• Nenhum resultado encontrado

DISTURBANCE ERROR INVARIANCE IN AUTOMATIC CONTROL SYSTEMS FOR TECHNOLOGICAL OBJECT TRAJECTORY MOVEMENT

N/A
N/A
Protected

Academic year: 2017

Share "DISTURBANCE ERROR INVARIANCE IN AUTOMATIC CONTROL SYSTEMS FOR TECHNOLOGICAL OBJECT TRAJECTORY MOVEMENT"

Copied!
9
0
0

Texto

(1)

А Е Е А Ы Е , Е А

е яб ь–к яб ь 2016 16№ 5 ISSN 2226-1494 http://ntv.ifmo.ru/ SCIENTIFIC AND TECHNICAL JOURNAL OF INFORMATION TECHNOLOGIES, MECHANICS AND OPTICS September–October 2016 Vol. 16 No 5 ISSN 2226-1494 http://ntv.ifmo.ru/en

62-503.57

Х

Х

Х

. .

a

a

,

, 600000,

: tasya671@rambler.ru

15.06.16, 01.08.16

doi: 10.17586/2226-1494-2016-16-5-787-795 –

: . .

//

-, . 2016. . 16. № 5. . 787–795. doi: 10.17586/2226-1494-2016-16-5-787-795

.

,

.

.

,

.

.

.

.

.

,

,

.

,

.

.

,

,

,

,

№ 16-38-00638

_a

DISTURBANCE ERROR INVARIANCE IN AUTOMATIC CONTROL SYSTEMS

FOR TECHNOLOGICAL OBJECT TRAJECTORY MOVEMENT

A.V. Lekareva

a a

Vladimir State University named after Alexander and Nikolay Stoletovs, Vladimir, 600000, Russian Federation

Corresponding author: tasya671@rambler.ru

Article info

Received 15.06.16, accepted 01.08.16 doi: 10.17586/2226-1494-2016-16-5-787-795 Article in Russian

For citation: Lekareva A.V. Disturbance error invariance in automatic control systems for technological object trajectory movement.

Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2016, vol. 16, no. 5, pp. 787–795. doi: 10.17586/2226-1494-2016-16-5-787-795

Abstract

(2)

The essence of the first method lies in injection of additional component into the already established control signal and

formation of the channel for that component. Control signal correction during the signal synthesis stage in the control device

constitutes the basis for the second method. Research results have shown high efficiency of application for both correction

methods. Both methods have roughly the same precision. We have shown that the correction in the control device is

preferable because it has no influence on the inner contour of the system. We have shown the necessity of the block usage

with the variable transmission coefficient, which value is determined by technological trajectory parameters. Research results

can be applied in practice for improvement of the precision specifications of automatic control systems for trajectorial

manipulators.

Keywords

combined control, the fourth modified invariance form, adaptation contour, technological trajectory, handling robot

Acknowledgements

Research is carried out under financial support of the Russian Foundation for Basic Research as part of the scientific project

No. 16-38-00638 mol_a.

(

)

-.

:

1.

,

(

) [1, 2],

(

);

2.

(

,

-).

.

,

:

1.

-

;

2.

;

3.

(

,

).

,

,

,

,

. .

,

,

-n

-

,

.

,

.

-,

[3–5].

-,

-,

[3].

,

XOY

.

-f

Δ

.

1 1 0 1 1 0

1 1 0

1 1

1

(

...

)

( )

(

...

)

( )

(

...

)(

( )

( ));

n n m m

k k

n n m m

x x x x x x x x x xy

k k

x x x x xy xy

H p

H

p

H p

H

p

B p

B

p

B p

B

g

p

L p

L

p

L p

L

f

p

f

p

 

 

 

 

 

 

1 1 0 1 1 0

1 1 0

1 1

1

(

...

)

( )

(

...

)

( )

(

...

)(

( )

( )),

n n m m

k k

n n m m

y y y y y y y y y yx

k k

y y y y yx yx

H p

H

p

H p

H

p

B p

B

p

B p

B

g

p

L p

L

p

L p

L

f

p

f

p

 

 

 

 

 

 

(1)

k k

m m

n

n y y x x y y x x y y

x

x

H

H

H

B

B

B

B

L

L

L

L

H

,...

;

,...

;

,...

;

,...

;

,...,

;

,...,

0 0

0 0

0

0

,

-X

Y

;

( ),

( ),

( ),

( )

xy yx xy yx

(3)

-;

x

( )

p

,

y

(

p

)

X

Y

;

( )

xy

f

p

,

f

yx

( )

p

X

Y

;

p

d

/

dt

.

,

)

(

)

(

)

(

)

(

,

)

(

)

(

)

(

)

(

p

B

p

B

p

H

p

W

p

B

p

B

p

H

p

W

y y y y x x x x

,

)

(

)

(

)

(

,

)

(

)

(

)

(

p

B

p

L

p

W

p

B

p

L

p

V

y y y x x

x

)

(

),

(

p

W

p

W

x y

X

Y

;

V

x

(

p

),

V

y

(

p

)

X

Y

.

G

(

x

,

y

)

F

(

x

,

y

)

,

-,

-),

(

)

(

)

(

)

(

);

(

)

(

)

(

)

(

p

p

p

p

p

p

p

p

yx yx yx xy xy xy f f g y f f g x  

( ),

( )

xy yx

g

p

g

p

,

-;

( ),

( )

xy yx

f

p

f

p

,

;

( ),

( )

xy yx

f

p

f

p

 

f

.

,

(1),

:

2 2

2 2

( )

Δ

( )

( )

Δ

( )

0;

( )

Δ

( )

( )

Δ

( )

0.

x xy x xy

y yx y yx

L p

f

p

L

p

f

p

L p

f

p

L

p

f

p

,

-2xy

,

2yx

f

f

L

2x

( ),

p L

2y

( )

p

.

-,

.

Y

,

( ).

X

f Y

X

=

K Y

,

K

,

X = f

(

Y

)

OY

.

K

.

,

Х

Х

-Z

.

Y

K

Y

K

X

,

X

KY

,

K

.

,

Y

=

X /K

,

,

X

K

X

K

K

X

, (2)

K

K

K

.

(2),

Δ

X

Х

.

Δ

X

,

(2)

, . .

( )

( )

g

( )

X p

K

X p

p

. (3)

Δ

X

-Z

,

-.

.

,

(4)

.

Δ

f

[6]

( )

F

,

( )

F

( ).

F p

K

f p

K

X p

(4)

( )

t

( )

t

( )

t

( ) ... ,

t

(5)

,

,

,

.

(5)

0 0 1 2

( )

t

C

f

C f t

( )

C

f



( ) ... .

t

(6)

С

i

,

i

<1,2,3,...> –

.

C

(2)–(6)

:

0 x

; ( )

;

( )

,

f

K g

f t

K V

f t



K

(7)

K

K

K

F

.

(7)

.

0

)

(

Δ

)

(

)

(

)

(

;

0

)

(

Δ

)

(

)

(

)

(

2 2

p

f

p

L

p

g

p

B

p

f

p

L

p

g

p

B

yx y yx y xy x xy x

(8)

(8)

.

[7].

g

.

)

(

)

(

)

(

)

(

;

)

(

)

(

)

(

)

(

2 2

p

B

p

f

p

L

p

g

p

B

p

f

p

L

p

g

y yx y yx x xy x xy

(9)

,

Δ

f

,

-,

,

,

,

[8].

-, . .

(9)

)

(

),

(

p

g

p

g

xy

yx

:

1.

;

2.

-

;

3.

.

,

[9].

2 2 2 2

1 2 3

( )

t

λ

( )

t

λ

( )

t

λ

( ) ... .

t

(10)

(10)

,

,

.

(10)

2 2 2 2 2 2

0 1 2

0 0 0

( )

β

( ) ;

( )

β

( ) ;

( )

β

( ) .

t t t

t

t dt

t

t dt

t

t dt

(11)

(10)

(11)

U

0,

U

1,

U

2

;

0

)

,

(

)

,

(

)

,

(

0 0 0 0 0 0 0 2

ti

dt

dU

U

t

d

U

t

dU

U

t

d

ti

dt

dU

U

t

d

U

t

dU

U

t

d

0 1 1 1 1 1 1 2

;

0

)

,

(

)

,

(

)

,

(

(12)

ti

(5)

(12)

(4)–(6)

,

-U

,

:

.

)

,

(

;

)

,

(

;

)

,

(

2 2

2 1

1 1 0

0

0

dU

U

t

d

V

dU

U

t

d

X

dU

U

t

d

(6)

(7)

;

β

1

)

(

g

0

g

K

K

t

1 1

( )

t

C K V

β

V

;

2 2

( )

t

C K

β

.

-.

,

0 0 0

0

ν

( ,

)

;

i

t

U

t U

g dt

1 1 1

0

ν

( ,

)

;

j

t

U

t U V dt

(13)

2 2 2

0

ν

( ,

)

.

k

t

U

t U

dt

,

(13),

-.

.

(

).

[10–12].

.

-

.

6

q

1

,...,

q

6

,

q

1

,

q

2

,

q

3

,

q

4

,

q

5

,

q

6

(

-).

-,

.

:

1.

0,5×1,0 ;

2.

(

,

)

[13].

,

-,

.

[14].

.

-,

-,

[15].

,

2

q

,

q

3

,

2, 3.

,

(6)

. 1.

:

( );

( )

(

. 1)

:

W

2

( ),

p W p

3

( )

,

q

2,

q

3

;

W

(

p

)

-;

V p V p

2

( ),

3

( )

q

2

q

3

-;

K

12

( ),

p K

23

( )

p

2,

3

;

g

2

( ),

p

f

2

( ),

p

g

3

( ),

p

f

3

( )

p

2

q

q

3

;

X

2

,

X

3

(

)

(

)

Х

q

2

q

3,

K

gx2,

K

gx3;

2

,

3

2 3

;

Δ

f

2

,

Δ

f

3

2 3;

f2

,

f3

q

2

q

3

-W

(

р

)

K

23

(

р

)

M

3

(

р

)

V

3

(

р

)

W

3

(

р

)

F

3

(

р

)

K

gx3

g

3

g

3

+

g

3

3

f

3

f

3

f3

f3

g

3

W

(

р

)

g

2

g

2

+

g

2

G

2

2

q

3

X

3

X

2

X

2

X

h

M

2

(

р

)

V

2

(

р

)

F

2

(

р

)

f

2

f

2

f2

f2

W

2

(

р

)

K

gx2

q

2

W

(

р

)

K

23

(

р

)

M

3

(

р

)

V

3

(

р

)

W

3

(

р

)

F

3

(

р

)

K

gx3

g

3

+

g

3

3

f

3

f

3

f3

f2

q

3

X

3

X

2

f3

W

(

р

)

g

2

g

2

+

g

2

G

2

2

X

2

X

h

M

2

(

р

)

V

2

(

р

)

F

2

(

р

)

f

2

f

2

f2

f2

W

2

(

р

)

K

gx2

q

2

K

12

(

р

)

(7)

,

;

f2

,

f3

2 3,

;

Δ

g

2

,

Δ

g

3

-2

q

q

3

.

)

(

2

p

M

(

)

,

,

f2

)

(

23

p

K

Δ

g

3

.

-.

.

. 2

,

: 1 –

; 2 –

-,

.

. 3

-,

:

1 –

; 2 –

; 3 –

.

. 4

,

-,

. 1.

,

.

,

,

,

.

. 2.

:

XOY

( );

XOZ

( );

YOZ

( )

. 3.

:

X

( );

Y

( );

Z

( ):

X

*

,

Y

*

,

Z

*

OX

,

OY

,

OZ

,

1;

X

,

Y

,

Z

X

,

Y

,

Z

,

2;

Δ

x

,

Δ

y

,

Δ

z

OX

,

OY

,

OZ

,

3

. 5.

,

.

Y

,

Z

,

Z

,

1

0,5

1

0,5

1

0,5

0 0,5 1

X

,

0 0,5 1

X

,

0 0,5 1

Y

,

2

2

1

2

1

1

Х

*,

Х

,

х

,

1,6

1,2

0,8

0,4

0

–0,2

–0,4

0 2 4 6 8 10

t

10

2

, c

0 2 4 6 8 10

t

10

2

, c

0 2 4 6 8 10

t

10

2

, c

Y

*,

Y

,

y

,

Z

*,

Z

,

z

,

1,4

1,2

1,0

0,8

0,6

0,4

0,2

0

–0,2

1,4

1,2

1,0

0,8

0,6

0,4

0,2

0

–0,2

2

2

2

1

1

1

3

(8)

. 4.

:

1 –

3

; 2 –

3

. 5.

Х

q

3

: 1 –

2

; 2 –

2

f

; 3 –

g

3

(a);

: 1 –

2

; 2 –

f2

; 3 –

* 3

g

( )

.

.

.

-.

.

,

.

,

.

1. . .

. .: , 1970. 288 .

2. . .

References

1. Morozovskii V.T. Mnogosvyaznye Sistemy Avtomaticheskogo Upravleniya [Multiconnected Systems of the Automatic Control]. Moscow, Energiya Publ., 1970, 288 p.

0 2 4 6 8 10

t

10

2

, c

3

,

* 3

,

0,02

0,01

0

–0,01

2

1

0 2 4 6 8 10

t

10

2

, c

2

,

f2

,

g

3

2

1

2

,

f2

,

g

* 3

0 2 4 6 8 10

t

10

2

, c

0,2

0

–0,2

–0,4

–0,6

–0,8

–1

1,2

0,8

0,4

0

–0,4

–0,8

–1,2

2

1

3

(9)

. .: , 1990. 128 .

3. . .

. Ч. II. .: , 1980. 96 .

4. . . .

, 1963. 376 .

5. . ., . ., . .,

. . .

.: , 1963. 475 .

6. . ., . ., . ., . .

. : , 2005.

276 .

7. . ., . .

//

. 2013. . 18, №22(125). . 102– 105.

8. . ., . ., . .

. : , 2010. 166 .

9. . ., . ., . ., Щ . .

- . .: ,

1975. 264 .

10. . ., . ., . ., . .

//

. 2014. № 3. . 114.

11. . ., . ., . ., . .

// . 2014. № 6. . 74.

12. . ., . ., . .

//

. . 2015. №3. . 50-56.

13. . ., . ., . ., . .,

. . // . 2014. № 6. . 73.

14. . ., . ., . ., . .,

. .

// . 2015. № 2-24. . 5329–5334.

15. . ., . .

// . 2015. №11-12. . 201–205.

Л а ваА а а ияВ а и и в а ,

, , 600000,

, tasya671@rambler.ru

2. Miroshnik I.V. Soglasovannoe Upravlenie Mnogokanal’nymi Sistemami [Coordinated Control of Multi-Channel Systems]. Leningrad, Energoatomizdat Publ., 1990, 128 p.

3. Potapov A.M. Bases of Calculation and Design of Linear Servo Systems. Part II. Leningrad, LMI Publ., 1980, 96 p. (In Russian) 4. Kukhtenko A.I. Problema Invariantnosti v Avtomatike [The

Problem of Invariance in Automation]. Kiev, 1963, 376 p. 5. Yavorskii V.N., Bessonov A.A., Korotaev A.I., Potapov A.M.

Designing of Invariant Servo Drives. Moscow, Vysshaya Shkola Publ., 1963, 475 p.

6. Egorov I.N., Kobzev A.A., Mishulin Yu.E., Nemontov V.A.

Upravlenie Robototekhnicheskimi Sistemami s Silomomentnym Ochuvstvleniem [Robotic Systems Management with Force-Torque Sensing]. Vladimir, VlSU Publ., 2005, 276 p.

7. Kobzev A.A., Mahfouz A.A. Features of realization of the fourth form of invariancy in systems of programmed control.

Izvestia VSTU, 2013, vol. 18, no. 22, pp. 102–105.

8. Legaev V.P., KobzevA.A., Generalov L.K. Model'noe Upravlenie Tochnost'yu Obrabotki na Metallorezhushchikh Stankakh [Modal Control of Processing Precision at Metal Cutting Machines]. Vladimir, VlSU Publ., 2010, 166 p. 9. Novoselov B.V., Gorokhov Yu.S., Kobzev A.A., Shchitov A.I.

Avtomaty-Nastroishchiki Sledyashchikh Sistem [Automatic-Adjusters of Servo Systems]. Moscow, Energiya Publ., 1975, 264 p.

10. Kobzev A.A., Novikova N.A., Lekareva A.V., Mahfouz A.A. Research of the dynamic movement correction in robot systems.

Modern Problems of Science and Education, 2014, no. 3, p. 114.

11. Kobzev A.A., Novikova N.A., Lekareva A.V., Mahfouz A.A. Analysis of the program trajectory correction algorithms in device that produces control signals to drives of robot systems.

Modern Problems of Science and Education, 2014, no. 6, p. 74. 12. Kobzev A.A., Novikova N.A., Lekareva A.V.Analysis of the

algorithms of adaptation of the managing detector of influence for drives of robotic systems by means of the simulator of intercoordinate perturbations. Russian Electromechanics, 2015, no. 3, pp. 50–56.

13. Arkhipov A.N., Kobzev A.A., Lekareva A.V., Mahfouz A.A., Petukhov E.N. Analysis of robotization of process of hydrocutting of oil pipelines. Modern Problems of Science and Education, 2014, no. 6, p. 73.

14. Arkhipov A.N., Kobzev A.A., Eropova E.V., Lekareva A.V., Mahfouz A.A. Coordination of axes of object and the manipulator when hydrocutting oil pipelines. Fundamental Research, 2015, no. 2–24, pp. 5329–5334.

15. Kobzev A.A., Lekareva A.V. Axes matching of mobile robot technology and manipulation object. Oboronnaya Tekhnika, 2015, no. 11-12, pp. 201–205.

Author

Referências

Documentos relacionados

As reduções na demanda máxima instantânea, com a implantação do horário de verão, trarão os seguintes benefícios de natureza qualitativa: a) Aumento da qualidade e segurança

O interesse na utilização destes mecanismos deve ser a oferta não só de serviços públicos via internet, como também de informações úteis para que a população possa exercer

No presente artigo apresentamos algumas percepções e reflexões derivadas da obser- vação participante junto a agricultores do assentamento Sepé Tiaraju, com o objetivo de analisar

Além dos neologismos formais, podem-se investigar os neologismos semânticos que são acepções novas concedidas às unidades lexicais de uma língua.. Resultam da neologia de sentido

Foram utilizados os materiais de solo Glei Húmico, Glei Pouco Hú- mico e Orgânico de Uberaba (MC); Aluvial e Glei Húmico de Careaçu (MG), coletados na camada de O cm - 20 cm

O enfoque adotado por Britto &amp; Albuquerque (2001) para a análise de clusters é o da interde- pendência (conforme diferenciação entre cluster vertical e horizontal desses

Ao revisitar as memórias da vida cultural em Itabuna, revisita-se de alguma forma o que foi preservado por outras memórias individuais, sociais e históricas, como os

As cerimónias comemorativas incluíram ainda este colóquio sobre &#34; Sá da Bandeira e o seu Tempo&#34;, organizado em parceria com a Universidade Nova de