• Nenhum resultado encontrado

Fucan effect on CHO cell proliferation and migration

N/A
N/A
Protected

Academic year: 2017

Share "Fucan effect on CHO cell proliferation and migration"

Copied!
9
0
0

Texto

(1)

ContentslistsavailableatSciVerseScienceDirect

Carbohydrate

Polymers

j ourna l h o m e pa g e :w w w . e l s e v i e r . c o m / l o c a t e / c a r b p o l

Fucan

effect

on

CHO

cell

proliferation

and

migration

Leonardo

Thiago

Duarte

Barreto

Nobre

a,b

,

Arthur

Anthunes

Jacome

Vidal

a

,

Jailma

Almeida-Lima

a

,

Ruth

Medeiros

Oliveira

a

,

Edgar

Jean

Paredes-Gamero

b

,

Valquiria

Pereira

Medeiros

b

,

Edvaldo

Silva

Trindade

c

,

Celia

Regina

Cavichiolo

Franco

c

,

Helena

Bonciani

Nader

b

,

Hugo

Alexandre

Oliveira

Rocha

a,∗

aDepartamentodeBioquímica,UniversidadeFederaldoRioGrandedoNorteUFRN,Av.SenadorSalgadoFilho,3000,LagoaNova,59072-970Natal,RN, Brazil

bDisciplinadeBiologiaMolecular,Depto.deBioquímica,UniversidadeFederaldeSãoPauloUNIFESP,RuaTresdemaio,100,4andar,VilaClementino, SãoPaulo,SP,Brazil

cDepartamentodeBiologiaCelular,UniversidadeFederaldoParanáUFPR,Curitiba,PR,Brazil

a

r

t

i

c

l

e

i

n

f

o

Articlehistory: Received20March2013

Receivedinrevisedform17May2013 Accepted19May2013

Available online 25 May 2013

Keywords: Fucoidan Antiproliferative Cancer MAPKpathway

a

b

s

t

r

a

c

t

Fucanisatermusedtodenominatesulfatedl-fucoserichpolysaccharides.Here,aheterofucan,named fucanB,wasextractedfromtheSpatoglossumschröederiseaweed.This21.5kDagalactofucaninhibited CHO-K1proliferationandmigrationwhenfibronectinwasthesubstrate.FucanBderivativesrevealed thatsucheffectsdependontheirdegreeofsulfation.FucanBdidnotinducecelldeath,butpromotedG1 cellcyclearrest.WesternblottingandflowcytometryanalysissuggestthatfucanBbindstofibronectin andactivatesintegrin,mainlyintegrin␣5␤1,whichinducesFAK/RAS/MEK/ERKactivation.FAKactivation inhibitsCHO-K1migrationonfibronectinandERKblockscellcycleprogression.Thisstudyindicatesthat fucanBcouldbeappliedindevelopingnewantitumordrugs.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Sulfatedfucanscompriseafamilyofpolydisperse polysaccha-ridescomposedofsulfatedl-fucoseandheterofucans,alsoknown

asfucoidans.Theyarenotwidespreadinnature,occurringonlyin brownseaweedandtunicates(Pomin,2010),therefore,seaweeds areitsmostimportantsource.Eachseaweedsynthesizesitsown fucanpossessing uniquestructuralcharacteristics,whichreflect intheirbiological,pharmacologicalandbiotechnological propri-eties.Furthermore,thesestructuralcharacteristicscanbealtered bybioticandabioticfactorstowhichtheseaweedisexposed,as wellasextractionandpurificationmethodsusedintheattempt oftheirobtention.Recentreviewsregardingseaweedfucanshave beenrestrictedtotheirstructuralcharacteristicsandprimary bio-logical/pharmacologicalactivities(Jiao,Yu,Zhang,&Ewart,2011;

Li,Lu,Wei,&Zhao,2008).

Severalfucansshowedantiproliferativeactivityagainst differ-enttypesofcellsbyblockingtheirpassageintheG1phaseofthecell

cycle(Moreauetal.,2006).However,inmostcases,the antiprolif-erativeactivityofseaweedfucansisassociatedwiththeirability toinduceapoptosisin severalcell lines.Apoptosisinduction is

∗Correspondingauthor.

E-mailaddresses:hugo@cb.ufrn.br,hugo-alexandre@uol.com.br(H.A.O.Rocha).

oftenrelated tocaspaseactivation(Aisaetal.,2005;Athukorala

etal.,2009;Yamasaki-Miyamoto,Yamasaki,Tachibana,&Yamada,

2009);however,otherproteinsinvolvedincellsurvivalpathways maybeaffectedbythepresenceofsulfatedpolysaccharides(SP) intheculturemedium.Arecentlypublishedstudyreporteda het-erofucan,extractedfromtheseaweedSargassumfilipendula,with pro-apoptotic activityin which such compound inhibited HeLa (adenocarcinomacervicalcell)cellproliferationbyinducing apo-ptosisthroughacaspase-independentmechanismwhereapoptosis is promoted mainly by mitochondrial release of an apoptosis-inducingfactor(AIF)intocytosol(Costaetal.,2011).

Thebrownseaweed,Spatoglossumschröederi,synthesizesthree heterofucansknownasfucanA(Almeida-Limaetal.,2011),fucanB andfucanC(Rocha,Bezerra,etal.,2005;Rocha,Moraes,etal.,2005). The21.5kDafucanBwaspurifiedanditsstructurewassuggested tocontainacentralcorecomposedof␤-(1-4)linkedgalactose, par-tiallysulfatedatC3.25%ofgalactoseresiduesarelinkedinC2to atetrasaccharideformedof3-sulfated␣-(1-4)linkedfucose,and oneortwononsulfated␤-(1-4)linkedxylose,atthereducingand nonreducingend,respectively(Rocha,Moraes,etal.,2005).Usinga biotinylatedfucanBasaprobe,itwasreportedthatitbinds specif-icallytofibronectin,therebyhinderingCHOcellsadhesiontothis matrixmolecule(Rocha,Franco,etal.,2005),yet,its antiprolifer-ativeactivitywasnotevaluated.Therefore,theaimofthepresent studywastoevaluateitsonCHOcellproliferation,cellcycleand

0144-8617/$–seefrontmatter© 2013 Elsevier Ltd. All rights reserved.

(2)

98 (2013) 224–232 225

cellmigration usingseveralsuitablemethods.Thisinvestigation mayprovideevidenceforthedevelopmentofapossiblealternative chemotherapeutictreatmentforcancer.

2. Materialsandmethods

2.1. FucanBextraction

ThemarinealgaeS.schroederiwascollectedontheseashoreof NisiaFloresta,RN,Brazil.Immediatelyaftercollection,thealgae wasdriedat50◦C underventilationandgroundedinablender. Theseaweedwasthentreatedwithacetonetoeliminatelipidsand pigments.100gofdefatted,dried,andpowderedalgaewere sus-pendedin500mLof0.25MNaCl,andthepHwasadjustedto8.0 withNaOH.Prolav750(3mg/mL)(ProzynBiosolutions,SãoPaulo, SP,Brazil),amixtureofalkalineproteases,wasaddedtothemixture forproteolyticdigestion.After18hofincubationat60◦Cwith con-stantagitation,themixturewasfilteredandthefiltratefractionated byacetoneprecipitationasfollows:0.5volumeofice-coldacetone wasaddedtothesolutionundergentleagitationandmaintained at4◦Cfor24h.Theprecipitateformedwascollectedby centrifuga-tion(10,000×g,20min),driedundervacuum,dissolvedindistilled water,andanalyzed.Theoperationwasrepeatedbyadding0.6, 0.7,0.9,1.1,1.3,and2.0volumesofacetonetothesupernatant. Thefractionprecipitatedwith0.9volumeofacetonecontainsthe sulfatedfucanBused in thepresent work.This polysaccharide wasfurtherpurified byionexchangechromatography(Lewatite fromBayer,SãoPaulo,Brazil)withincreasingconcentrationsof NaCl(0.25–3.0M).Theeluateswereprecipitatedwith2volumesof methanol(18h,4◦C)beingtheprecipitatescollectedby centrifu-gation(10,000×g,15min),dried,anddissolvedindistilledwater forfurtheranalysis.

2.2. Agarosegelelectrophoresis

Agarosegelelectrophoresisoftheacidicpolysaccharideswas performed in 0.6% agarose gel (7.5cm×10cm×0.2cm thick) prepared in 0.05M 1,3-diaminopropane acetate buffer pH 9.0, as previously described (Dietrich & Dietrich, 1976). Aliquots of the polysaccharides (about 50␮g) were applied to the gel and subjected to electrophoresis. The gel was fixed with 0.1% cetyltrimethylammonium bromide solution for 2h, dried, and stainedfor15minwith0.1%toluidinebluein 1%aceticacidin 50%ethanol.Thegelwas,then,destainedwiththesamesolution withoutthedye.

2.3. Chemicalanalysisandmonosaccharidecomposition

Totalsugars,sulfate,proteinandglucuronicacidwere deter-minedaspreviouslydescribed(Rocha,Moraes,etal.,2005).

Thepolysaccharideswerehydrolyzedwith2MHClfor2hat 100◦CandsugarcompositionwasdeterminedusingaLichroCART® 250-4column(250mm×40mm)packedwithLichrospher® 100 NH2(5␮m)coupledtoaLaChromElite®HPLCsystemfrom VWR-Hitachi equipped witha refractive index detector (RI detector modelL-2490).The samplemass usedwas0.2mg andanalysis timewas25min.Thechromatogram wascompared tothoseof sugar references:arabinose, fructose, fucose,galactose,glucose, glucosamine,mannose,andxylose.

ThemolecularweightofthefucanswasdeterminedbyHPLC in0.2MNaCl,0.5%ethanol,usingaGF-250column(AsahipakGF series,AsahiChemicalIndustryCo.,Yakoo,Japan).Thecolumnwas calibratedwithstandardglycosaminoglycans,asdescribedearlier

(Rocha,Moraes,etal.,2005).

2.4. Fouriertransformedinfraredspectroscopy(FT-IR)

Sulfatedpolysaccharides(10mg)weremixedthoroughlywith drypotassium bromide.A pelletwaspreparedand theinfrared spectrumbetween500and4000cm−1wasmeasuredona

Thermo-NicoletNexus470ESPFT-IRspectrometer.Thirty-twoscanswith aresolutionof4cm−1wereaveragedandreferencedagainstair.

2.5. Unspecificfucandesulfation

Polysaccharide desulfation was performed by solvolysis in dimethylsulfoxideasusedpreviouslyfordesulfationofasulfated fucans(Rocha,Moraes,etal.,2005).Usingdifferentreactiontimes, 1hand5h,twodesulfatedfucanB;FucB2.0M1handFucB2.0M 5h,containing15.0%and7.6%ofsulfategroupsrespectively,were obtained.

2.6. Cellculture

Chinesehamsterovary(CHO)cells(ATCCCCL-61)weredonated byProf.JeffreyD.Esko(GlycobiologyResearchandtrainingCenter, UCSD,SanDiego,California,USA).ThecellsweregrowninF-12 medium(Invitrogen,Carlsbad,CA,USA)supplementedwith10% fetalbovineserum–FBS(Cutilab,Campinas,SP,Brazil)and peni-cillin(100U/mL),andstreptomycin(0.1mg/mL)(Sigma-Aldrich,St Louis,MO,USA),andmaintainedat37◦Cin2.5%CO

2.

2.7. MTTassay

ForMTTassay,cellswereseededinto96-wellplatesata den-sity of 5×103cells/well and allowed to attach overnight in a

300␮Loffreshmedium,incubatedat37◦C,2.5%CO

2.Cellswere,

then,incubatedfor24hat37◦Cand2.5%CO2 inthepresenceof differentconcentrations(0.1–0.5mg/mL)ofFucB.After incuba-tion,tracesofsulfatedpolysaccharidefractionswereremovedby washingthecellstwicewith200␮LPBSandapplying100␮Lof freshmedium,aswellas10␮Lof12mM 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromide(MTT)dissolvedinPBS,to determinetheeffectofalgalsulfatedpolysaccharidesoncell viabil-ity.Cellswere,then,incubatedfor4hat37◦C,2.5%CO2.Inorderto solubilizetheproductofMTTcleavage,100␮Lofisopropanol con-taining0.04MHClwasaddedtoeachwellandthoroughlymixed usingamultichannelpipette.Within1hofHCl–isopropanol addi-tion,absorbanceat570nmwasmeasuredusingaMultiskanAscent MicroplateReader(ThermoLabsystems,Franklin,MA).

2.8. BrdUincorporation

Cells were seeded into 96-well plates at a density of 5×103cells/wellandallowedtoattachovernightin300Loffresh

mediumandincubatedat37◦C,2.5%CO2.Insomecasesthecells wereaddedtofibronectinorvitronectincoatedwells.After12h, themediumwasremovedandthefucanBinF12mediumwas added toa final concentration of 0.1–0.5mg/mL and incubated for24h,at37◦Cand 2.5%CO

2.Afterincubation,tracesoffucan

Bwereremovedbywashingthecellstwicewith200␮LPBSand theBrdUincorporationwasdeterminedaccordingtothe manufac-turer’sinstruction(BrdUcellproliferationassaykit–CellSignaling, Danvers,MA,USA).

2.9. AnnexinV-FITC/pidoublestainingandanalysisbyflow cytometry

(3)

226 98 (2013) 224–232

Cellsweregrownin6-wellplatesuntiltheyreachedconfluence of2×105cells/mLwhen theywerestimulatedtoenter G

0 in a

mediumwithoutserumfor 48h. Next,cells weretoexitG0 by

addingF-12medium supplemented10%FBS,inthepresenceof fucanB(0.5mg/mL).Anegativecontrolwaspreparedwithoutthe presenceoffucanB.After24h,thecellswereharvestedusing2mM EDTAPBS,collectedandwashedwithcoldPBS.Thesupernatant wasdiscardedandcellswereresuspendedin200␮Lof1×binding buffer.5␮LofAnnexinV-FITCand1␮LofPIsolution100␮g/mL wasaddedin100␮Lofcellsuspension.Cellswereincubatedfor 15minatroomtemperatureandkeptunderlightprotection.After theincubationtime,400␮LofbindingbufferforannexinV(1×) wasaddedandcellswhichwere,then,analyzedbyflowcytometry (flowcytometerFACSCANTOII,BDBiosciences),measuring fluo-rescenceemissionat530–575nmforannexinVand630/22nmfor PI.FlowJosoftwarev.7.6.3(TreeStar,Inc.,CA,USA)wasusedfor dataanalysis.

2.10. Expressionof˛5integrinsubunit

CHO-K1cellsweregrowninthepresenceoffucanB(0.5mg/mL) for24h,as describedabove.Cells wereremovedfromthe bot-tleswith2mMEDTAPBSfor10min,and106cellsweresuspended

andwashed3timeswithPBScontaining1%BSA.Thecell suspen-sionswere,then,incubatedwithMABanti-␣5antibody(2␮g/mL) inPBS+1%BSAfor1hat4◦C,washedwithPBSandincubatedwith thesecondaryantibody(fluoresceinisothiocyanate-conjugategoat antimouseIgG)for30minat4◦C.Cellswerewashed3timeswith theFACSsolution,asrecommendedbythemanufacturer. Anal-ysesof40,000eventswereperformedusingaFACSCANTO flow cytometer(BectonDickinsonImmunocytometrySystem,CA,USA).

2.11. EffectoffucanBontheCHOcellssulfated glycosaminoglycanssynthesis

FucanBeffectonthesynthesisofheparansulfate and chon-droitin sulfate by CHO-K1 cells was performed essentially as previouslydescribed(Rocha,Bezerra,etal.,2005).Cellproteinwas estimatedbyaCoomassieBluemethod.Alltheexperimentswere performedintriplicateforeachdatapoint.Thebarsofthefigures indicatethe±SD.

2.12. Westernblotting

CHOcellsat80%confluencewereincubatedwithfucanBand washed after 12, 24 and 48hin ice-cold PBS. They were then scrapedinto200␮Llysisbuffer[50mMTris–HCl(pH7.4),1%Tween 20,0.25%sodiumdeoxycholate,150mMNaCl,1mMEDTA,1mM Na3VO4,1mMNaF],andproteaseinhibitors(1mg/mLaprotinin,

10mg/mLleupeptinand1mM4-(2-aminoethyl)benzenesulfonyl fluoride)and,then,keptonicefor2h.Proteinextractswerecleared by centrifugation and protein concentrations were determined usinga BCAprotein assaykit(Pierce, USA), withbovineserum albuminasstandard.Anequalvolumeofsodiumdodecylsulfate (SDS)gelloadingbuffer[100mMTris–HCl(pH6.8),200mM dithio-threitol(DTT),4%SDS,0.1%bromophenolblueand20%glycerol] wasaddedtosamples,whichweresubsequentlyboiledfor10min. Fromeachsample,50␮gofproteinwasloadedontoSDS-PAGEand blottedontoPVDFmembranes(Millipore,Bedford,MA,USA). Mem-braneswereblockedin1%fat-freedriedmilkor2%bovineserum albumininTris–bufferedsaline(TBS),with0.05%Tween20(TBST), andincubatedovernightat4◦Cwiththeappropriateprimary anti-bodyat1:1000dilution.AfterwashinginTBST,membraneswere incubatedwithanti-rabbithorseradishperoxidase-conjugated sec-ondaryantibodies,at1:2000 dilution,inblockingbufferfor1h. Intensityofthespecificimmunoreactivebandswasdetectedby

enhanced chemiluminescence (ECL),according tothe manufac-turer’sprotocol(KirkegaardandPerryLaboratories),quantifiedby densitometryandexpressedasaratioofactin.

2.13. Motilityassay

Themotilityassaywasconductedasdescribedby(Francoetal., 2009).Briefly,haptotacticmotilityexperimentswereperformed usingtranswellmotilitychambers(8␮mporesize)(CostarCorp.). Theundersurfaceofthepolycarbonatemembranewascoatedwith fibronectin(10␮g/mLinPBS).Aninsolublesolid-phasegradient wasestablishedbyfloatingthefilters(40minat37◦C),whichwere thenblockedwith1%BSA (1h, 37◦C).Cells(5×105)were

sus-pendedin100␮LofF-12mediumandaddedtotheupperchamber inthepresenceorabsence(control)ofdifferentconcentrationsof fucanB,incubatedat37◦Cinahumidatmosphereof2.5%CO2for 5h.Followingincubation,cellsontheuppersurfacewereremoved usingacotton-tippedapplicator.Membraneswerefixedwith2% formaldehyde for10minand stainedwith1%toluidine bluein Boraxfor10min.Thecellswhichmigratedwerevisualizedusing aninvertedmicroscope(Nikon,TE-300)andcounted.

2.14. Statisticalanalysis

Alldatawereexpressedasmean±standarddeviation. Statis-ticalanalysiswasdonebyone-wayANOVAusingthePrisma5.01 software.Tukeypost-testswereperformedformultiplegroup com-parison.Inallcases,statisticalsignificancewassetatP<0.05.

3. Resultsanddiscussion

3.1. PurificationandcharacterizationoffucanB

Fucans from S. schröederi were extracted using proteolysis and submittedtoprecipitation withdifferentconcentrations of acetone.Thefractionsunderwentelectrophoresisonagarosegel (Fig.1A),indicatingthatthefractionobtainedwith90%ofacetone (v/v),denominatedF0.9,wasafucanB-richfraction,aspreviously reported(Rocha,Moraes,etal.,2005).ThefucanBfromfraction F0.9wasfurtherpurifiedusingionexchangechromatographyona Lewatiteresin.Sulfatedpolysaccharideswereseparatedintofour newfractionselutedwith1.0,1.5,2.0,and3.0MNaCl.Thesewere namedF1.0M,F1.5M,F2.0M,andF3.0M,respectively.The com-poundsweresubmittedtoelectrophoresisonagarosegeland,as showninFig.1B,onlyasinglebandwasobtainedinF1.0M,F1.5M, andF2.0M.Electrophoreticmobilitiesofthesebandscorrespond tofucanBelectrophoreticmobility,aspreviouslyreported(Rocha,

Moraes,etal.,2005).Thisindicatesthatweobtainedthreefractions

offucanB.FractionF3.0MwasrichinfucanC(datanotshown). Thechemical composition of thedifferentfucanBfractions, F1.0M,F1.5MandF2.0M,isshowninTable1.Allofthemare com-posedofxylose,fucose,galactose,sulfateandatraceofglucuronic acid.ThemonosaccharidemolarratiosofF1.0M,F1.5M,F2.0Mare verysimilar.Themaindifferenceintheirchemicalcompositionis theproportionofsulfate,whichrangedfrom14.1%(F1.0M)to19.0 (F2.0M).

FT-IRspectroscopyisaneasy-to-usetechniqueandprovidesfast results.Itisalsoapowerfultoolforshowingsimilaritiesbetween molecules.Table2illustratesthemainsignalsobservedintheFT-IR spectraoffucanBfractionsfromS.schröederi.

Characteristic sulfate absorptions wereidentified in the FT-IR spectra of fucan B fractions: signals around 1257cm−1 are

causedprimarilybyasymmetricS Ostretchingvibration(Pielesz

&Binias, 2010), while those atapproximately 1043–1046cm−1

(4)

98 (2013) 224–232 227

Fig.1. (A)Electrophoresisin0.05Mdiaminopropaneacetatebuffer,pH9.0,offractionsobtainedbyacetoneprecipitation.(B)FucansBobtainedthroughionexchange chromatography.About5␮L(50␮g)ofeachpolysaccharidewasappliedinagarosegelpreparedindiaminopropaneacetatebufferandsubjectedtoelectrophoresis,as describedinSection2.F0.5;F0.6;F0.7;F0.9;F1.1;F1.3;F2.0–fractionsobtainedbyacetoneprecipitation.F1.0M;F1.5M;F2.0M–fucanBfractionsobtainedfromion exchangechromatography.Or.–origin.

Table1

ChemicalcompositionoffucansfrombrownseaweedS.schröederi.

Fucans Yield(%) Sulfate(%) Protein(%) Molarratio

Fucose Galactose Mannose Xylose Glucuronicacid

F1.0M 32.9 14.1 nd 1.0 0.5 0.1 0.3 >0.1

F1.5M 18.1 17.8 nd 1.0 1.9 0.0 0.5 >0.1

F2.0M 38.8 19.0 nd 1.0 2.0 0.0 0.5 >0.1

FucB2.0M1h – 15.0 nd 1.0 2.0 0.0 0.5 >0.1

FucB2.0M5h – 7.5 nd 1.0 1.8 0.0 0.5 >0.1

nd–notdetected;FucB2.0M1handFucB2.0M5h–desulfatedfucansB(seeSection2)

confirmingthepresenceofasignificantamountofsulfateinthe polysaccharides. The bandat 848cm−1 is caused by the

bend-ingvibrationofC O SofsulfategroupsattheaxialC-4position

(Pielesz&Binias,2010).TheIRfeaturesat583cm−1aretheresultof

symmetricO S Odeformationofsulfates(Synytsyaetal.,2010).In addition,allfractionsshowedsignalsat3446–3447cm−1fromthe

stretchingvibrationofO H(Camaraetal.,2011).Thebandaround 1632–1645cm−1wascausedbythecarboxylgroupofuronicacid,

whichoverlapswithsignalsofH2Odeformation(Camara etal.,

2011; Pielesz &Binias, 2010). The bandat about 1420cm−1 is

causedbysymmetricCH2deformationofgalactoseandasymmetric

deformationofCH3fromfucose(Pielesz&Binias,2010).

Themolecularweight offucanBwascalculated as21.0kDa (F1.0M),21.5kDa(F1.5M)and21.5(F2.0M)usingHPLCanalysis.

Overall,thechemistry,FT-IRspectrum,andmolecularweight ofthefucanBF2.0Misolatedherewerethesameasthosealready reportedforfucanB(Rocha,Moraes,etal.,2005),suggestingthat weobtainedthesamefucanBaspreviouslydescribed.Inaddition,

Table2

IRspectrumdataoffucanBfractionsfromthebrownseaweedS.schröederi.

Sulfatedpolysaccharides IRsignals(cm−1)

F1.0M 3446;2034;1632;1420;1257;1043;848;582 F1.5M 3445;2031;1645;1421;1257;1045;848;583 F2.0M 3447;2031;1645;1420;1257;1045;848;583

datashowedthatF1.0MandF1.5MareBfucanswithlesssulfate content.

3.2. AntiproliferativeactivityoffucansBagainstCHOcells

InordertoevaluatetheantiproliferativeeffectoffucanB,we

selectedwild-typeCHO-K1andmutantCHO-745cells,sincethe

glycosaminoglycans(GAG)producedbymutantcellswereabout

5%ofthosesynthesizedbyCHO-K1(Francoetal.,2009).However, thisdeclineinGAGdidnotaffectCHO-745proliferation,whichis similartothatoftheCHO-K1cells(Francoetal.,2001).Therefore, sincetheeffectoffucanBwassimilarinbothcelllines,wecanrule outthepossibilitythatthisoccursduetorepulsionbetweenfucans andGAGcontentofthecellsurface.Ourdatashowedthatfucans B1.0M,1.5Mand2.0Marethesamecompound,withdifferent degreesofsulfation(Tables1and 2).AsshowedinFig.2,fucan B2.0Mdisplayedadose-dependenteffect,reachingsaturationat around0.4mg/mLforbothcelllines.Thus,usingaconcentrationof 0.4mg/mL,wecomparedtheantiproliferativeeffectofthreefucans B.Fig.2alsodemonstratesthat,regardlessofthedegreeofsulfation, allfucansBexhibitantiproliferativeactivityatthesameextension. Duringthetreatmentperiod,nocellmorphologyalterationswere observed.SincefucanB2.0Mshowedthehighestyield(Table1),it wasselectedforsubsequenttestingandfromhereafteritisreferred toasfucanBorFucB.

(5)

228 98 (2013) 224–232

Fig.2. (A)EffectoffucanBonCHOcellproliferation.Theresultsarepresentedas percentageofcontrolcellsnormalizedto100%intheabsenceoffucanB(mean±SD offourdeterminations).(B)EffectoffucanBfractionsanddesulfatedfucansB(FucB 2.0M1heFucB2.0M5h)onCHO-K1proliferation.(C)EffectoffucanBonCHO-K1 growingoncoatedsurfacewithextracellularmatrixproteins.Therateofcell prolif-erationinhibitionwasdeterminedusingBrdU.Resultsareexpressedaspercentage ofcontrolcellsnormalizedto100%intheabsenceofpolysaccharide(mean±SDof fourdeterminations).***P<0.001comparedtocontrol.aP<0.05comparedtoother concentrations.bP<0.01comparedtootherconcentrations.cP<0.001comparedto otherconcentrations.dP<0.001comparedtootherfucans.

position,typeofsugarandglycosidicbranching.Structural analy-sesofoligofucansobtainedfromfucoidanofAscophyllumnodosum showedthatanticoagulantactivityrequiressulfationatallO-2and someO-3positions offucoseresidues,whereassulfationatO-4 seemsunnecessary.Inaddition,3-and/or4-linkedfucoseresidues arealwayspresent(Chevolotetal.,1999).However,thereareno dataregardingsulfationpositionforantiproliferativefucans.When fucansfromA.nodosumweredesulfated,theylostanticoagulant activity,althoughtheirabilitytoinhibittumorcellproliferationwas notaffected(Haroun-Bouhedja,Ellouali,Sinquin,&Boisson-Vidal, 2000).Inotherwords,thedegreeofsulfationisnotasimportantto Ascophyllumfucanantiproliferativeactivityassulfationposition.

Inordertodeterminetheroleofsulfategroupsinthe antipro-liferativeeffectoffucanB,weuseddesulfatedfucanB2.0M1h andFucB2.0M5h(see Section2),containing15%and 7.5%of sulfategroups,respectively.Dataindicated(Fig.2B)thatnoneof thedesulfatedpolysaccharidesdisplayedantiproliferativeactivity. ThisisaninterestingresultbecauseFucB1.0Mcontains14.1% sul-fategroups,lessthanfucanB2.0M1h.Nevertheless,thesmaller amountofsulfatedidnotaltertheantiproliferativeactivityofFucB 1.0MincomparisontootherfucansB.Sincethedesulfationmethod appliedinthisstudyremovesthesulfategroupsnonspecifically, specificrelationshipbetweensulfatepositionandbioactivity can-notbemade.Inaddition,whenwecomparedthemonosaccharide compositionofdesulfatedfucanswiththenativefucanwedidnot findanydifferencebetweenthem(Table1).Thedataindicatethat thesulfationposition,asobservedforAscophyllumfucans,ismore importantthanthedegreeofsulfationforfucanB antiprolifera-tiveactivity.Furtherinvestigationusingmorespecificdesulfation methodswillhelptodeterminetheroleofsulfationpositionon fucanBantiproliferativeactivity.

Fucans can bind several growth factors and also affect cell metabolism(Irhimeh,Fitton,Ko,Lowenthal,&Nordon,2011).Thus, fucanBwasincubatedwithCHO-K1cellsanddifferentFBS con-centrationstoidentifywhethertheeffectoffucansdependsonthe interactionoffucanandFBSmolecules.Wefoundthattheamount ofFBS didnotaffectfucanBantiproliferativeactivity(datanot shown).

(6)

98 (2013) 224–232 229

3.3. FucanBbindsfibronectinandinhibitsCHOcellproliferation

Previously,confocalmicroscopyand flow cytometryshowed that FucBbinds the extracellular matrix of CHOcells, but not theCHO cellsurface (Rocha,Bezerra, et al., 2005).In addition, fucansfromA.nodosumareabletobindfibronectinandaffectthe cytoskeletonofMDA-MB-231cells.Infact,thereare,atleast,four bindingsitesalongthefibronectinchainforfucans,twoofwhich arealsoheparin-bindingsites(Liuetal.,2005).Thus,inorderto identifywhethertheFucBmoleculartargetisfoundinthe extra-cellularmatrix,CHO-K1cellswereseededintowellscoatedwith fibronectin(FN),collagenI,collagenIV,laminin(LN)orvitronectin (VN).FucanB(from0.01mg/mLto1mg/mL)wasthenaddedand cellswerestimulatedtogrow.

Whencellswerecoated ontoLN orcollagens,FucBdidnot showed antiproliferative activity (datanot shown), although it acted as an antiproliferative molecule when VN and particu-larly FN were used as substrate for cell proliferation (Fig. 2C). Indeed, Fuc B inhibits around 60% of CHO-K1 cell prolifera-tion, which is greater than the effect observed when using

plastic assubstrate.DataindicatethatFucBbindsextracellular matrixproteins,mainlyFN,andactsasanantiproliferative com-pound.

FNcontainsabindingsiteforproteoglycan-mediatedcell

adhe-sion(Dreyfussetal.,2009),aswellasanArg-Gly-Asp(RGD)motif,

whichefficientlyactsasthebindingsiteforintegrin-mediatedcell adhesion(Kim,Turnbull,&Guimond,2011).The␣5␤1integrinand cellsurfaceproteoglycans,suchassyndecanIV,arethemajorFN adhesionreceptors.Thesecooperateinsignalingevents,including cellproliferationandcelldeath.Moreover,wepreviously demon-stratedthatthe␣5␤1integrininCHOcellsisahybridproteoglycan, containingboth heparanandchondroitin sulfatechains(Franco

etal.,2009).

TheantiproliferativeeffectoffucanBmayberelatedtoreduce FNcellsurfacereceptors.Toruleoutthispossibility,CHO-K1cells weregrownfor24hinthepresenceorabsence(control)ofFucB. Next,weappliedflowcytometryandfoundnodifferencebetween theexpressionof␣5integrinsubunitonCHOcellsgrowninthe presenceorabsenceofFucBfor24h(Fig.3A).Anothersetof exper-imentsshowedthatlevelsofheparanandchondroitinsulfateof

(7)

230 98 (2013) 224–232

Fig.5. (A)FlowcytometryanalysisofapoptoticdeathofCHO-K1cellsbyfucanB.OnerepresentativeFACSassayofthreeindependentexperimentsispresented.Annexin−/PI− (Q4),viablecells;Annexin+/PI−(Q3),cellsundergoingapoptosis;Annexin+/PI+(Q2),cellsinend-stageapoptosisoralreadydead;Anexin−/PI+(Q1),cellsinnecrosis.(B) EffectoffucanBonCHO-K1cellcycle.CHO-K1cellsweregrownto50%confluence,treatedfor24hwithfucanB,harvestedandfixedwithparaformaldehyde,thenstained withPIandanalyzedusingflowcytometry.

CHO-K1cellsdidnotchangewhenthesecellswereincubatedwith FucB(Fig.3B).

3.4. FucanBbindsFNandactiveMAPKs

Cell-matrixcommunicationoccursmainlythroughthebinding ofmatrixproteinstoreceptorspresentonthecellsurface,andinthe caseofthefibronectin,itoccurswithmembraneintegrins.Thus,the nextstepwastoinvestigatewhichproteinsresponsiblefor intracel-lularsignalingcouldbeaffectedbyFucB.Thefirsttobeinvestigated wasfocaladhesionkinase(FAK),sinceitiscloselyassociatedwith integrins(Telcietal.,2008).Westernblotanalysisdemonstrated thattreatingCHOcellswithFucBinducedsuperiorexpressionof focaladhesionkinase(FAK)(Fig.4AandB).Thehighestlevelof expressionofFAKoccurredwith12hofexposuretoFucB,which wasdecreasedtomatchthecontrolat48h.

ActivatingFAKleadstoactivationofseveralintracellular pro-teins(Telcietal.,2008),amongthem,proteinkinaseC(PKC).After exposuretoFucB,cellsexhibitedactivationofPKC(Fig.4CandD). However,whenthecellswereincubatedwithFucBandaspecific PKCinhibitor,theantiproliferativeeffectofFucBwasnot signifi-cantlyaffected,despiteshowingatendencytodecrease(Fig.4E).

FAKcanpromoteactivationoftheRasprotein,leadingto activa-tionoftheMAPK/ERKpathway,animportantcellsurvivalpathway. Thus,usingWesternblotanalysis,wefoundthattreatingCHOcells

withFucBinducesactivationofRas(Fig.4FandG).Asobserved withFAK,thehighestlevelsofRASactivationwereobservedafter 12hofexposuretofucan.Following48hoftreatmentwithFucB, RASlevelsbecamesimilartothoserecordedincellsnotexposedto FucB.

ThenextproteinanalyzedwasERK.Fig.4HandIshowsthat cellsexposedtoFucBexhibitedthesamepatternofERKexpression observedforFAKandRAS.AhighamountofERKwasrecordedafter 12hofincubationwithFucB,whichdecreasedtime-dependently. RASoccasionally regulatestheactivityofdownstream effec-torssuchasMEKandERK.Therefore,aspecificMEKinhibitorwas usedtoassesswhethertheantiproliferativeeffectofFucBwas dependentonthisprotein.CHOcellswereexposedtoFucBandthe MEKinhibitor(PD98059)for24h.Next,cellproliferationwas ana-lyzedusingBrdUincorporation.DatademonstratedthattheMEK inhibitorabolishedtheFucBeffect(Fig.4J).

3.5. EffectoffucanBonCHOcellcycle

Data showed that the antiproliferative effect of fucan B is dependent on activation of the FAK/RAS/MEK/ERK cellular signalingroute.Severalstudiesshowthatfucanscaninducecell deathbystimulatingthispathway(Kimetal.,2011;Kim,Lee,Choi,

&Moon,2010;Li etal.,2008; Liuet al.,2005;Nabeyrat, Jones,

(8)

98 (2013) 224–232 231

Fig.6. (A)MotilityonfibronectinofCHO-K1cellsexposedtofucanB.Cellsontheothersideofthemembranewerestainedwith1%toluidineblueandcounted.Resultsare expressedasmean±SDofthreedeterminations.(B)CHO-K1transwellmigrationat40␮g/mLand200␮g/mLoffucanB.Cellsshowpurpleordarkbluecolor.

insightonthemechanismofFucBinducedcelldeath,cellswere incubatedwithFucB,stainedwithannexin-V(apoptosisindicator) andiodidepropidium(necrosisindicator)andsubmittedtoflow cytometryanalysis.AsseeninFig.5A,FucBdidnotincreasethe percentageofiodidepropidiumorannexinV-positivecellsin com-parisontothecontrol.ThisdatasuggestthatFucBdoesnotinduce celldeath.

InordertoestablishtheeffectofFucBonCHOcellcycle pro-gression,flowcytometryanalysiswasperformedoncellstreated withFucB.Administrationoffucanpromoteda20%increaseinthe proportionofcellsintheG1phaseandacorrespondingdecrease

intheproportionofcellsintheG2/Mphase(Fig.5B).Otherfucans

inhibitcellproliferationbyblockingthecellcycle.Forinstance, fucansfromtheseaweedsTurbinariaornata(Deslandesetal.,2000) andBifurcariabifurcatainhibitlungcarcinoma(NSCLC-N6) prolif-erationbyblockingitspassageintheG1 phaseofthecellcycle

(Moreauetal.,2006).Thiseffectwasalsoobservedwithsulfated

fucansfromtheseaweedA.nodosum,whichinhibitproliferationof NSCLC-N6celllinesbyblockingcellgrowthintheG1phase(Riou

etal.,1996).However,themolecularmechanismsofthesefucans asblockingcellcyclecompoundsareyettobedetermined.

3.6. EffectoffucanBonCHOcellmigration

Integrinsinteractwiththeextracellularmatrix,initiating sev-eralintracellularpathwaysthatplayimportantrolesduringmany processes,includingcellproliferation,differentiationand

migra-tion(Schaller,2010).TheFAKpathwayisinvolvedintheregulation

ofcellmotility.PublisheddataregardingtheroleofFAKincell migration are intriguing, given that activationof this molecule istypicallyassociatedwithincreasedmigration(Schaller,2010). However,severalstudiesshowthatphosphorylationofFAKalso inhibits migration (Borensztajn, Peppelenbosch, & Spek, 2010;

Schaller, 2010).Since FucBincreases FAKphosphorylation,we

investigatedwhetherFucBcouldregulatetheCHO-K1cell migra-tiononfibronectin.Fig.6indicatesthatFucBinhibitscellmigration dose-dependently,reachingsaturationataround0.1mg/mL. How-ever,whenlamininwasthesubstrate,noeffectwasobserveduntil 1mg/mLofFucB(datanotshown).

Anumberofstudieshaveshownthatfucansinhibitendothelial cellmigrationbybindingtoseveralgrowthfactors(Girauxetal.,

1998;Lakeetal.,2006).However,sincewedidnotusefetalbovine

seruminthecellmigratorytest,thispossibilitywasruledout.Thus, wehypothesizedthatFucBbindsfibronectinandactivates integ-rin,leadingtodecreasedcellmigration.Thiseffectisrelatedtothe abilityofthepolysaccharidetopromotephosphorylationofFAK.

4. Conclusion

ThisstudyevaluatedthefucanBeffectonCHO-K1cell prolifer-ationandmigration.FucanBexhibitedadose-dependenteffect, which depended on its degree of sulfation. Data suggest that fucanBbinds fibronectinand activatesintegrin, which induces FAK/RAS/MEK/ERKactivation.ERKblocks cellcycleprogression. FAKactivationalsoinhibitsCHO-K1migrationonfibronectin.This informationcouldhelpthedevelopmentofnewantitumoragents. Furthermore,ourdataindicatethatfurtherstudiesareneededto evaluatetheinvivoeffectoffucanB.

Acknowledgments

(9)

232 98 (2013) 224–232

References

Aisa,Y.,Miyakawa,Y.,Nakazato,T.,Shibata,H.,Saito,K.,Ikeda,Y.,etal.(2005). FucoidaninducesapoptosisofhumanHS-sultancellsaccompaniedby activa-tionofcaspase-3anddown-regulationofERKpathways.AmericanJournalof Hematology,78(1),7–14.

Almeida-Lima,J.,Dantas-Santos, N.,Gomes,D. L.,Cordeiro,S.L.,Sabry,D. A., Costa,L.S.,etal.(2011).Evaluationofacuteandsubchronictoxicityofa non-anticoagulant,butantithromboticalgalheterofucanfromthe Spatoglos-sumschroederi in Wistar rats.Revista Brasileira DeFarmacognosia, 21(4), 674–679.

Athukorala,Y.A.,Jee,G.N.,Kim,Y.,Kim,G.,Ha,S.,Kang,J.,etal.(2009). Antiprolif-erativeactivityofsulfatedpolysaccharideisolatedfromanenzymaticdigest ofEckloniacavaontheU-937cellline.JournalofAppliedPhycology,21(5), 307–314.

Borensztajn,K.,Peppelenbosch,M.P.,&Spek,C.A.(2010).CoagulationFactorXa inhibitscancercellmigrationviaLIMK1-mediatedcofilininactivation. Throm-bosisResearch,125(6),e323–e328.

Camara,R.B.,Costa,L.S.,Fidelis,G.P.,Nobre,L.T.,Dantas-Santos,N.,Cordeiro,S.L., etal.(2011).HeterofucansfromthebrownseaweedCanistrocarpuscervicornis withanticoagulantandantioxidantactivities.MarineDrugs,9(1),124–138. Chevolot,L.,Foucault,A.,Chaubet,F.,Kervarec,N.,Sinquin,C.,Fisher,A.M.,etal.

(1999).Furtherdataonthestructureofbrownseaweedfucans:Relationships withanticoagulantactivity.CarbohydrateResearch,319(1–4),154–165. Costa,L.S.,Telles,C.B.,Oliveira,R.M.,Nobre,L.T.,Dantas-Santos,N.,Camara,R.B.,

etal.(2011).HeterofucanfromSargassumfilipendulainducesapoptosisinHeLa cells.MarineDrugs,9(4),603–614.

Deslandes,E.,Pondaven, P.,Auperin,T.,Roussakis,C.,Guézennec,C.,Stiger,J., etal. (2000).Preliminarystudy oftheinvitroantiproliferativeeffectofa hydroethanolicextractfromthesubtropicalseaweedTurbinariaornata(Turner) J.Agardhonahumannon-small-cellbronchopulmonarycarcinomaline (NSCLC-N6).JournalofAppliedPhycology,12(3),257–262.

Dietrich, C. P., & Dietrich, S. M. (1976). Electrophoretic behaviour of acidic mucopolysaccharides in diamine buffers. Analytical Biochemistry, 70(2), 645–647.

Dreyfuss,J.L.,Regatieri,C.V.,Jarrouge,T.R.,Cavalheiro,R.P.,Sampaio,L.O.,&Nader, H.B.(2009).Heparansulfateproteoglycans:Structure,proteininteractionsand cellsignaling.AnaisdaAcademiaBrasileiradeCiencias,81(3),409–429. Franco,C.R.,Rocha,H.A.,Trindade,E.S.,Santos,I.A.,Leite,E.L.,Veiga,S.S.,etal.

(2001).Heparansulfateandcontrolofcelldivision:Adhesionandproliferation ofmutantCHO-745cellslackingxylosyltransferase.BrazilianJournalofMedical andBiologicalResearch,34(8),971–975.

Franco,C.R.,Trindade,E.S.,Rocha,H.A.,daSilveira,R.B.,Paludo,K.S.,Chammas,R., etal.(2009).Glycosaminoglycanchainsfromalpha5beta1integrinareinvolved infibronectin-dependentcellmigration.BiochemistryandCellBiology-Biochimie etBiologieCellulaire,87(4),677–686.

Giraux,J.L.,Matou,S.,Bros,A.,Tapon-Bretaudiere,J.,Letourneur,D.,&Fischer, A.M.(1998).Modulationofhumanendothelialcellproliferationand migra-tion by fucoidan and heparin. European Journal of Cell Biology, 77(4), 352–359.

Haroun-Bouhedja,F.,Ellouali,M.,Sinquin,C.,&Boisson-Vidal,C.(2000).Relationship betweensulfategroupsandbiologicalactivitiesoffucans.ThrombosisResearch, 100(5),453–459.

Irhimeh,M.R.,Fitton,J.H.,Ko,K.H.,Lowenthal,R.M.,&Nordon,R.E.(2011). For-mationofanadherenthematopoieticexpansioncultureusingfucoidan.Annals ofHematology,90(9),1005–1015.

Jiao,G.L.,Yu,G.L.,Zhang,J.Z.,&Ewart,H.S.(2011).ChemicalStructuresand BioactivitiesofSulfatedPolysaccharidesfromMarineAlgae.MarineDrugs,9(2), 196–223.

Kim,S.H.,Turnbull,J.,&Guimond,S.(2011).Extracellularmatrixandcellsignalling: Thedynamiccooperationofintegrin,proteoglycanandgrowthfactorreceptor. JournalofEndocrinology,209(2),139–151.

Kim,W.J.,Lee,S.J.,Choi,Y.D.,&Moon,S.K.(2010).Decursininhibitsgrowth ofhumanbladderandcoloncancercellsviaapoptosis,G1-phasecellcycle arrestandextracellularsignal-regulatedkinaseactivation.InternationalJournal ofMolecularMedicine,25(4),635–641.

Lake,A.C.,Vassy,R.,DiBenedetto,M.,Lavigne,D.,LeVisage,C.,Perret,G.Y.,etal. (2006).LowmolecularweightfucoidanincreasesVEGF165-inducedendothelial cellmigrationbyenhancingVEGF165bindingtoVEGFR-2andNRP1.Journalof BiologicalChemistry,281(49),37844–37852.

Li,B.,Lu,F.,Wei,X.J.,&Zhao,R.X.(2008).Fucoidan:Structureandbioactivity. Molecules,13(8),1671–1695.

Liu,J.M.,Bignon,J.,Haroun-Bouhedja,F.,Bittoun,P.,Vassy,J.,Fermandjian,S.,etal. (2005).Inhibitoryeffectoffucoidanontheadhesionofadenocarcinomacellsto fibronectin.AnticancerResearch,25(3B),2129–2133.

Moreau,D.,Thomas-Guyon,H.,Jacquot,C.,Jugé,M.,Culioli,G.,Ortalo-Magné,A.,etal. (2006).AnextractfromthebrownalgaBifurcariabifurcatainducesirreversible arrestofcellproliferationinanon-small-cellbronchopulmonarycarcinomaline. JournalofAppliedPhycology,18(1),87–93.

Nabeyrat,E.,Jones,G.E.,Fenwick,P.S.,Barnes,P.J.,&Donnelly,L.E.(2003). Mitogen-activatedproteinkinasesmediateperoxynitrite-inducedcelldeathinhuman bronchialepithelialcells.AmericanJournalofPhysiology–LungCellularand MolecularPhysiology,284(6),L1112–L1120.

Pielesz,A.,&Binias,W.(2010).CelluloseacetatemembraneelectrophoresisandFTIR spectroscopyasmethodsofidentifyingafucoidaninFucusvesiculosusLinnaeus. CarbohydrateResearch,345(18),2676–2682.

Pomin,V.H.(2010).Structuralandfunctionalinsightsintosulfatedgalactans:A systematicreview.GlycoconjugateJournal,27(1),1–12.

Riou,D.,Colliec-Jouault,S.,PinczonduSel,D.,Bosch,S.,Siavoshian,S.,LeBert,V., etal.(1996).Antitumorandantiproliferativeeffectsofafucanextractedfrom ascophyllumnodosumagainstanon-small-cellbronchopulmonarycarcinoma line.AnticancerResearch,16(3A),1213–1218.

Rocha,H.A.,Bezerra,L.C.,deAlbuquerque,I.R.,Costa,L.S.,Guerra,C.M.,deAbreu, L.D.,etal.(2005).AxylogalactofucanfromthebrownseaweedSpatoglossum schroederistimulatesthesynthesisofanantithromboticheparansulfatefrom endothelialcells.PlantaMedica,71(4),379–381.

Rocha,H.A.,Franco,C.R.,Trindade,E.S.,Veiga,S.S.,Leite,E.L.,Nader,H.B.,etal. (2005).FucaninhibitsChinesehamsterovarycell(CHO)adhesiontofibronectin bybindingtotheextracellularmatrix.PlantaMedica,71(7),628–633. Rocha,H.A.,Moraes,F.A.,Trindade,E.S.,Franco,C.R.,Torquato,R.J.,Veiga,S.S.,etal.

(2005).Structuralandhemostaticactivitiesofasulfatedgalactofucanfromthe brownalgaSpatoglossumschroederi.Anidealantithromboticagent?Journalof BiologicalChemistry,280(50),41278–41288.

Schaller,M.D.(2010).CellularfunctionsofFAKkinases:Insightintomolecular mechanismsandnovelfunctions.JournalofCellScience,123(Pt7),1007–1013. Synytsya,A.,Kim,W.,Kim,S.,Pohl,R.,Synytsya,A.,Kvasniˇcka,F.,etal.(2010).

Struc-tureandantitumouractivityoffucoidanisolatedfromsporophyllofKorean brownseaweedUndariapinnatifida.CarbohydratePolymers,81,41–48. Telci,D.,Wang,Z.,Li,X.,Verderio,E.A.,Humphries,M.J.,Baccarini,M.,etal.(2008).

Fibronectin-tissuetransglutaminasematrixrescuesRGD-impairedcell adhe-sionthroughsyndecan-4andbeta1integrinco-signaling.JournalofBiological Chemistry,283(30),20937–20947.

Yamasaki-Miyamoto,Y.,Yamasaki,M.,Tachibana,H.,&Yamada,K.(2009).Fucoidan inducesapoptosisthroughactivationofcaspase-8onhumanbreastcancer MCF-7cells.JournalofAgriculturalandFoodChemistry,57(18),8677–8682. Zhang,Z.,Wang,F.,Wang,X.,Liu,X.,Hou,Y.,&Zhang,Q.(2010).Extractionofthe

Referências

Documentos relacionados

According to data from the present study on this cell line, when the cells were exposed to a light:dark cycle, Per1 , Per2 , and Bmal1 genes showed an expression pattern

When MCF-7 cells were exposed to exudates from elicited embrionary axes (Figure 3A) and cotyledons (Figure 3B), a biphasic effect on cell proliferation was

ovatum leaf extract, changes were not observed in the morphology of SiHa cells, but there has been a reduction in cell growth, possibly due to the antiproliferative effect of

When grouped for menopausal state (data not shown) at baseline, body weight, BMI, skinfolds, waist circumference, and maximal strength, did not dif- fer between pre- and

Our results suggested no effect on cell proliferation, since the same number of cells for chitosan substrates (CP and CN) were counted when compared to the negative control

The compounds at the concentration tested in this work against human tumor cell lines do not shown significant cytotoxic activity on pheripheral blood mononuclear cells (data

Evaluating the antiproliferative activity on the non- tumor cell line HaCat (keratinocyte), the extracts and the prenylated flavonoids affected the proliferation of these cells

knowledge”: “I did not know how to do it”, “I did not know I should report and/or seek specialized care”, and “I did not know it was considered an accident.” Considering