• Nenhum resultado encontrado

DETERMINING THE THERMAL RESISTANCE OF A VENTILATED HINGED FACADE SYSTEM LAYER

N/A
N/A
Protected

Academic year: 2017

Share "DETERMINING THE THERMAL RESISTANCE OF A VENTILATED HINGED FACADE SYSTEM LAYER"

Copied!
5
0
0

Texto

(1)

692.23:699.86

. . агари , Н.Ю. П юще

«

»

Ч

.

-.

:

-, ,

-.

V.G. Gagarin, N.Yu. Plyushchenko

MGSU

DETERMINING

THE THERMAL RESISTANCE

OF A VENTILATED HINGED

FACADE SYSTEM LAYER

Enveloping struМturОs аТtС СТnРОН ПКхКНО sвstОms КrО noа a-days widely used for moisture control of enveloping structures, pre-vention of overheating of the structures by insolation, saving the constructions from atmospheric moisture and also for correspond-ence with the raised requirements to thermal protection of the en-veloping structures, aimed also at reducing energy consumption. In the winter conditions the influence of air layer on the thermal insula-tion parameters is usually neglected.

In the article the thermal resistance of an air gap and is con-sidered and its effect in the calculation of the heat resistance of a building envelope with hinged facade system is analyzed in the con-ditions of cold weather. The thermal resistance of the air layer de-termines how the heat losses decrease.

Key words: ventilated layer, hinged facade system, thermal resistance.

,

(

)

(

.).

,

-,

-.

-,

-,

,

Д1—

3].

At the present time in domestic

construc-tion and abroad enveloping structures with

hinged facade systems (HFS) with ventilated

air layer are widely used (fig.). Their use is

aimed at moisture control of enveloping

tures, prevention of overheating of the

struc-tures by insolation, saving the constructions

from atmospheric moisture. Also the walls

with HFS with ventilated air layer are widely

used for correspondence with the raised

re-quirements to thermal protection of the

envel-oping structures, aimed also at reducing

ener-gy consumption [1

3].

- Structure of a wall with

HFS with ventilated air layer

Д4—

10Ж,

(2)

[11

—16Ж.

-.

,

.

Д17Ж.

Д18Ж.

.

II-3

—79* Д19Ж,

-.

,

-R

Д11Ж:

[11

16]. One of the main questions was

de-termining the influence of thermally

conduc-tive inclusions. Less attention was paid to the

way the ventilated air layer in HFS influenced

the thermal insulation.

In the winter conditions the influence of

air layer on the thermal insulation parameters

is neglected [17]. The change of heat

insula-tion of covers on summer condiinsula-tions is

pre-sented in [18].

In the given article the determination of

thermal resistance of an air layer is observed

and its influence in the calculation of the heat

resistance of a building envelope with hinged

facade system is analyzed in the conditions of

winter.

TСО mКТn МСКrКМtОrТstТМs oП ПКхКНО СОКt Т

n-sulation on the design stage may be calculated

according to the Construction Norms SNiP

II-3

79* [19], but the presented calculations are

not enough for the full description of the

pro-cess of heat transfer through an enveloping

structure with HFS with a ventilated air layer.

So in the basic equation of the reduced

total thermal resistance

R

two components

of heat transfer is taken into account [11]:

.

,

R

R

R

(1)

R

-,

2

° / ;

.

R

-,

-,

, . .

,

,

2

° / ;

R

,

2

° / .

where

R

is a reduced total thermal

re-sistance of the whole construction, m

2

°

/W;

.

R

is a reduced total thermal resistance

of a wall structure, including basic layers,

in-sulation layer and thermally conductive

inclu-sions, such as supports, closed to covering, m

2

°

/W;

R

an effective reduced total

thermal resistance of an air layer, m

2

°

/W.

From the other hand

. .

,

t

t

t

t

t

t

R

R

R

q

q

q

(2)

.

,

.

R

R

-,

2

° / ;

t

,

t

-, ° ;

t

-, ° ;

q

-, /

2

.

where

R

.

,

R

.

are reduced total

thermal resistances of the parts of the

con-struction from inner surface to air layer and

from air layer to outer surface

correspond-ently, m

2

°

/W;

t

,

t

the temperature of

ТnnОr КnН outОr КТr МorrОsponНОntХв, °

;

t

the air

tОmpОrКturО Тn tСО КТr ХКвОr, °

;

(3)

t

,

q

,

R

-.

R

.

(2)

.

R

(1)

,

1/

,

,

-, 1/

.

,

-.

R

,

.

R

.

(1) (2)

-.

R

The parameters

t

,

q

, and the value

R

will be changed with the height of the

envelop-ing structure part. The characteristics

R

.

in the equation (2) differs from the

characteris-tics

R

.

in the equation (1) in the way that

in the first we use

1

,

and in the second as

it is supposed by SNiP

1

.

So the

charac-teristic

R

.

НoОsn’t НОpОnН on tСО pКrКm

e-ters of the air layer and covering, and

.

R

depends on them.

Out of the equations (1) and (2) we

ob-tain the formula for thermal resistance

calcula-tion of a ventilated air layer of an HFS

R

.

1

1

,

t

t

t

t

R

R

t

t

t

t

(3)

R

-,

II

-3-

79*,

2

° / ;

, /(

2

° );

-, /(

2

° );

t

, ° .

,

-R

0,25 (

2

° )/ .

,

-R

-R

,

,

.

-,

-.

,

.

(

-where

R

is a reduced total thermal

resistance of a wall structure with heat

insula-tion, determined according to SNiP II-3-79*,

m

2

°

/W;

a heat transfer coefficient in

the air layer, W/(m

2

°

);

a heat transfer

coefficient of the outer surface of the

enve-lope, W/(m

2

°

);

t

an average temperature

oП tСО КТr Тn tСО КТr ХКвОr, °

.

According to the calculations the value

of the thermal resistance of the air layer of

HFS

R

Тn tСО аТntОr pОrТoН НoОsn’t ОбМООН

0,25 (m

2

°

)/W.

(4)

-).

inner air to the surface of the insulator in the

air layer).

Ч

1. . . Э

// Э . 2008. № 3

(35). . 31—35.

2. . ., .И.

//

. 2014. № 3. . 87—91.

3. . . .

Э . Э .

. : - , 2009. 292 . 4. У . .

// -. 2011-. № 2. . 2—6. 5. . ., . .

//

-. 2007-. № 6-. -. 10—12-. 6. . ., .Ю.

// . 2014. № 6. . 3—7. 7. . ., . .

//

. 2013. № 6. . 14—16.

8. . ., . .

//

-. 2005-. № 2-. . 34—36.

9. Hensen J., Bartak M., Drkal F. Modeling and Simulation of a Double-Skin Facade System // ASHRAE Transactions. 2002. Vol. 108. Part 2. p. 1251—1259.

10. Mingottia N., Chenvidyakarna T., Woodsb A.W. The fluid mechanics of the natural ventilation of a narrow-cavity double-skin facade // Building and Environment. 2011. Vol. 46. № 4. p. 807—823.

11. . ., . .,

.И.

//

-. 2013-. № 10-. -. 14—17-. 12. . ., . .,

.Ю.

.

Ч 1 // : ,

-, ,

-. 2004-. № 2-. -. 20—26-.

REFERENCES

1. Markin V.V. Energoeffektivnost' kak faktor ekonomich-eskogo razvitiya [Energy Efficiency as a Factor of Economical De-velopment]. Ekonomika i upravlenie [Economy and Management]. 2008, no. 3 (35), pp. 31—35. (In Russian)

2. Rymarov A.G., Botnar' M.I. Temperaturnyy rezhim naruzhnogo vozdukha v period aktivnogo pokholodaniya v kholodnyy period goda s pozitsii teplopotrebleniya zdaniem [Temperature Condi-tions of Outer Air in the Period of Fast Cooling in the Cold Period of the Year from the Point of Heat Consumption of a Building]. Regional'naya arkhitektura i stroitel'stvo [Regional Architecture and Construction]. 2014, no. 3, pp. 87—91. (In Russian)

3. Samarin O.D. Teplofizika. Energosberezhenie. Energoeffek-tivnost' [Thermal Physics. Energy Saving. Energy Efficiency]. Mos-cow, ASV Publ., 2009, 292 p. (In Russian)

4. Umnyakova N.P. Teplozashchitnye svoystva ekspluatiruemykh navesnykh ventiliruemykh fasadnykh konstruktsiy [Thermal Properties of Operating Hinged Ventilated Facade Constructions]. Zhilishchnoe stroitel'stvo [Housing Construction]. 2011, no. 2, pp. 2—6. (In Russian)

5. Mashenkov A.N., Cheburkanova E.V. Opredelenie koef-fitsienta teplotekhnicheskoy odnorodnosti navesnykh fasadnykh sis-tem s vozdushnym zazorom [Calculating Thermal and Technical Ho-mogeneity Coefficient of Hinged Facade Systems with Air Gap]. Stroitel'nye materialy [Construction Materials]. 2007, no. 6, pp. 10— 12. (In Russian)

6. Gagarin V.G., Neklyudov A.Yu. Uchet teplotekhnicheskikh neodnorodnostey ograzhdeniy pri opredelenii teplovoy nagruzki na sistemu otopleniya zdaniya [Account for Thermal and Technical In-homogeneities of Envelopes at Defining the Thermal Load on the Heating System of Buildings]. Zhilishchnoe stroitel'stvo [Housing Construction]. 2014, no. 6, pp. 3—7. (In Russian)

7. Gagarin V.G., Dmitriev K.A. Uchet teplotekhnicheskikh ne-odnorodnostey pri otsenke teplozashchity ograzhdayushchikh kon-struktsiy v Rossii i evropeyskikh stranakh [Account for Thermal and Technical Inhomogeneities at Estimating Thermal Protection of Envel-oping Structures in Russia and European Countries]. Stroitel'nye mate-rialy [Construction Materials]. 2013, no. 6, pp. 14—16. (In Russian)

8. Gagarin V.G., Kozlov V.V. K raschetu privedennogo sopro-tivleniya teploperedache fasadov s ventiliruemym vozdushnym zazorom [On the Calculation of Reduced Total Thermal Resistance of the Facades with Ventilated Air Gap]. Stroitel'nye konstruktsii [Build-ing Structures]. 2005, no. 2, pp. 34—36. (In Russian)

9. Hensen J., Bartak M., Drkal F. Modeling and Simulation of a Double-Skin Facade System. ASHRAE Transactions. 2002, vol. 108, Part 2, pp. 1251—1259.

10. Mingotti N., Chenvidyakarn T., Woods A.W. The Fluid Me-chanics of the Natural Ventilation of a Narrow-Cavity Double-Skin Fa-хКНО. BuТХНТnР КnН EnЯТronmОnt. 2011, ЯoХ. 46, no. 4, pp. 807—823. DOI: http://dx.doi.org/10.1016/j.buildenv.2010.09.015.

11. Gagarin V.G., Kozlov V.V., Lushin K.I. Skorost' dvizheniya vozdukha v prosloyke navesnoy fasadnoy sistemy pri estestvennoy ventilyatsii [Air Motion Speed in a Layer of a HТnРОН FКхКНО SвstОm Кt NКturКХ VОntТХКtТonЖ. Zhilishchnoe stroitel'stvo [Housing Construction]. 2013, no. 10, pp. 14—17. (In Russian)

(5)

13. . ., . .,

.Ю.

-. Ч-. 2 //

: , ,

-,

-. 2004-. № 3-. -. 20—26-.

14. .

-:

,

//

. . IV .- . . . :

, 1999. . 157—174.

15. . ., . .

// . 2003. № 10. . 15—18.

16.

.

. : , 2002 //

.

: http://www.docload.ru/

Basesdoc/9/9931/index.htm.

-: 25.01.2015.

17. 23-101—2004.

-. . : -, 2004. 141 .

18. Gagliano A., Patania F., Nocera F., Ferlito A., Galesi A. Thermal perfor-mance of ventilated roofs during summer period // Energy and Buildings. June 2012. Vol. 49. P . 611—618.

19. II-3—79*.

( № 1—4) (

) // Э

-.

-: Сttp-://НoМs.МntН.ru/НoМumОnt/871001234. : 25.02.2015.

2015 .

13. Gagarin V.G., Kozlov V.V., Tsykanovskiy E.Yu. Tep-lozashchita fasadov s ventiliruemym vozdushnym zazorom [Thermal Protection of the Facades with Ventilated Air Gap]. AVOK: Venti-lyatsiya, otoplenie, konditsionirovanie vozdukha, teplosnabzhenie i stroitel'naya teplofizika. 2004, no. 3, pp. 20—26. (In Russian)

14. Batinich R. Ventiliruemye fasady zdaniy: Problemy stroitel'noy teplofiziki, sistem obespecheniya mikroklimata i energos-berezheniya v zdaniyakh [Ventilated Facades of Buildings: the Prob-lems of Construction Thermal Physics, the Systems of Providing Mi-croclimate and Energy Efficiency in Buildings]. Sbornik dokladov IV nauchno-prakticheskoy konferentsii [Collection of Works of the 4th Science and Practice Conference]. Moscow, NIISF Publ., 1999, pp. 157—174. (In Russian)

15. Ezerskiy V.A., Monastyrev P.V. Krepezhnyy karkas ventil-iruemogo fasada i temperaturnoe pole naruzhnoy steny [Fixing Frame oП К VОntТХКtОН FКхКНО КnН TОmpОrКturО FТОХН oП tСО OutОr АКХХЖ. Zhilishchnoe stroitel'stvo [Housing Construction]. 2003, no. 10, pp. 15—18. (In Russian)

16. Rekomendatsii po proektirovaniyu navesnykh fasadnykh sistem s ventiliruemym vozdushnym zazorom dlya novogo stroitel'st-va i rekonstruktsii zdaniy [Recommendations on Design of Hinged FКхКНО SвstОms аТtС VОntТХКtОН AТr GКp Пor NОw Construction and Reconstruction of Buildings]. Moscow, Moskomarkhitektura Publ., 2002. Besplatnaya biblioteka standartov i normativov [Free Library of Standerds and Norms]. Available at: http://www.docload.ru/Basesdoc

/9/9931/index.htm. Date of access: 25.01.2015. (In Russian)

17. SP 23-101—2004. Proektirovanie teplovoy zashchity zdaniy [Requirements SP 23-101—2004. Design of Heat Protection of Buildings]. Moscow, Gosstroy Rossii Publ., 2004, 141 p.

18. Gagliano A., Patania F., Nocera F., Ferlito A., Galesi A. Thermal Performance of Ventilated Roofs During Summer Period. Energy and Buildings. June 2012, vol. 49, pp. 611—618. DOI: http://dx.doi.org/10.1016/j.enbuild.2012.03.007.

19. SNiP II-3—79*. Stroitel'naya teplotekhnika (s Izmeneniyami № 1—4) (ne deystvuet na territorii RF) [Construction Norms SNiP II-3—79*. Construction Heat Engineering (with Amendments no. 1—4) (Not Valid on RF Territory)]. Elektronnyy fond pravovoy i normativno-tekhnicheskoy dokumentatsii [Electronic Fund of Legal and Normative-Technical Documentation]. Available at: http://docs.cntd.ru/document/ 871001234. Date of access: 25.02.2015. (In Russian)

Received in March 2015

: ч

, ,

,

(

« »), 129337, . , ,

. 26, 8 (499) 188-36-07, ov@mgsu.ru;

щ

,

(

« »), 129337, . , ,

. 26, ov@mgsu.ru.

A b o u t t h e a u t h o r s : Gagarin Vladimir Gen-nad'evich — Doctor of Technical Sciences, Professor,

chair, Department of Heating and Ventilation, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Feder-ation; +7 (499) 188-36-07; ov@mgsu.ru;

Plyushchenko Natal'ya Yur'evna — Assistant

Lecturer, Department of Heating and Ventilation, Mos-cow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; ov@mgsu.ru.

:

. ., .Ю. //

-: . 2015. № 1. . . : http://nso-journal.ru. For citation:

Referências

Documentos relacionados

Tendo por pano de fundo estas preocupações, no âmbito do nosso trabalho de estágio considerou-se pertinente o desenvolvimento de atividades de recolha de informação que

In the Porto series, we observed that, independently of the tumour type, 2 tumours co-expressing GLUT1, MCT4 and CD147 presented with synchronous metastasis and 2 other

24. O Estado exportador de capitais pode regulamentar a liquidação dos investimentos de seus nacionais em território estrangeiro, mas a competência para a sua efetivação

De forma geral, os índices de agregação (Razão Variância/Média, Índice de Morisita, Índice de Green e Exponencial k), indicaram a disposição agregada para ninfas e adultos,

(1984) analisando povoamentos de Eucalyptus saligna, aos 8 e 9 anos de idade, respectivamente, verificaram que em média 85% da biomassa aérea encontrava- se no fuste (madeira

Suscipe sancta Trinitas hanc oblationem quam tibi offero pro 30 me peccatore et misérrimo omnium hominum, pro meis peccatis innumerabilibus quibus peccaui coram te in dictis,

Ao Dr Oliver Duenisch pelos contatos feitos e orientação de língua estrangeira Ao Dr Agenor Maccari pela ajuda na viabilização da área do experimento de campo Ao Dr Rudi Arno

Dos objectivos traçados no nosso trabalho, verificamos que da análise quantitativa da transição das Lux GAAP para as IFRS nas diferentes rubricas, bem como nos