• Nenhum resultado encontrado

INVESTIGATION OF STURM-LIOUVILLE PROBLEM SOLVABILITY IN THE PROCESS OF ASYMPTOTIC SERIES CREATION

N/A
N/A
Protected

Academic year: 2017

Share "INVESTIGATION OF STURM-LIOUVILLE PROBLEM SOLVABILITY IN THE PROCESS OF ASYMPTOTIC SERIES CREATION"

Copied!
5
0
0

Texto

(1)

А Е Е А Ы Е , Е А

е яб ь–к яб ь 2015 15 № 5 ISSN 2226-1494 http://ntv.ifmo.ru/ SCIENTIFIC AND TECHNICAL JOURNAL OF INFORMATION TECHNOLOGIES, MECHANICS AND OPTICS September–October 2015 Vol. 15 No 5 ISSN 2226-1494 http://ntv.ifmo.ru/en

ɍȾɄ 517.958

ɂɋɋɅȿȾɈȼȺɇɂȿ

ɊȺɁɊȿɒɂɆɈɋɌɂ

ɁȺȾȺɑɂ

ɒɌɍɊɆȺ

ɅɂɍȼɂɅɅə

ɉɊɂ

ɉɈɋɌɊɈȿɇɂɂ

ȺɋɂɆɉɌɈɌɂɑȿɋɄɈȽɈ

ɊəȾȺ

Ⱥ.ɂ. ɉɨɩɨɜa a

, - , 197101,

А : popov239@gmail.com

ɂɧɮɨɪɦɚɰɢɹɨɫɬɚɬɶɟ

10.06.15, 06.07.15

doi:10.17586/2226-1494-2015-15-5-916-920 –

ɋɫɵɥɤɚɞɥɹɰɢɬɢɪɨɜɚɧɢɹ: А. . –

// - , . 2015. . 15. № 5. . 916–920.

Ⱥɧɧɨɬɚɰɢɹ

ɉɪɟɞɦɟɬ ɢɫɫɥɟɞɨɜɚɧɢɹ.

– .

, .

.

.

-. Ɇɟɬɨɞ.

.

( ) .

.Ɉɫɧɨɜɧɨɣɪɟɡɭɥɶɬɚɬ.

. , ,

. ɉɪɚɤɬɢɱɟɫɤɚɹ ɡɧɚɱɢɦɨɫɬɶ.

.

, , ( ).

Ʉɥɸɱɟɜɵɟɫɥɨɜɚ

– , , , ,

.

Ȼɥɚɝɨɞɚɪɧɨɫɬɢ

( 074-U01),

( 2014/190, 14.Z50.31.0031 1.754.2014/K), MK-5001.2015.1.

INVESTIGATION OF STURM-LIOUVILLE PROBLEM SOLVABILITY

IN THE PROCESS OF ASYMPTOTIC SERIES CREATION

A.I. Popov

a

a ITMO University, Saint Petersburg, 197101, Russian Federation

Corresponding author: popov239@gmail.com

Article info

Received 10.06.15, accepted 06.07.15 doi:10.17586/2226-1494-2015-15-5-916-920 Article in Russian

For citation: Popov A.I. Investigation of Sturm-Liouville problem solvability in the process of asymptotic series creation. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2015, vol. 15, no. 5, pp. 916–920.

Abstract

(2)

Sturm-Liouville problem in general case for formal power series are proved in the paper. As a particular case, the result is valid for functions instead of formal power series. Practical Relevance. The result is usable at creation of the solutions for partial differential equation in the form of power series. The result is general and is applicable to particular cases of such solutions, e.g., to asymptotic series or to functions (convergent power series).

Keywords

Sturm-Liouville problem, asymptotic expansion, power series, boundary problem, ordinary differential equations.

Acknowledgements

This work was partially financially supported by the Government of the Russian Federation (grant 074-U01), by the Ministry of Science and Education of the Russian Federation (Government contract 2014/190, Projects No 14.Z50.31.0031 and No. 1.754.2014/K), by grant MK-5001.2015.1 of the President of the Russian Federation.

ȼɜɟɞɟɧɢɟ

– .

( ., , [1, 2] ). –

, , , ,

. . [3–5]. ( ., , [6–9]).

, . ,

, .

[10–13]. .

– ,

( ) ( ).

.

-, ,

.

- [14, 15].

– .

.

Ɉɫɧɨɜɧɚɹɬɟɨɪɟɦɚ

Ɍɟɨɪɟɦɚ. – :

1

0 0 1 =0

1 0 1 =

= ( ( ) ) ( ) = 0,

= ( ) | = 0,

= ( ) | = 0.

x x

x x

Ly p x y q x y

y y y

y y y

  

   

   

(1)

( ) > 0.

p x

, , = 0,1

j j j

  – ; p x q x( ), ( ) – ( ).

Ly, 0y, 1y (1). ( )q x – .

y0 0.

0

1

= ,

= , = ,

Ly F

y A

y B

     

 

:

1

1

1 0 = 0 0 =0 0

0

1 1

( ) | ( ) | = ( ) ( ) .

β

x

x x x x x

B A

p x yp x yF x y x dx

(2)

( ), ,

F x A B – .

Ɂɚɦɟɱɚɧɢɟ. , ,

x, ,

x. p x( ) > 0 , p x( )

0 , . .

.

Ⱦɨɤɚɡɚɬɟɥɶɫɬɜɨ. .

(3)

, . . .

. :

1 1 1 1 1 1

0 0 0 0 0 0 0

0 0 0 0 0

1 1

1 1

0 0 0 0 0 0

0 0

(( ) ) = ( ) = | =

= | | ( ) .

x x x x x x

x

x x x x x

x x

x x

x x x x

py qy y dx py y dx qyy dx py y py y dx qyy dx

py y py y y py dx qyy dx

         

      

(4)

(4) :

0

0 0 0 0

1

( ) = ( ),

y x  y x

0

0 0

1 1

( ) = A ( ),

y x  y x

 

0

0 1 0 1

1

β

( ) = ( ),

β

y x  y x (5)

0 1 1 1 1 β ( ) = ( ). β β B

y x  y x (6)

0 1

0 1 0 1 1 0 1

0 1 1

0 0

0 0 0 0 0 0 1 0 1

1 1

1 0

0 0 0 0 0 1 0 =1 0 0 =0

0

1 1 1

β (( ) ) = ( ) ( ) ( ) ( ) β β β ( ) ( ) ( ) ( ) ( ) ( ) β ( ) ( ) (( ) ) = ( ) | ( ) | . β x x x

x x x x

x B

py qy y dx p x y x p x yy x

A

p x y x p x yy x p x y y x

B A

p x y y x y py qy dx p x y p x y

                    

(7) , 1 1 0 0 0 0 (( ) ) = . x x

x py  qy y dxx Fy dx

(8)

(7) (8) (2), . . .

Ⱦɨɫɬɚɬɨɱɧɨɫɬɶ.

ψ – :

=0

=0

( ψ) ψ= ,

ψ| = ,

ψ | = .

x x

x x

p q F

A B      (9)

. , ψ . y=ψy0.

0 0

(py ) qy= (pψ ) qψ(py ) qy =F,

. . y . . (9)

0

y x x0 x1:

1 1 1 1 1 1

0 0 0 0 0 0 0

0 0 0 0 0

1

1 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0

0

(( ψ) ψ) = ( ψ) ψ = ψ | ψ ψ =

= (ψ ψ) | ψ(( ) ) = (( ) ( )) | = ( ) | ,

x x x x x x

x

x x x x x

x

x x x

x x x x

p q y dx p y dx q y dx p y p y dx q y dx

p y y py qy dx p y y y y y y p y y y y

                       

. . 1

0 1 1 0 1 1 0 1 1

0

0 0 0 0 0 0 0 0

(( ) ψ) = ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ).

x

x p q y dx p x y x y x p x y x y x

p x y x y x p x y x y x

     

 

 

(10)

(5)–(6) (10),

0 1

0 1 1 0 1 1 0 1 1

0 1

0

0 0 0 0 0 0 0 0

1

β

(( ) ψ) = ( ) ( ) ( ) ( ) ( ) ( )

β

( ) ( ) ( ) ( ) ( ) ( ).

x

x p q y dx p x y x y x p x y x y x

p x y x y x p x y x y x

(4)

1 1

0 0

0 0

(( ) ) = .

x x

x py  qy y dxxFy dx

(12)

1

1 0 =1 0 0 =0 0

0

1 1

( ) | ( ) | = ( ) ( ) .

β

x

x x x x x

B A

p x yp x yF x y x dx

(13)

(11)–(13) ,

0

1 0 =1 0 0 =0 1 1 0 1 1 0 1 1

1 1 1

0

0 0 0 0 0 0 0 0

1

β

( ) | ( ) | = ( ) ( ) ( ) ( ) ( ) ( )

β β

( ) ( ) ( ) ( ) ( ) ( ).

x x x x

B A

p x y p x y p x y x y x p x y x y x

p x y x y x p x y x y x

  

  

 

(14)

(14) x0 x1. x0 x1.

(14) , , x0 x1,

:

0

0 0 0 0 0 0 0 0 0 0 0

1 1

( ) A ( ) = ( ) ( ) ( ) ( ) ( ) ( ).

p x y x p x y x y xp xy x y x

  

  (15)

0

1 0 1 1 1 0 1 1 0 1 1

1 1

β

( ) ( ) = ( ) ( ) ( ) ( ) ( ) ( ).

β β

B

p x y x p x y x y x p x y x y x (16)

0( )1 0

y x  . . y x0( ) = 01 ,

1y= (β0yβ1y) |x x=1= 0

, y0|x x=1= 0. , y0 – :

0 0

0 =1

0 =1

( ( ) ) ( ) = 0, | = 0,

| = 0.

x x

x x

p x y q x y

y

y

   

 

 

, y0 0, . p> 0, β1 0.

(16) p x y x( )1 0( )1 β1,

1 1 0 1

=β ( ) β ( ),

B y x  y x

. . x=x1.

(15):

0

0 0 0 0 0 0 0 0 0 0 0

1 1

( ) A ( ) = ( ) ( ) ( ) ( ) ( ) ( ).

p x y x p x y x y xp xy x y x

  

 

, p> 0, y x0( 0)0 ( y x0( )1 ),  1 0,

0

=

x x :

1y x( 0) 0y x( 0) = .A

  

Ɂɚɤɥɸɱɟɧɢɟ

– ,

- .

.

.

References

1. Brannan J.R., Boyce W.E. Differential Equations with Boundary Value Problems: An Introduction to

Modern Methods and Applications. 2nd ed. NY, John Wiley and Sons, 2010, 992 p.

2. Levitan B.M., Sargsyan I.S. Sturm-Liouville and Dirac Operators. Moscow, Nauka Publ., 1988, 431 p. (In Russian)

3. Kong L., Kong Q. Second-order boundary value problems with nonhomogeneous boundary conditions (II).

Journal of Mathematical Analysis and Applications, 2007, vol. 330, no. 2, pp. 1393–1411. doi:

(5)

Matematiques, 1989, vol. 33, no. 1, pp. 47–57.

5. Pokornyi Yu.V., Pryadiev V.L. Some problems of the qualitative Sturm-Liouville theory on a spatial network. Russian Mathematical Surveys, 2004, vol. 59, no. 3, pp. 515–552. doi: 10.1070/RM2004v059n03ABEH000738

6. Popov I.Yu., Lobanov I.S., Popov S.I., Popov A.I., Gerya T.V. Practical analytical solutions for benchmarking of 2-D and 3-D geodynamic Stokes problems with variable viscosity. Solid Earth, 2014, vol. 5, no. 1, pp. 461–476. doi: 10.5194/se-5-461-2014

7. Gerya T., Lobanov I.S., Popov A.I., Popov I.Yu. Numerical approach to the Stokes problem with high contrasts in viscosity. Applied Mathematics and Computation, 2014, vol. 235, pp. 17–25. doi: 10.1016/j.amc.2014.02.084

8. Popov A.I., Lobanov I.S., Popov I.Yu., Gerya T.V. Benchmark solutions for nanoflows. Nanosystems:

Physics, Chemistry, Mathematics, 2014, vol. 5, no. 3, pp. 391–399.

9. Popov A.I., Lobanov I.S., Popov I.Yu., Gerya T.V. On the Stokes flow computation algorithm based on Woodbury formula. Nanosystems: Physics, Chemistry, Mathematics, 2015, vol. 6, no. 1, pp. 140–145. doi: 10.17586/2220-8054-2015-6-1-140-145

10. Babich V.M. The space-time ray method and quasiphotons. Journal of Mathematical Sciences, 2008, vol. 148, no. 5, pp. 633–638. doi: 10.1007/s10958-008-0013-4

11. Babich V.M. Formal power series and their applications in the mathematical theory of diffraction. Journal of

Mathematical Sciences, 2013, vol. 194, no. 1, pp. 1–7. doi: 10.1007/s10958-013-1500-9

12. Pankratova T.F. Tunneling in multidimensional wells. Nanosystems: Physics, Chemistry, Mathematics, 2015, vol. 6, no. 1, pp. 113–121. doi: 10.17586/2220-8054-2015-6-1-113-121

13. Bagrov V.G., Belov V.V., Trifonov A.Yu. Semiclassical trajectory-coherent approximation in quantum mechanics. Annals of Physics, 1996, vol. 246, no. 2, pp. 231–290. doi: 10.1006/aphy.1996.0027

14. Babich V.M., Popov A.I. Quasiphotons of waves on the surface of a heavy liquid. Journal of Mathematical

Sciences, 2011, vol. 173, no. 3, pp. 243–253. doi: 10.1007/s10958-011-0247-4

15. Popov A.I. Wave walls for waves on the surface of a heavy liquid. Journal of Mathematical Sciences, 2013, vol. 194, no. 1, pp. 83–97. doi: 10.1007/s10958-013-1509-0

П А т И е ич – - , , - , 197101,

, popov239@gmail.com

Anton I. Popov – research engineer, ITMO University, Saint Petersburg, 197101, Russian Federation,

Referências

Documentos relacionados

The goal of the latter part of [D] is to prove the solvability of the asymptotic Dirichlet problem, and hence also the existence of entire bounded non-constant solutions, for

O presente trabalho visa mensurar a percepção dos auditores Moçambicanos sobre conceito de IA tendo em consideração o contexto cultural e legal onde esses

Asymptotic form of the eigenvalue of a singularly perturbed elliptic problem with a small parameter in the boundary condition.. Perturbation of the laplacian spectrum when there is

The goal of this work is to prove the uniqueness theorems for the solution of the inverse problem which determines the potential function q ( x ) and the constants h, h 1 by the

The asymptotic homogenization method is applied to obtain formal asymptotic solution and the homogenized solution of a Dirichlet boundary-value problem for an elliptic equation

The resulting multilayer problem for the coefficients of the eigenfunction series expansion of the approximate solution is then solved in the Laplace space.. Again, the approximation

Sendo assim, neste tra- balho apresentaremos um método alternativo para se resolver analiticamente uma classe de problemas de valor inicial e de contorno para equações

Embora haja disposições legais específicas para esse tipo societário, sua constituição não precisa, necessariamente, limitar-se a esta forma básica, podendo ser