H.Z.,2001.ProteinkinaseCinvolvementinaloeemodinandemodininduced apoptosisinlungcarcinomacell.Br.J.Pharmacol.134,1093–1103.

Manchester,J.I.,Dussault,D.D.,Rose,J.A.,Boriack-Sjodin,P.A.,Uria-Nickelsen,M., Ioannidis,G.,Bist,S.,Fleming,P.,Hull,K.G.,2012.Discoveryofanovelazaindole classofantibacterialagentstargetingtheATPasedomainsofDNAgyraseand TopoisomeraseIV.Bioorg.Med.Chem.Lett.22,5150–5156.

Mueller, S.O., Stopper, H., 1999. Characterization of the genotoxicity of anthraquinonesinmammaliancells.Biochim.Biophys.Acta1428,406–414. Narayana,K.J.P.,Kumar,K.G.,Vijayalakshmi,M.,2008.l-Asparaginaseproduction

byStreptomycesalbidoflavus.IndianJ.Microbiol.48,331–336.

NationalCommitteeforClinicalLaboratoryStandards(NCCLS),1999.Document M31-APerformanceStandardsforAntimicrobialDiskandDilution Suscepti-bilityTestsforBacteriaIsolatedfromAnimals.NationalCommitteeforClinical LaboratoryStandards,Villanova,pp.57(approvedstandardNCCLS).

NationalCommitteeforClinicalLaboratoryStandards(NCCLS),2002.Reference MethodforBrothDilutionAntifungalSusceptibilityTestingofYeasts:Proposed Standard.NationalCommitteeforClinicalLaboratoryStandards(NCCLS), Vil-lanova.

Oskay,M.,Tamer,A.U.,Azeri,C.,2004.Antibacterialactivityofsomeactinomycetes isolatedfromfarmingsoilsofTurkey.Afr.J.Biotechnol.3,441–446.

Patterson, L.H., Gandecha,B.M., Brown,J.R., 1983. 1,4-Bis{2-[(2-hydroxyethyl) amino]ethylamino}-9,10-anthracenedione,ananthraquinoneantitumoragent thatdoesnotcauselipidperoxidationinvivo;comparisonwithdaunorubicin. Biochem.Biophys.Res.Commun.110,399–405.

Raja,A.,Prabakaran,P.,2011.Actinomycetesanddrug—anoverview.Am.J.Drug Dis.Dev.1,75–84.

Rambabu,V.,Suba,S.,Vijayakumar,S.,2014.Antimicrobialandantiproliferative prospectiveofkosinostatin–asecondarymetaboliteisolatedfromStreptomyces sp.J.Pharm.Anal.5,378–382.

Saha,K.,Lam,K.W.,Abas,F.,Hamzah,A.S.,Stanslas,J.,Hui,L.S.,Lajis,N.H.,2013. Synthesisofdamnacanthal,anaturallyoccurring9,10-anthraquinoneandits analogues,anditsbiologicalevaluationagainstfivecancercelllines.Med.Chem. Res.22,2093–2104.

Sanghvi,G.V.,Ghevariya,D.,Gosai,S.,Langa,R.,Dhaduk,N.,Kunjadia,P.D.,Vaishnav, D.J.,Dave,G.S.,2014.Isolationandpartialpurificationoferythromycinfrom alkaliphilicStreptomyceswerraensisisolatedfromRajkot,India.Biotechnol.Rep., 1–2,2-7.

Sanner,M.F.,1999.Python:aprogramminglanguageforsoftwareintegrationand development.J.Mol.Graph.Model.17,57–61.

SaravanaKumar,P.,Al-Dhabi,N.A.,Duraipandiyan,V.,Balachandran,C.,Praveen Kumar, P., Ignacimuthu, S., 2014. In vitro antimicrobial, antioxidant and cytotoxicpropertiesofStreptomyceslavendulaestrainSCA5.BMCMicrobiol., http://dx.doi.org/10.1186/s12866-014-0291-6.

Savafi,L.,Duran,N.,Savafi,N.,Onlem,Y.,Ocak,S.,2005.Theprevalenceand resis-tancepatternsofPseudomansaeruginosainintensivecareunitsinauniversity Hospital.J.Med.Sci.35,317.

Shirling,J.L.,Gottlieb,D.,1966.MethodsforcharacterizationofStreptomycesspecies. Int.J.Syst.Bacteriol.16,313–340.

Sosio,M.,Bossi,E.,Bianchi,A.,Donadio,S.,2000.Multiplepeptidesynthetasegene clustersinactinomycetes.Mol.Genet.Genomics264,213–221.

Tamura,K.,Dudley,J.,Nei,M.,Kumar,S.,2007.MEGA4:MolecularEvolutionary GeneticsAnalysis(MEGA)softwareversion4.0.Mol.Biol.Evol.24,1596–1599. Urakawa,H.,Kita-Tsukamoto,K.,Ohwada,K.,1999.Microbialdiversityinmarine sedimentsfromSagamiBayandTokyoBayJapan,asdeterminedby16SrRNA geneanalysis.Microbiology145,3305–3315.

Imagem

Fig. 1. Phylogenetic tree derived from 16S rRNA gene sequences showing the relationship between Streptomyces olivochromogenes (ERINLG-261) and the other species belonging to the genus Streptomyces constructed using the neighbor-joining method
Fig. 2. Antimicrobial activities of chloroform, ethyl acetate and butanol extract of Streptomyces olivochromogenes (ERINLG-261) extracted from different fermentation media-1 to -4 using disk diffusion method (zone of inhibition in mm) (5 mg/disk)
Fig. 3. Selection of secondary metabolite production using fermentation media-4 (Micromonospora) at different days of incubation
Fig. 5. Cytotoxicity properties of 2-hydroxy-9,10-anthraquinone (1) against A549 cells
+4

Referências

Documentos relacionados

A consistência dos dados é indispensável em qualquer tipo de banco de dados, sendo de suma importância em inventários florestais antes da realização de

Na última etapa da tese foram conduzidos ensaios com a nova ban- cada, utilizando a máquina síncrona de oito polos. Destes experimentos conclui-se que: i) a utilização de um

SUMÁRIO 1 INTRODUÇÃO E JUSTIFICATIVA 2 REFERENCIAL TEÓRICO 2.1 TABAGISMO 2.1.1 Definição 2.1.2 Epidemiologia 2.1.3 Malefícios relacionados ao uso de tabaco 2.2 POLÍTICAS PÚBLICAS

Neste sentido, o presente trabalho de pesquisa reconhece que seja possível disponibilizar o Biospeckle como ferramenta para identificar a atividade biológica de fungos

Chapter six “General Discussion”: the results of the previous chapters are discussed in terms of Podarcis bocagei as biondicator species for reptile

Ao mesmo 2 – EVOLUÇÃO HISTÓRICA DO PRESSIÓMETRO A criação do primeiro pressiómetro PBPMT é atribuído a Kogler, em 1933 na Alemanha, no entanto este não levará a sua ideia

Essas intervenções são essenciais durante o processo, pois ajudam o professor a modular as aproximações e distanciamentos dos alunos em relação aos objetivos de

Os aspectos gerais demonstraram um estado normal dos animais, sem alterações dignas de nota, pois a mucosa intestinal dos carcarás apresentou-se com uma