• Nenhum resultado encontrado

A importância dos mecanismos comportamentais de resistência para a dinâmica populacional de abelhas Apis mellifera e o parasita Varroa destructor

N/A
N/A
Protected

Academic year: 2017

Share "A importância dos mecanismos comportamentais de resistência para a dinâmica populacional de abelhas Apis mellifera e o parasita Varroa destructor"

Copied!
70
0
0

Texto

(1)

Joyce de Figueiró Santos

A importância dos mecanismos

comportamentais de resistência para a

dinâmica populacional de abelhas

Apis

mellifera

e o parasita

Varroa destructor

(2)
(3)

Joyce de Figueiró Santos

A importância dos mecanismos

comportamentais de resistência para a

dinâmica populacional de abelhas

Apis

mellifera

e o parasita

Varroa destructor

Dissertação apresentada à Escola de Mate-mática Aplicada da Fundação Getúlio Var-gas - Rio de Janeiro, para a obtenção de Título de Mestre em Modelagem Matemá-tica da Informação, na Área de Modelagem e Simulação de Sistemas Complexos.

Orientador: Flavio Codeço Coelho Coorientador: Renato Rocha Souza

(4)

Ficha catalográfica elaborada pela Biblioteca Mario Henrique Simonsen/FGV

Santos, Joyce de Figueiró

A importância dos mecanismos comportamentais de resistência para a dinâmica populacional de abelhas Apis mellifera e o parasita Varroa destructor / Joyce de Figueiró Santos. – 2014.

88 f.

Dissertação (mestrado) – Fundação Getulio Vargas, Escola de Matemática Aplicada.

Orientador: Flávio Codeço Coelho. Coorientador: Renato Rocha Souza. Inclui bibliografia.

1. Modelos matemáticos. 2. Equações diferenciais. 3. Abelha africanizada – Comportamento. 4. Relação hospedeiro-parasito. 5. Ácaro Varroa. I. Coelho, Flávio Codeço. II. Souza, Renato Rocha. IIII. Fundação Getulio Vargas. Escola de Matemática Aplicada. IV. Título.

(5)
(6)

ii

Ao meu pai, Hulk. À minha mãe, Ercília. Que, por seu amor abnegado, abriram mão de seus desejos e

(7)

iii

" De acordo com as leis da aviação,

uma abelha não poderia voar de maneira alguma.

Suas asas são pequenas demais para levantar seu corpo gordinho do chão. Mas a abelha, é claro, voa assim mesmo.

Por que as abelhas não dão a mínima para que os humanos acham impossível".

(8)

iv

Agradecimentos

Agradeço ao meu orientador, Flávio Codeço Coelho, pela paciência, pela

compre-ensão e pelo incentivo. Desde a escolha do tema para o projeto da dissertação até os

detalhes finais de formatação do texto, sempre do meu lado me ajudando a acreditar

que eu era capaz de fazer isso, mesmo quando eu duvidava.

Agradeço ao meu co-orientador e coordenador de mestrado, Renato Rocha Souza,

que foi o primeiro a depositar confiança em mim. Desde a nossa primeira conversa,

antes mesmo da primeira turma do mestrado ser formada, foi quem fez com que eu

tivesse certeza que a Escola de Matemática Aplicada da Fundação Getúlio Vargas era

o lugar ideal para mim. Agradeço por todos os conselhos - desde os acadêmicos que me

ajudaram a (tentar) manter o foco até os que visavam uma alimentação mais saudável.

Agradeço até pelos conselhos para fazer exercícios físicos regularmente e pelas piadas e

trocadilhos ruins.

Agradeço à Fundação Getúlio Vargas do Rio de Janeiro. Agradeço especialmente à

Escola de Matemática da Aplicada (EMAp), em nome da diretora Maria Izabel Tavares

Camacho por todo o suporte acadêmico e financeiro que me deram.

Agradeço à todos os professores da EMAp, principalmente os que foram meus

professores e me ajudaram de forma mais direta. Agradeço, principalmente, ao professor

Moacyr Alvim Horta Barbosa da Silva que deste o início do mestrado sempre tirava

nossas dúvidas seja em exercícios de análise, álgebra linear, equações diferenciais, etc.

Mas que, também, foi muito útil dando sugestões e ajudas nessa parte final da conclusão

do trabalho de dissertação. Também gostaria de agradecer ao professor Jair Koiller

pelo incentivo e confiança gigantesca, também pelas ajudas acadêmicas e sugestões de

carreiras futuras.

Agradeço à atual equipe administrativa da EMAp, Cirlei Oliveira, Cristiane

Guima-rães, Raquel Peixoto, Roberta Assumpção e também, à Luciana Lauria que pertencia

(9)

v

me ajudado, direta ou indiretamente.

Agradeço à todos meus colegas de mestrado. Em especial, agradeço à Fofi Taíse

Lyra que foi quem mais esteve do meu lado nessa longa jornada. Foi ela quem passou

madrugadas acordada para estudarmos juntas, seja via telefone, e-mail ou facebook.

Também agradeço as outras Fofis, Perla Freire e Manuella Pinheiro Lopes, que também

estiveram presente em momentos de desesperos às vésperas de provas e trabalhos. Foram

as três que sempre estiveram do meu lado, seja para incentivar a continuar a caminhada

árdua do mestrado ou pra acabar com a dieta comendo barras não enumeráveis de

chocolate ou pringles com nutella. Também não posso me esquecer de um grande amigo

e colega de mestrado, Luís Gustavo Neves, que, principalmente, nas primeiras disciplinas

de programação foi de grande ajuda.

Agradeço à todos os meus amigos do NAMD, Núcleo de Análise e Modelagem de

Dados, os atuais e os que já estiveram presente pela ajuda técnica e pelo companheirismo

na sala 421. Agradeço principalmente, à Dayanne Fernandes e ao Angelo Mondaini, pela

ajuda prestada nos bons e estressantes momentos que passamos ao trabalhar juntos,

mesmo que por pouco tempo. Agradeço também aos dois Pós doutorandos, Crysttian

Arantes e Sabrina Camargo, que também foram de ajuda incrível nessa jornada do

mestrado.

Agradeço aos meus amigos, à todos eles - prefiro não citar nomes, porque tenho

certeza que esquecerei muitos - pela compreensão da minha ausência enquanto concluía

mais essa etapa da minha vida. Agradeço por nunca terem desistido de me procurar,

nem depois do meu cansaço me fazer parecer seca, tediosa e sem graça. Espero conseguir

tempo para dar a cada um de vocês a atenção que merece!! Agradeço também à todos

da minha família que sempre me incetivaram e confiaram em mim.

Agradeço ao meu pai, Hulk, pelo suporte financeiro e por ter deixado eu seguir

meu sonho, mesmo que esse sonho não parecesse muito lógico e prático. Agradeço à

(10)

vi

Agradeço o amor abnegado e incondicional dos dois. Também agradeço à minha irmã,

Julie, que por inúmeras noites teve que dormir de luz acessa enquanto eu terminava

(11)

vii

Resumo

Os ácaros ectoparasitas Varroa destructor, que parasitam as abelhas tornaram-se um

problema global. Embora seja pouco provável que estes ácaros, por si só, provoquem a

mortalidade das colmeias, eles desempenham um importante papel como vetor de muitas

doenças virais. E estas doenças são identificados como algumas das mais importantes

razões para a Desordem do Colapso das Colônias.

Os efeitos da infestação doV.destructor são distintas em diferentes partes do mundo.

Maiores mortalidades de colônias têm sido relatadas em colônias de abelhas européias

(AE) em países da Europa, Ásia e América do Norte. No entanto, este ácaro está

presente no Brasil já por muitos anos e não existem relatos de perdas em colônias das

abelhas africanizadas (AA).

Estudos realizados no México mostraram que alguns comportamentos de resistência

ao ácaro Varroa - especialmente ogroominge o comportamento higiênico - são diferentes

em cada uma das subespécie. Poderiam então esses mecanismos explicar por que as

abelhas africanizadas são menos suscetíveis à Desordem do Colapso das Colônias?

A fim de responder a esta pergunta, propomos um modelo matemático baseado

em equações diferenciais, com o objetivo de analisar o papel desses mecanismos de

resistência na saúde geral da colônia e na capacidade da colônia para enfrentar desafios

ambientais.

Palavras-chave:groming, comportamento higiênico, abelhasApis mellifera, Desordem

(12)

viii

Abstract

The ectoparasitic miteVarroa destructor that parasitize honey bees has become a global

problem. Although this mite is unlikely to, by itself, cause the mortality of hives, it

plays an important role as a vector for many viral diseases. These diseases are identified

as some of the most important reasons for the Colony Collapse Disorder.

The effects ofV.destructor infestation are disparate in different parts of the world.

Greater morbidity - in the form of colony losses - has been reported in colonies of

European honey bees (EHB) in countries of Europe, Asia and North America. However,

this mite has been in Brasil for many years and there are no reports of losses of

Africanized honey bees (AHB) colonies.

Studies carried out in Mexico showed that some resistance behaviors to the Varroa

mite - especially grooming and hygienic behavior - appear to be different in each

subspecies. Could those mechanisms explain why the AHB are less susceptible to

Colony Collapse Disorder?

In order to answer this question, we propose a mathematical model based on

dif-ferential equations, to analyze the role of these resistance mechanisms in the overall

health of the colony, and itŠs ability to face environmental challenges.

(13)

Lista de Figuras

1.1 ŞEm um mundo sem abelhas, nós precisamos fazer a nossa própria po-linização.Ť Fonte: http://www.classbrain.com/artteensb/publish/

bee_colony_collapse_disorder.shtml . . . 2

2.1 Ciclo de vida do ácaroVarroa destructor. Fonte:http://scientificbeekeeping.

com/fighting-varroa-the-silver-bullet-or-brass-knuckles-2/ . 13

2.2 Abelhas em fase imatura infestadas pelo ácaro Varroa destructor. . . 14

2.3 A abelha operária detecta um alvéolo que contém o ácaro, retira a co-bertura deste alvéolo e a abelha imatura que estava dentro. Esse pro-cesso de remoção pode matar a cria da abelha e, em alguns casos, a mãe-ácaro pode escapar. Fonte: http://scientificbeekeeping.com/

choosing-your-troops-breeding-mite-fighting-bees/ . . . 15

3.1 Diagrama que descreve a dinâmica do modelo. . . 26

3.2 Para essa simulação, deixamos os possíveis valores para o parâmetro variando no eixo X, valores para o parâmetro �� variando no eixo Y e

fixamos o valor dogrooming em = 0,02. . . 30

(14)

Lista de Figuras x

3.4 Para essa simulação, deixamos os possíveis valores para o parâmetro variando no eixo X, valores para o parâmetro �� variando no eixo Y e

fixamos o valor dogrooming em = 0,1. . . 31

4.1 Número de abelhas adultas e imaturas no tempo para o caso bidimensi-onal, sem ácaro com condições iniciais = 1000 e= 20000. . . 35 4.2 Campo de vetores para o caso bidimensional, ou seja, na ausência do

ácaro. As seis linhas laranja representam seis possíveis trajetórias pra o sistema. Como mostrado na figura, independente das condições iniciais, a solução sempre vai pro equilíbrio, marcado pelo ponto azul. . . 35

4.3 Sob condições iniciais = 5.000,�� = 5.000,= 10.000 e�� = 10.000 e

parâmetros = 0,06, = 0,25 e ��= 0,13, sendo os demais iguais aos

valores na tabela 3.1. . . 38

4.4 Sob condições iniciais = 5.000,�� = 5.000,= 10.000 e�� = 10.000 e

parâmetros = 0,01, = 0,1 e �� = 0,18, sendo os demais iguais aos

valores na tabela 3.1. . . 39

4.5 Como esse campo de vetores só nos permite enxergar em duas dimensões e nosso modelo possui quatro dimensões, estamos fixando �� e �� em

(15)

Lista de Tabelas

2.1 Período de desenvolvimento em dias de crias de abelhasApis mellifera

africanizadas separada por castas, segundo a Embrapa. Fonte: http://

sistemasdeproducao.cnptia.embrapa.br/FontesHTML/Mel/SPMel/organizacao.

htm. . . 11

3.1 Tabela com alguns dos parâmetros usados no modelo. . . 28

3.2 Variação dos parâmetros . . . 29

(16)

Sumário

1 Introdução 1

1.1 Objetivo . . . 4

1.2 Estrutura do trabalho . . . 5

2 Referencial Teórico 7 2.1 Fundamentos Biológicos . . . 7

2.1.1 Vida da Abelha. . . 7

2.1.2 Desordem do Colapso das Colônias: possíveis causas . . . 11

2.1.3 Varroa destructor . . . 12

2.1.4 Comportamentos de resistência das abelhas ao ácaro Varroa des-tructor . . . 14

2.2 Fundamentos Matemáticos. . . 15

2.2.1 Modelo matemático . . . 15

2.2.2 Dinâmica de Populações . . . 16

2.3 Estado da arte . . . 18

3 Metodologia 25 3.1 A proposição de um modelo . . . 25

(17)

xiii Sumário

4 Resultados 33

4.1 Modelo para o caso bidimensional: sem ácaros . . . 33

4.2 Equilíbrios do modelo completo . . . 36

4.3 Estabilidade dos equilíbrios . . . 37

5 Conclusões e trabalhos futuros 43 5.1 Discussões e conclusões . . . 43

5.2 Sugestões para trabalhos futuros . . . 45

5.2.1 Introduzir o ácaro por fontes externas . . . 45

5.2.2 Número de ovos colocados pela rainha diariamente . . . 45

5.2.3 Acrescentar o vírus no modelo . . . 46

5.2.4 Europeias X Africanizadas. . . 46

(18)
(19)

Capítulo 1

Introdução

Já tentou matar uma abelha alguma vez por achá-la um bichinho chato e insignificante?

O que muita gente não sabe é que sem abelhas nós estaríamos vivendo o que alguns

costumam chamar Şapocalipse preto e amareloŤ. Esse nome dramático surgiu após um

dito famoso, muitas vezes atribuído ao cientista Albert Einstein que, em essência, diz:

Şse as abelhas desaparecessem por completo, em apenas quatro anos não existiria mais

vida na face da terraŤ.

Embora não comprovada a autenticidade dessas palavras, o que se sabe é que: como

as abelhas correspondem à, pelo menos, 80% dos polinizadores (Ratti et al., 2012), sem abelhas a taxa de polinização diminuiria drasticamente, consequentemente, se não

existisse polinização não haveria flora, sem flora não existiria animais e, sem animais

não haveria humanos.

Isto tem preocupado muitos apicultores norte americanos que, desde 2006, tem

rela-tado perdas generalizadas de colônias abelhas. O fenômeno, que vai além das fronteiras

americanas, ficou conhecido como Desordem do Colapso das Colônias (DCC) (ou CCD,

do inglês Colony Colapse Disorder).

Essa desordem é caracterizada pelo desaparecimento de abelhas adultas vivas ou

(20)

Capítulo 1. Introdução 2

Figura 1.1: ŞEm um mundo sem abelhas, nós precisamos fazer a nossa própria polinização.Ť Fonte:http://www.classbrain.com/artteensb/publish/bee_colony_ collapse_disorder.shtml

forrageiras, isto é, abelhas que saem da colmeia, também conhecidas como exploradoras,

que são encarregadas de buscar alimentos morrem de forma precoce no campo. Embora

ainda seja relatada permanência de crias (larvas e pupas), alimentos e, em alguns casos,

até mesmo a rainha é encontrada, a quantidade de operárias é insuficiente para manter

a colônia (vanEngelsdorp et al.,2009).

Varios fatores foram apontados como possíveis causas para esse fenômeno. Como

por exemplo, parasitas e doenças na colônia, pesticidas e estresse causado pela prática

de transportes das abelhas. Embora nenhuma dessas tenham sido confirmadas como

sendo a grande vilã para o problema do desaparecimento das colônias, neste trabalho

queremos analisar como a relação abelha-parasita pode direta ou indiretamente afetar

o colapso das colônias.

O ácaro Varroa destructor está no topo da lista dos parasitas que tem contribuído

para o desaparecimento de colônias das abelhasApis mellifera.Sammataro et al.(2000)

descrevem o ciclo de vida desse ácaro parasita e mostram que embora ainda não estivesse

claro o impacto negativo do ácaro nas abelhas, considerando o fato dele ser vetor para

(21)

3

O mais curioso é que a infestação das colônias pelo ácaro tem efeitos distintos em

diferentes partes do mundo. Calderón et al. (2010) mostram que, como a reprodução do Varroa acontece ao longo de todo ano em países com clima tropical, esperava-se que

o impacto deste parasita fosse muito pior nessas regiões. No entanto, as mortes mais

intensas tem sido relatadas em colônias de abelhas europeias (AE) em países da Europa,

Ásia e América do Norte. Por outro lado, o ácaroVarroa destructor está presente no

Brasil há mais de 30 anos e não há registro de mortalidade de colônias de abelhas

africanizadas (AA) causadas por este parasita (Carneiro et al.,2007).

Carneiro et al.(2007) mostraram que, devido à baixa taxa de infestação do ácaro nas abelhas africanizadas, não há relatos de danos na apicultura brasileira e que também

a baixa taxa de reprodução do parasita em alvéolos de crias de operárias para AA é

considerado um fator de importância para a manutenção do equilíbrio entre o parasita

(ácaro) e o hospedeiro (abelha). Dados coletados em duas cidades de Santa Catarina,

mostraram que nem após a taxa de fertilidade do ácaro ter sido aumentada (entre

1986-2007) foi registrado nenhum caso de taxas de infestação significativa.

Calderón et al.(2010) fizeram um estudo de alguns fatores que poderiam contribuir para a baixa infestação nas abelhas africanizadas. São eles: tipo do ácaro e sua baixa

taxa de fertilidade, comportamento higiênico e o grooming das abelhas. Os resultados,

no entanto, mostraram que o haplótipo do ácaro encontrado no Brasil é o mesmo

encontrado nas regiões onde as taxas de infestação são bem elevada. Dando margens

para conclusão de que o tipo do ácaro não é a causa para os diferentes níveis de

infestação nas diferentes partes do mundo.

Arechavaleta-Velasco and Guzman-Novoa(2001) fizeram um estudo da correlação entre níveis de infestação da colônia e comportamentos de resistência da abelha ao ácaro

- como, por exemplo, ogroomingfeito pelas abelhas adultas e o comportamento higiênico

que inclui detecção e remoção de crias infestadas. O objetivo deles era determinar a

(22)

Capítulo 1. Introdução 4

abelhas conterem o crescimento de ácarosVarroa e também avaliar os efeitos relativos

de algumas características que poderiam contribuir para que determinadas colônias

fossem mais tolerantes ao ácaro. Os resultados mostraram que apesar de existir uma

grande variação genotípica e fenotípica entre colônias para diferentes níveis de

infesta-ção do ácaro V.destructor, não foram encontradas variações significativas para níveis

de infestação nas crias. Também os resultados sugeriram que a variação no crescimento

da população de Varroa encontrada nas colônias experimentais, pode ser explicada

principalmente pela habilidade das operárias eliminarem os ácaros que infestam as

abelhas adultas - principalmente pelo grooming. Neste estudo, ogrooming foi o

meca-nismo de resistência da abelha ao ácaro que mostrou maiores diferenças significativas

entre as colônias. Ainda mais, as colônias menos infestadas foram as mesmas colônias

onde foram encontrados mais ácaros ŞmachucadosŤ como consequência do grooming.

Mostrando assim que existe uma correlação negativa entre os níveis de infestação de

uma colônia e a quantidade de ácaros que foram afetados pelogrooming.

Abelhas africanas e seus híbridos são mais resistentes ao ácaro do que a subespécie de

abelhas europeias (Medina and Martin,1999). Diversos autores sugerem que ogrooming

e o comportamento higiênico são considerados fatores importantes para manter a taxa

de infestação do ácaro baixa nas colônias.

1.1

Objetivo

O objetivo principal desse trabalho é construir um modelo que seja capaz de descrever

a dinâmica entre hospedeiros (abelhas) e parasitas (ácaros) e que, também, seja capaz

de representar os mecanismos de resistência da abelha ao ácaro - como o grooming e

comportamento higiênico. Além disso, mostrar através de simulações ao longo do tempo

que os mecanismos de resistência contribuem para que os níveis de infestação da colônia

(23)

5 1.2. Estrutura do trabalho

1.2

Estrutura do trabalho

Nesse capítulo inicial, mostramos o contexto em que o nosso problema está inserido e

quais são os nossos objetivos para esse trabalho. No capítulo seguinte, apresentaremos

os conceitos básicos de matemática e biologia que o leitor precisará conhecer com o

intuito de entender melhor este trabalho. No terceiro capítulo, apresentaremos as nossas

metodologias. Primeiro, com a proposta do modelo de equações diferenciais e depois

descreveremos o método escolhido para ajustar os parâmetros. Os resultados do trabalho

poderão ser encontrados no quarto capítulo. Onde começaremos fazendo um estudo

para uma versão simplificada de duas dimensões do modelo, considerando que não há

ácaro no sistema. Depois calcularemos os equilíbrios e definiremos a estabilidade para

os parâmetros propostos no capítulo três. Para finalizar, concluíremos este trabalho

com discussões finais sobre o tema escolhido e métodos usados e, também, deixaremos

(24)
(25)

Capítulo 2

Referencial Teórico

Neste capítulo apresentaremos o referencial teórico biológico e matemático em que se

baseia este trabalho.

2.1

Fundamentos Biológicos

Nesta seção vamos apresentar os conceitos básicos de biologia que precisamos para

entender este trabalho.

2.1.1 Vida da Abelha

As abelhas são insetos sociais que vivem em colônias super organizadas. Cada colônia é

composta de apenas uma abelha rainha, milhares de abelhas operárias (variando entre

cinco e cem mil, dependendo da colônia) e dezenas de zangões (de zero a quatrocentos).

Abelha rainha

Com o aparelho reprodutor muito bem desenvolvido, única abelha fértil da colônia,

a rainha é responsável por colocar ovos. Além disso, ela mantem a organização

(26)

Capítulo 2. Referencial Teórico 8

informa que existe alguém no comando, inibe a produção de outra rainha e a

atividade reprodutiva das operárias e atrai os zangões para fecundação.

Aproximadamente depois do quinto a sétimo dia do seu nascimento, a rainha

faz um voo nupcial nas áreas onde existem concentração de zangões, permitindo

assim, ser fecundada - ela pode ser fecundada por ate dezessete zangões. E, visto

que após retornar para a colônia ela não sai para realizar outro voo nupcial, a

rainha armazena o sêmen na espermateca que vai permitir a fecundação de óvulos

durante toda a sua vida. De três a sete dias após o acasalamento a rainha começa

a colocar os ovos na colônia.

Embora em casos especiais as operárias também possam colocar ovos - não

fertili-zados, que dão origens aos zangões, somente a rainha é capaz de também colocar

ovos fertilizados, originando então abelhas fêmeas que podem ser tanto operárias

quanto uma nova rainha. Caso haja abundância de alimento, uma rainha que

pode viver e reproduzir-se até três anos, coloca aproximadamente de 2.500 a

3.000 ovos por dia. Mas isso pode variar, não só com a quantidade de comida - e,

consequentemente com a quantidade de abelhas operárias responsáveis por levar

alimento pra colônias - mas também com o clima. Além disso, apicultores

aconse-lham fazer a troca de rainhas anualmente, visto que a atividade de reprodução

pode ir diminuindo gradativamente.

A rainha pode morrer tanto pela velhice quanto pela falta de espaço na colmeia

causada pela super população de abelhas. Sendo assim, ela deixa de produzir

ferormônios e novos ovos e, então, as operárias vão escolher um novo ovo ou larva

de até três dias para ser a nova rainha.

Abelhas operárias

As abelhas operárias são responsáveis por todo o trabalho de manutenção da

(27)

9 2.1. Fundamentos Biológicos

Do primeiro ao quinto dia: fazem a limpeza dos alvéolos (onde os ovos são

depositados) e das abelhas recém nascidas.

Do quinto ao décimo dia: elas são responsáveis pela nutrição de larvas em

desenvolvimento.

Do décimo primeiro ao vigésimo dia: produzem cera para a construção dos

favos, também recebem e desidratam o néctar trazido pelas forrageiras, começando

então a produção do mel.

Do décimo oitavo ao vigésimo primeiro dia: realizam defesa e controle de

temperatura da colmeia.

Do vigésimo segundo dia até a sua morte: fase onde as abelhas deixam

a colmeia e passam a ser chamadas de forrageiras. São então responsáveis pela

coleta do néctar, pólen, resinas e água para alimentar a colmeia.

As operárias, assim como a rainha, se desenvolvem a partir de ovos fertilizados.

Assim, elas são geneticamente idênticas. O que vai diferenciar se uma abelha vai

se transformar em rainha ou operária é a alimentação que receberem na fase larval.

As operárias são alimentadas até o terceiro dia com geleia de operária que possui

menos açúcar do que o alimento dado à larva que vai se transformar em abelha

rainha. Depois do terceiro dia, além da geleia de operária elas também recebem

mel e pólen para se alimentar.

Por outro lado, a rainha recebe durante toda a sua vida a geleia real e, além disso,

a larva da rainha é transferida para uma realeira - que é um alvéolo maior do

que o alvéolo onde as operárias se desenvolvem. Ela é posicionada de cabeça para

baixo, deixando o abdome da pupa livre, permitindo então o desenvolvimento e

(28)

Capítulo 2. Referencial Teórico 10

Zangões

Os zangões, desenvolvidos a partir de ovos não fertilizados, são os indivíduos

machos da colônia cujo único objetivo é fecundar a rainha durante o voo nupcial.

São dotados de olhos mais desenvolvidos, antenas com maior capacidade olfativa,

asas maiores e musculatura de voo melhor desenvolvida. Permitindo-o ter maior

eficiência para encontrar uma rainha virgem para fecundação. Durante o

acasala-mento, o órgão genital do zangão - endófalo - fica preso no corpo da rainha e se

rompe, ocasionando sua morte.

Desenvolvimento das abelhas

Depois do terceiro dia da fecundação da rainha, ela começa a postura de ovos

colocando um ovo em cada alvéolo. Após três dias da postura dos ovos, nasce uma

larva de cor branca, com corpo em formato de ŞCŤ e fica posicionada no fundo do

alvéolo. Durante a fase de larva, há cinco fases de crescimento onde a larva troca

sua cutícula, pele, a cada estágio. Depois da fase de larva, cinco ou seis dias após

a eclosão, o alvéolo é operculado, ou seja, tampado - esse trabalho é feito por uma

abelha operária - e a larva muda de posição, ficando reta e imóvel. Nessa fase ela

passa a ser chamada de pré-pupa, onde ela para de se alimentar e tece seu casulo.

Na fase seguinte, quando passa a ser chamada de pupa, já pode-se identificar a

cabeça, o tórax e o abdome, visualizando-se olhos, pernas, asas, antenas e partes

bucais. Depois ela vai sofrendo mudança de coloração do corpo até se transformar

em uma abelha adulta.

Sendo assim, uma abelha passa por quatro fases: ovo, larva, pupa e adulta. Mas a

duração em cada fase é diferente em rainhas, operárias e zangões2.1. No entanto, para este trabalho vamos considerar apenas duas fases, que chamaremos de Şfase

(29)

11 2.1. Fundamentos Biológicos

Tabela 2.1: Período de desenvolvimento em dias de crias de abelhasApis mellifera

africa-nizadas separada por castas, segundo a Embrapa. Fonte:http://sistemasdeproducao. cnptia.embrapa.br/FontesHTML/Mel/SPMel/organizacao.htm

Castas ovo larva pupa total

Rainha 3 5 7 15

Operária 3 5 12 20

Zangão 3 6,5 14,5 24

2.1.2 Desordem do Colapso das Colônias: possíveis causas

Embora não se tenha certeza sobre qual é o verdadeiro culpado pela mortalidade de

colmeias no mundo inteiro, Oldroyd (2007) apresentou alguns fatores que podem ser apontados como possíveis causas pro DCC, entre eles:

Parasitas e doenças

Bactérias, fungos, vírus, protozoários e ácaros podem causar diversas doenças

nas abelhas, tanto na fase adulta quanto na fase de larva. Por exemplo, o ácaro

Varroa destructor infesta tanto abelhas em fase imatura quanto abelhas adultas.

Embora o ácaro não possa ser responsável sozinho pelo DCC, o Varroa é vetor

para diversos vírus, como o vírus de paralisia aguda (acute bee paralysis virus)

que induz a abelha a tremer incontrolavelmente, faz com que ela vá para longe

da colmeia e paralisa as asinhas, impedindo-a de voar de volta para casa (Bailey et al.,1963).

Agrotóxicos

Segundo a Embrapa, anualmente usa-se 2,5 milhões de toneladas de agrotóxicos

no mundo inteiro. Mesmo não sendo alvo desses agente tóxicos, as abelhas, ao

buscar alimento em áreas agrícolas contaminadas, se tornam super vulneráveis à

contaminação.

Além das mortes causadas diretamente devido à contaminação por agrotóxicos,

(30)

Capítulo 2. Referencial Teórico 12

doses e/ou aplicações, as abelhas também sofrem alterações no comportamento

dos indivíduos que, a longo prazo, pode trazer problemas que afetam a manutenção

da colônia.

Práticas de transporte

Um ditado em inglês diz: Şif there is no honey, there is no moneyŤ [se não há mel,

não há dinheiro]. Sendo assim, uma vez que o preço do mel tem diminuído, muitos

apicultores tem buscado formas alternativas para aumentar a renda. E uma das

mais usadas é o aluguel de colmeias para polinização. Segundo oEconômico(2009), colmeias inteiras tem sido transportadas de costa a costa nos Estados Unidos.

Embora o retorno econômico em decorrência do transporte seja bom, o processo

de transportar abelhas por longas distâncias para polinizar plantações pode causar

estresse, debilitar o sistema imunológico das abelhas, deixá-las expostas a outros

patógenos ou afetar suas habilidades de vôo.

2.1.3 Varroa destructor

Como ainda não foi comprovado qual seria o verdadeiro vilão por trás da Desordem

do Colapso da Colônia, para esse trabalho, escolhemos analisar como parasitas, em

especial o ácaro Varroa destructor (Anderson and Trueman,2000), tem contribuído

pra o desaparecimento de diversas colônias de abelhas Apis mellifera. Para isso vamos,

primeiro, entender os aspectos biológicos do ácaro.

Vida e desenvolvimento do Varroa

O ácaro ectoparasitaVarroa destructor comum nas abelhas asiáticasApis cerrana,

ao entrar em contato com as abelhas ocidentais Apis mellifera, por volta do final

de 1950 e 1960, espalhou-se rapidamente na Europa e novo mundo e começou,

(31)

13 2.1. Fundamentos Biológicos

A reprodução do Varroa só acontece se existem crias de abelhas disponíveis.

A fêmea do ácaro entra nos alvéolos de crias (que pode ser tanto de rainhas,

operárias ou zangões) antes que sejam operculadas. Ela posiciona-se no fundo da

célula de forma que possa se alimentar da hemolinfa das crias. A mãe ácaro, então,

coloca aproximadamente cinco ovos na parede do alvéolo, sendo apenas o primeiro

macho que vai fecundar suas irmãs. A abelha hospedeira emerge juntamente com

a mãe ácaro e com suas filhas que já foram fecundadas. As filhas que ainda estão

imaturas e o único filho macho morrem no alvéolo (Oldroyd,1999). A figura2.1

nos mostra o ciclo de vida deste ácaro.

Figura 2.1: Ciclo de vida do ácaro Varroa

des-tructor. Fonte: http://scientificbeekeeping.com/ fighting-varroa-the-silver-bullet-or-brass-knuckles-2/

Além das crias, o ácaro também infesta as abelhas adultas ficando localizado,

principalmente, na região torácica. Também alimenta-se da hemolinfa das abelhas

adultas podendo deixa-las mais fracas e, como vetor para vírus, ele pode causar

(32)

Capítulo 2. Referencial Teórico 14

Figura 2.2: Abelhas em fase imatura infestadas pelo ácaro Varroa destructor.

2.1.4 Comportamentos de resistência das abelhas ao ácaro Varroa

destructor

Em distintas partes do mundo, os níveis de infestações das colônias ao ácaroVarroatem

sido diferentes. SegundoMedina and Martin(1999), as abelhas africanas e seus híbridos são mais resistentes ao ácaro do que subespécies de abelhas europeias. Nessa subseção

vamos mostrar dois mecanismos de resistência das abelhas ao ácaro que desempenham

um papel fundamental na manutenção de um nível baixo de infestação na colônia.

Grooming

Grooming, para animais sociais, é o ato de indivíduos do grupo limpar ou manter a

limpeza do seu próprio corpo ou de um outro indivíduo do mesmo grupo. No caso

das abelhas, ogroomingé a capacidade de uma operária adulta tirar o ácaro de seu

próprio corpo (auto-grooming) ou do corpo de uma outra abelha (allo-grooming).

Comportamento Higiênico

Assim como oGrooming, este também é um mecanismo realizado com o objetivo

de manter a limpeza e saúde da colônia. O ŠComportamento HigiênicoŠ, ilustrado

(33)

15 2.2. Fundamentos Matemáticos

Varroa destructor, ao remover crias que estavam infestadas pelo ácaro, as abelhas

operárias tentam evitar que o nível de infestação na colônia aumente.

Figura 2.3: A abelha operária detecta um alvéolo que contém o ácaro, retira a cobertura deste alvéolo e a abelha imatura que estava dentro. Esse processo de remoção pode matar a cria da abelha e, em alguns ca-sos, a mãe-ácaro pode escapar. Fonte: http://scientificbeekeeping.com/ choosing-your-troops-breeding-mite-fighting-bees/

2.2

Fundamentos Matemáticos

Nesta seção vamos apresentar os conceitos básicos de matemática que precisamos para

entender este trabalho.

2.2.1 Modelo matemático

A Wikipedia 2014 define ummodelo científico como Şuma idealização simplificada

de um sistema que possui maior complexidade, mas que ainda assim supostamente

reproduz na sua essência o comportamento do sistema complexo que é o alvo de estudo

e entendimento.Ť Além disso, o Dicionário Aurélio da Língua Portuguesa mostra que

um ŞModelo matemático é representação matemática de um fenômeno físico humano

etc., feita para que se possa melhor estudar o original.Ť

Mas para que usamos um modelo matemático? Muitos sistemas são complexos,

(34)

Capítulo 2. Referencial Teórico 16

predições sobre o estado do sistema no futuro e perceber quais decisões podem ser

feitas para tentar melhorar a situação real. Um modelo válido, que aproxima de uma

caracterização do problema real, com as ferramentas necessárias pode ser de grande

utilidade para entender o funcionamento do sistema e responder perguntas sobre ele.

Os modelos matemáticos são usados em diversas áreas, não limitando-se apenas

à ciência exata, como por exemplo: biologia, física, direito, economia, entre outras. E

existem diferentes modos de se modelar um sistema. Pode-se usar modelagem via

equações estocásticas, equações diferenciais ordinárias ou parciais, etc.

Neste trabalho faremos uma modelagem matemática de equações diferenciais para

dinâmica de populações.

2.2.2 Dinâmica de Populações

Dinâmica de populações estuda as variações do desenvolvimento de uma população.

Onde população é um conjuntos de indivíduos de uma mesma espécie e nessas variações

do desenvolvimento podemos incluir taxas de natalidade, taxas de mortalidade, taxa

de desenvolvimento no tempo, entre outros aspectos.

Modelagem via equações diferenciais ordinárias

Uma vez que para o estudo da população observa-se suas taxas de variações e como

essas taxas são representadas na linguagem matemática como derivadas, podemos,

então, escrever as equações relacionando as taxas de variações com funções da

população a ser estudada. Com isso, escrevemos as equações diferenciais que

representam o sistema e suas soluções possivelmente descrevem os fenômenos

analisados.

Um modelo de equações diferenciais é composto por:

1. Variáveis dependentes:são as incógnitas do modelo. Isto é, o modelo foi

(35)

17 2.2. Fundamentos Matemáticos

2. Variáveis independentes: são variáveis que afetam o modelo, embora

não sejam estudadas de forma explícita. Na maioria dos casos, a variável

independente é o tempo.

3. Parâmetros: são constantes que fazem parte do modelo estudado. Por

exemplo, alguns dos parâmetros comuns usados para modelar dinâmica de

populações são taxas de natalidade da população, mortalidade, etc...

Análise do modelo de equações diferenciais

Uma análise simples para um modelo envolve entender o comportamento do

sistema no equilíbrio, isto é, quando não existe mais variação. Para isso, então

precisamos fazer alguns passos:

1. Calcular os pontos de equilíbrio do sistema;

2. Obter a matriz Jacobiana do sistema;

3. Determinar a matriz Jacobiana nos pontos de equilíbrio;

4. Calcular os autovalores da matriz Jacobiana com os pontos de equilíbrio;

5. Analisar estes autovalores para determinar estabilidade da cada ponto de

equilíbrio:

• Quando todos os autovalores forem reais negativos, dizemos que o

equi-líbrio éestável.

• Quando todos os autovalores forem reais positivos, dizemos que o

equi-líbrio éinstável.

• Quando todos os autovalores forem reais, mas existirem alguns

autova-lores positivos e outros negativos, dizemos que o equilíbrio é umponto

de sela.

• Quando existirem autovalores complexos, mas a parte real de todos eles

(36)

Capítulo 2. Referencial Teórico 18

• Quando existirem autovalores complexos, mas a parte real de todos eles

for positiva, dizemos que o equilíbrio éespiral instável.

• Quando existirem autovalores complexos, mas a parte real de todos eles

for nula, dizemos que o equilíbrio é umcentro.

2.3

Estado da arte

Pouco antes de começarem a falar sobre a Desordem do Colapso das Colônias (DCC), já

falava-se do impacto negativo que surgiu quando o ácaroVarroa destructorse transferiu

para colônias de abelhas orientais para ocidentais. Uma vez que o ácaro é um vetor

transmissor para doenças virais, ele foi então considerado um dos principais culpados

das mortes de milhões de colônias infestadas.

Com isso em mente, em 2004Sumpter and Martin(2004) desenvolveram um modelo matemático de três equações diferenciais com o objetivo de investigar a relação entre a

quantidade de ácaros na colônia e a possibilidade de existir uma epidemia dentro da

mesma colônia. Este modelo tinha como variáveis dependentes o número de abelhas

adultas operárias que não estavam infectadas com o vírus (), as abelhas adultas

operárias que haviam sido infectadas já na fase adulta () e o número de abelhas

adultas operárias que foram infectadas ainda na fase de pupa (). Além disso, o modelo

possuía uma quantidadede ácaros com vírus eÛácaros sem vírus. O modelo também

considerava que a transmissão do vírus poderia acontecer tanto na fase adulta quanto

nos alvéolos das crias de operárias. O modelo completo é descrito pelas equações2.1.

O parâmetroÒ mostra o tempo que um ácaro fica no alvéolo das crias de abelhas,

e (1−Ò) o tempo que ele permanece nas abelhas adultas. ��, �� e �� são taxas de

mortalidade de abelhas adultas infectadas na fase adulta, abelhas não infectadas e

as abelhas infectadas na fase de pupa, respectivamente. ���� é o total de crias de

(37)

19 2.3. Estado da arte

probabilidade de uma abelha que adquiriu o vírus na fase pupa sobreviver até a fase

adulta é representado por��.Úé a taxa de movimento do ácaro por dia e, quando um

ácaro que carrega o vírus se move de uma abelha infectada para uma não infectada, ele

transmite o vírus para a nova hospedeira na proporção, o que implica que em (1−)

casos o ácaro falha na transmissão do vírus.

��

�� =Û��γmp

cw µw −((+Ú)(1−Ò) +ÐÒ) ��

++��� ��

�� = ((��+Ú)(1−Ò) +Ð�Ò) ��

++��� ��

�� =��Û�(1−γmp

cw µw)− (2.1)

Neste modelo, Sumpter and Martin (2004) fizeram simulações considerando a va-riação dos parâmetros para cada estação do ano. Além disso, eles também fizeram

duas análises: uma para o vírus de paralisia aguda (Acute bee paralysis virus) e para

o vírus que deforma as asas das abelhas (Deformed wing virus) para duas estações do

ano - verão e outono. E, para cada tipo de vírus, eles calcularam um valor crítico que

caracteriza a epidemia através do ciclo de vida anual da colônia. Como resultado, o

modelo deles sugere que as populações do ácaro nas abelhas ocidentais excederam o

limiar crítico de epidemia, o que não ocorria nas colônias orientais.

Baseado no trabalho citado anteriormente (Sumpter and Martin,2004),Eberl et al.

(2010) sugere um outro modelo de equações diferenciais ordinárias não linear.Eberl et al.

(2010) critica o fato que emSumpter and Martin (2004) os autores não consideraram que a taxa de nascimento de abelhas está ligada ao tamanho da população de operárias

presentes na colônia. E isso quer dizer que no modelo anterior, mesmo se todas as

abelhas saudáveis desaparecessem, as crias se desenvolveriam em adultos. Além disso,

assumindo que a abelha rainha não pode ser afetada pelo vírus, a taxa de nascimento

(38)

Capítulo 2. Referencial Teórico 20

Eberl et al.(2010), a manutenção das crias é uma tarefa muito importante em colmeias de abelhas, onde várias operárias estão envolvidas. Sendo assim, se a população de

abelhas adultas torna-se pequena, larvas e pupas não podem ser criadas e morrem antes

mesmo de se desenvolverem em abelhas adultas.

Para resolver o problema, Eberl et al. (2010) introduziram no modelo um termo para manutenção2.3 da cria que depende do tamanho atual da população de abelhas operárias. E esse termo adicionado pode alterar a estabilidade do sistema. O modelo

proposto é descrito pelas equações2.2.

��

�� =Ñ1()

+Ñ2 + ��

�� =Û�()()−Ñ3

+1 ��

�� =Ñ3

+2 (2.2)

As variáveis dependentes , e representam os ácaros que carregam o vírus, o

número de abelhas que não foram infectadas pelo vírus e o número das infectadas pelo

vírus, respectivamente. é o total de ácaros na colônia, () são os ácaros que não

carregam o vírus. Os autores definiramÑ1 como sendo a taxa na qual os ácaros que não

carregavam o vírus adquiriram o vírus,Ñ2 como a taxa em que ácaros com vírus passam

o vírus para uma hospedeira que não estava infectada eÑ3 como a taxa em que abelhas

não infectadas tornam-se infectadas.Û é a taxa de nascimento máxima de abelhas por

dia,1e2são taxas de morte para abelhas não infectadas e infectadas, respectivamente

- assumindo2 > �1 visto que abelhas infectadas morrem mais rapidamente.

A função () em 2.2 indica que a taxa de nascimento é afetada pela presença

de ácaros que carregam o vírus. Os autores dizem que a presença dessa função é

particularmente importante para vírus como o de paralisia aguda (APV), porque eles

(39)

21 2.3. Estado da arte

função () decresce para quantidades grandes de . (0) = 1, () tem derivada

negativa e limite igual a zero à medida que cresce pra infinito positivo.Eberl et al.

(2010) sugerem então uma função exponencial () = ��, que é similar à função

usada no modelo de Sumpter and Martin(2004).

O termo de manutenção das crias adicionado() (2.3) expressa que são necessárias

uma quantidade grande de abelhas saudáveis para manter as crias. Eberl et al.(2010) diz ŞA inclusão desse termo é a única diferença entre este modelo e o modelo deSumpter and Martin (2004), no qual este estudo foi baseado.Ť Se o número de abelhas saudáveis for menor do que um valor crítico, não existirá nascimento de novas abelhas. Por outro

lado, se o número dessas abelhas for maior do que esse valor crítico, a taxa de nascimento

de novas abelhas não será alterada. () tem derivada positiva,(0) = 0 e o limite de

() tende a 1 quandocresce.é o tamanho da colônia no qual a taxa de nascimento

é metade da taxa máxima possível e � >1. Se = 0, então voltamos para o modelo

de Sumpter and Martin(2004).

() =

��+ (2.3)

Os autores também analisaram o modelo variando os parâmetros segundo cada

estação do ano. A conclusão a que chegaram foi que modelos que não levam em conta que

uma colônia precisa de uma força para manter as crias e, consequentemente, sustentar

o desenvolvimento da colônia, podem subestimar o número de ácaros que uma colônia é

capaz de tolerar. Simulações computacionais mostraram que uma colônia infestada pode

se comportar similarmente à uma colônia saudável pode vários anos, mas de repente

pode colapsar e desaparecer. E as simulações mostraram que esses colapsos ocorrem na

primavera, visto que a população de operárias é muito pequena para manter as crias.

(40)

Capítulo 2. Referencial Teórico 22

modelo é descrito por2.4.

��

�� =Ñ1()

+Ñ2 + ��

�� =Û�()()−Ñ3

+1Ò1� � ��

�� =Ñ3

+2Ò2� � ��

�� =��(1−

Ð(+)) (2.4)

Nos modelos deSumpter and Martin (2004) eEberl et al.(2010) a população total de ácaros era considerada um parâmetro do modelo. Agora, Ratti et al. (2012)

estenderam os modelos anteriores adicionando uma equação de crescimento logístico

para M. Essa nova equação mostra que a população do ácaro depende do tamanho

da população das abelhas (+) e de Ð que representa quantos ácaros uma abelha

carrega, na média. Além de Ð, também foram adicionados os parâmetrosÒ1 e Ò2 que

representam a taxa na qual os ácaros matam as abelhas. Os parâmetros Ñ1,Ñ2,Ñ3,Û,

1,2 e as funções () e () são os mesmos descritos no modelo anterior (Eberl et al.,2010).

Um outro modelo também baseado em equações diferenciais foi proposto porKhoury et al. (2011). Considerando que as abelhas adultas de uma colônia são divididas em Šabelhas da colméiaŠ (H) e ŠforrageirasŠ (F), o modelo prevê um limiar crítico para

mortalidade das abelhas forrageiras sob o qual a colônia pode permanecer num tamanho

estável. Se a mortalidade for mais alta do que esse limiar, a colônia pode chegar ao

colapso. Além disso, para tentar manter o equilíbrio da colônia, a medida que as abelhas

forrageiras morrem, as abelhas de colméia mudam de papel e se tornam forrageiras.

Contudo, se a taxa de mortalidade das forrageiras for muito alta, as abelhas de colméia

(41)

23 2.3. Estado da arte

modelo proposto está descrito em 2.5.

�� �� =

+

++(Ðà +) ��

�� =(Ðà

+)−�� (2.5)

O modelo descreve, basicamente, três fases da vida das abelhas: nascimento,

re-crutamento para forragear e morte. O parâmetro representa o número de abelhas

que nascem diariamente e é um número experimental que pode se aproximar de um

valor mínimo do total de abelhas operárias adultas em uma colônia saudável. Sendo

assim, a parte do modelo que representa o nascimento é +++ que nos diz que se

+, isto é, o total de abelhas operárias adultas for grande, a taxa de nascimento

de abelhas por dia se aproxima do valor constante . Por outro lado, se esse total de

abelhas for muito menor do que , o número de abelhas que nascem por dia pode

ficar comprometido. Isso acontece porque, principalmente, as abelhas forrageiras são

responsáveis pela alimentação da colônia, se diminuir o total dessas abelhas, diminuirá

a comida presente na colmeia.

A segunda fase da vida das abelhas descrita no modelo é o recrutamento representado

por (Ðà+). Ð representa a taxa máxima com a qual Šabelhas de colmeiaŠ se

transforam em forrageiras quando há falta de forrageiras na colônia. E à+ mostra

como a presença de forrageiras na colônia reduz a taxa de recrutamento das outras

abelhas. A mortalidade das abelhas é representada pelo parâmetro .

Esse modelo basicamente foca nos efeitos da variação da taxa de mortalidade das

forrageiras na dinâmica populacional da colônia. Os autores mencionam que fatores

que alteram a sobrevivência tanto das crias quanto das adultas podem deixar a colônia

mais vulnerável ao colapso. E, um desses fatores, é justamente a presença do ácaro

(42)
(43)

Capítulo 3

Metodologia

Neste capítulo nossa abordagem do problema de modelagem da dinâmica entre as

populações das abelhas e dos ácaros e também apresentaremos uma forma para ajustar

os parâmetros que não são fornecidos pela literatura.

3.1

A proposição de um modelo

Começamos estudando o problema da Desordem do Colapso das Colônias a partir do

modelo apresentado por Ratti et al. (2012). E ao investigar mais a fundo o problema do desaparecimento de colônias, sugiram perguntas como: Por que não há registros de

colapsos no hemisfério sul? Ao buscar respostas pra essa pergunta descobrimos que

as abelhas possuem comportamentos de resistência ao ácaro e, além disso, a eficiência

desses mecanismos de resistência varia para subespécies de abelhas.

Por exemplo, em seu artigo,Vandame et al. (2002) tinham por objetivo discutir o custo-benefício de mecanismos de resistência da abelha ao ácaro. São estes: o grooming

realizado por abelhas adultas que inclui detectar e eliminar o ácaro do seu próprio corpo

(auto-grooming) ou do corpo de uma outra abelha (allo-grooming); e o comportamento

(44)

Capítulo 3. Metodologia 26

alvéolos com crias e, com o objetivo de evitar que o ácaro se alastre pela colônia,

a abelha mata aquelas crias infestadas. O estudo comparou os resultados para as

duas subespécies de abelhas - africanizadas e europeias - para examinar se esses dois

mecanismos poderiam explicar a baixa compatibilidade entre as abelhas africanizadas e

o ácaroVarroa destructor, no México. Os resultados mostraram que o comportamento

de grooming aparece de forma muito mais intensa nas abelhas africanizadas do que

nas europeias. E em relação ao comportamento higiênico, eles sugeriram que existem

dois fatores limitantes para a remoção de crias infestadas. Um deles está relacionado à

porcentagem de crias infestadas que as abelhas adultas conseguem detectar com precisão.

O segundo fator é a quantidade de remoção que uma colônia pode suportar, uma vez que

remover todas as crias infestadas causaria impactos futuros na colônia. Os resultados

mostraram que as abelhas africanizadas são mais eficientes para detectar e remover

as crias infestadas. Mas, mesmo assim, para aquelas colônias experimentais as AA só

conseguiram remover 32.5% do total das infestadas. Por outro lado, as abelhas Europeias

(45)

27 3.1. A proposição de um modelo

removem, ao realizar o comportamento higiênico, uma quantidade significativa de crias

que não estavam infestadas.

Com isso em mente, decidimos investigar a relação ácaro-abelha antes de

introduzir-mos os vírus no sistema. Se a quantidade de ácaros na colônia for controlada, espera-se

que a colônia fique, então, menos vulnerável a doenças virais. Nosso objetivo principal,

neste trabalho, é entender a dinâmica entre abelhas e seus mecanismos de resistência ao

ácaro parasita, como mostra a figura 3.1, visto que o grooming e comportamento

higiê-nico podem evitar elevados níveis de infestação do ácaro na colônia e, consequentemente,

evita-se também doenças associadas ao parasita.

Para isso, propomos um modelo composto por quatro equações diferenciais, onde

cada equação representa os possíveis estados da dinâmica: abelhas imaturas 1 não

infestadas, abelhas imaturas infestadas pelo ácaro, abelhas adultas sem ácaros e abelhas

adultas que carregam o ácaro.

As variáveis dependentes e �� representam as abelhas imaturas que não foram

infestadas e as que foram infestadas pelos ácaros, respectivamente. Dizemos que algumas

abelhas imaturas estão infestadas se a mãe ácaro entra no alvéolo onde elas estão,

imediatamente antes deste ser operculado e então põe ovos (veja a figura 2.1). Desta forma, os ácaros, que se alimentam da hemolinfa das crias, emergem juntos com estas

abelhas. Se até a fase adulta o ácaro não tiver sido removido - ou seja, se na fase

imatura não ocorreu o comportamento higiênico como na figura 2.3 - dizemos que a abelha adulta está infestada e representamos esse grupo por ��. As abelhas que não

foram infestadas enquanto imaturas ou que cresceram com o ácaro, mas se livraram

dele através do grooming são representadas pela variável .

O comportamento higiênico, que mede a capacidade de abelhas adultas detectarem

e removerem crias infestadas antes que estas se desenvolvam e o ácaro se espalhe, nesse

1

(46)

Capítulo 3. Metodologia 28

modelo é dado por dois parâmetros e ��. O parâmetro está associado à eficiência

da abelha detectar e eliminar as crias que estavam, de fato, infestadas. No entanto,

níveis elevados de erros são cometidos por certas espécies de abelhas. Muitas vezes

elas eliminam crias que não estavam infestadas. No nosso modelo, representamos este

equívoco - ou falta de eficiência - pelo parâmetro��e o chamamos de Şcomportamento

higiênico equivocadoŤ.

O parâmetro representa o grooming que acontece, exclusivamente, na fase adulta.

Nós consideramos este mecanismo de resistência da abelha ao ácaro como uma taxa

de recuperação da abelha. Isto é, uma abelha adulta ao realizar o grooming 2 passa de

infestada (��) para não infestada ().

Além disso, usamos os parâmetros Þ,Ó,ÛeÒ para representar o número de abelhas

que nascem por dia, taxa de maturação de uma abelha, a mortalidade natural e a

mortalidade induzida pela presença de ácaros na colônia, respectivamente.

Tabela 3.1: Tabela com alguns dos parâmetros usados no modelo.

Parâmetro Significado Valor Unidade Referência

Þ Natalidade de abelha 2500 ����ℎ�×���−1 Embrapa

Ó Taxa de maturação 0,05 ���−1 Tab. 2.1

Û Mortalidade natural da abelha 0,04 ���−1 (Khoury et al., 2011)

Ò Mortalidade induzida pelo ácaro 10−7 ���−1 (Ratti et al.,2012)

3.2

Ajuste dos parâmetros

Uma vez que a literatura não nos fornece valores confiáveis para grooming,

comporta-mento higiênico e comportacomporta-mento higiênico equivocado, fixamos os valores que já nos

foram fornecidos segundo a tabela3.1e decidimos permitir que, e��variem como

na tabela3.2. Optamos por fazer isso ao invés de simplesmente tentar estimar um único valor para cada um dos parâmetros não fornecidos.

2

Para simplificar, vamos considerar oauto-grooming - quando a abelha retira do ácaro dela mesma - e oallo-grooming- quando uma abelha retira o ácaro de uma outra abelha - como sendo um único

(47)

29 3.2. Ajuste dos parâmetros

Tabela 3.2: Variação dos parâmetros

Parâmetro Valor mínimo Valor máximo

0,01 0,1

0,08 0,4

�e 0,04 0,2

Variando os parâmetros, queremos avaliar sob quais combinações de valores possíveis,

teríamos o equilíbrio sem infestação ou o equilíbrio com infestação.

Uma forma que encontramos de determinar essas combinações foi através de mapas

de contorno. Esse tipo de gráfico, ao pé da letra, são desenhos em duas dimensões de

objetos tridimensionais. No nosso caso específico, selecionamos dois, do total de três

parâmetros, por vez. E deixamos que cada parâmetro varie dentro dos limites da tabela

3.2, e para cada combinação de valores possíveis desses dois parâmetros, a nossa terceira dimensão é dada pelo valor do sistema no equilíbrio.

Por exemplo, no gráfico3.2os valores para o parâmetro referente ao Šcomportamento higiênicoŠ estão no eixo das abscissas, enquanto os valores para Šcomportamento higiênico

equivocadoŠ estão no eixo das ordenadas. Fixamos um valor para o terceiro parâmetro,

neste caso o grooming e usamos, então, cada combinação {(�,��) : 0,08 < � <

0,4; 0,04< �� <0,2}, juntamente com os valores dos parâmetros previamente fixados,

para calcular a solução no equilíbrio do modelo ??. A região amarela no gráfico nos

mostra para quais valores de (�,��) teremos o equilíbrio onde o ácaro não permanece

no sistema e, consequentemente, a outra região se refere ao equilíbrio com infestação,

ou com a coexistência das duas espécies.

Repetimos esse mesmo experimento para combinações de ŠgroomingŠ com

(48)

Capítulo 3. Metodologia 30

Figura 3.2: Para essa simulação, deixamos os possíveis valores para o parâmetro

variando no eixo X, valores para o parâmetro�� variando no eixo Y e fixamos o valor

do grooming em= 0,02.

Figura 3.3: Para essa simulação, deixamos os possíveis valores para o parâmetro

variando no eixo X, valores para o parâmetro variando no eixo Y e fixamos o valor

(49)

31 3.2. Ajuste dos parâmetros

Figura 3.4: Para essa simulação, deixamos os possíveis valores para o parâmetro

variando no eixo X, valores para o parâmetro�� variando no eixo Y e fixamos o valor

(50)
(51)

Capítulo 4

Resultados

Na seção 3.1 propomos um modelo formado por quatro equações diferenciais para descrever a dinâmica hospedeiro (abelhas) parasitas (ácaros) incluindo os mecanismos de

resistência das abelhas ao àcaro. Neste capítulo vamos explorar esse modelo. Começamos

estudando de forma simplificada o mesmo modelo na ausência de parasitas. Usaremos

também os parâmetros estudamos na seção3.2 para analisar o modelo ??.

4.1

Modelo para o caso bidimensional: sem ácaros

Para entendermos a dinâmica do nosso modelo, vamos começar analisando uma situação

mais simples. Consideramos então o caso onde o ácaro não está presente na colônia, o

que nos dá um sistema de duas equações como abaixo:

��

�� =Þ−(Ó+��) ��

�� =�� (4.1)

(52)

Capítulo 4. Resultados 34

o parâmetro ��, que mede a taxa de erro cometida pelas abelhas ao realizarem o

comportamento higiênico, continua nas equações? Para simplificar, vamos supor agora

que, para este caso específico, �� é considerado a taxa de mortalidade de abelhas

imaturas. Esse sistema tem, então, como solução:

= Þ

Ó+��

;= ÓÞ

Û(Ó+��)

A matriz Jacobiana, isto é, a matriz formada pelas derivadas parciais das equações

4.1, é dada abaixo e seus autovalores são {−Û;−Ó��}.

︀ ︀

�� 0

ÓÛ

︁ ︀

Um ponto de equílibro para um sistema dinâmico contínuo é estável se todos os

autovalores da Jacobiana correspondente possuem parte real negativa. Por outro lado,

o equilíbrio é dito instável se, pelo menos, um dos dos autovalores possuir parte real

positiva.

Sendo assim, como Û, Ó e �� são ambos números reais entre zero e um, os dois

autovalores da Jacobiana do sistema são então reais e negativos, o que nos permite

concluir que este sistema não só tem um equilíbrio, como ele é estável. Por exemplo,

usando os paramêtros fornecidos pela tabela3.1e dado��= 0,13, no equilíbrio teríamos

= 13.888 e = 17.361. O que podemos confirmar pelos gráfico 4.1 e pelo campo de

(53)

35 4.1. Modelo para o caso bidimensional: sem ácaros

Figura 4.1: Número de abelhas adultas e imaturas no tempo para o caso bidimensional, sem ácaro com condições iniciais = 1000 e= 20000.

(54)

Capítulo 4. Resultados 36

4.2

Equilíbrios do modelo completo

Como no equilíbrio o sistema não muda de estado, para encontrarmos estes pontos basta

que igualemos cada uma das equações de??a zero, como mostrado pelas equações 4.2.

�� �� =Þ

+������ = 0 ���

�� =Þ ��

+�������= 0 ��

�� =�+����= 0 ���

�� =Ó�����−(Û+Ò)��= 0 (4.2)

Calculamos então os equilíbrios numericamente, fixando os valores de Þ, Ó,Û e Ò

segundo a tabela3.1, e resolvemos as equações acima deixando o resultado em função de , e��. Como vemos abaixo:

1. O equilíbrio sem infestação:

[ = 5×104

20�e+1;��= 0;=

6.25×104

20�e+1;��= 0];

É fácil mostrar que este equilíbrio é igual ao equilíbrio do caso bidimensional,

onde consideramos um sistema livre de ácaros.

2. O equilíbrio com infestação1:

[ = −50×1010 (20(107

+400001)−8×106(25+1)e+1);

�� = 5

×104(2×108+8000020)+107−8×106e+1) (400(107

+400001)2

+40(5×106+200001)−8×106((50+2)10+25+1)e+1);

= −25×1016(20��e+)

(800��2

+40��−8×106(25×1072+20��+20000025+400001)e+107+400001);

�� = 25

×109(20(107+400001)+107−8×106e+1) (800��2+40��8×106(25×1072+20��+20000025+400001)

e+107+400001)]

1

(55)

37 4.3. Estabilidade dos equilíbrios

onde= (5×10132+ 4000015×106+ 80000600001);

= (25×1072+ 20000025+ 400001)

4.3

Estabilidade dos equilíbrios

Uma vez que, pelo estudo dos mapas de contorno na seção 3.2, fomos capazes de determinar combinações para os parâmetros , e �� que levariam o sistema a um

equilíbrio sem infestação ou a um equilíbrio com infestação, vamos agora então analisar a

estabilidade de cada um desses dois casos. Para o estudo da estabilidade, determinamos

a matriz Jacobiana, usando as derivadas parciais das equações ??:

︀ ︀ ︀ ︀ ︀ ︀ ︀ ︀ ︀ ︀

Ó�� 0 �Þ+i(+�Þ

i)2 −

�Þ

(+�i)2

0 −Ó�iÞ

(+�i)2

Þ +�i

�iÞ

(+�i)2

Ó 0 −Û

0 Ó 0 −ÒÛ

︀ ︁ ︁ ︁ ︁ ︁ ︁ ︁ ︁ ︀

No primeiro caso, supomos que uma certa colônia, em um momento inicial, possui

um total de 20.000 abelhas adultas, sendo que metade delas não carregam o varroa e

consideramos, também, que existam 10.000 abelhas imaturas e metade delas são

infesta-das pelo varroa. Dado que o grooming, o comportamento higiênico e o comportamento

higiênico equivocado foram escolhidos a partir da análise dos mapas de contorno (3.2,

3.3 e 3.4) para o caso onde não há infestação, sendo então uma das possíveis combi-nações desses valores: = 0,06, = 0,25 e �� = 0,13. A dinâmica do modelo para

Imagem

Figura 1.1: ŞEm um mundo sem abelhas, nós precisamos fazer a nossa própria polinização.Ť Fonte: http://www.classbrain.com/artteensb/publish/bee_colony_ collapse_disorder.shtml
Figura 2.1: Ciclo de vida do ácaro Varroa des-
Figura 2.2: Abelhas em fase imatura infestadas pelo ácaro Varroa destructor.
Figura 2.3: A abelha operária detecta um alvéolo que contém o ácaro, retira a cobertura deste alvéolo e a abelha imatura que estava dentro
+7

Referências

Documentos relacionados

para a gestão de pessoas, têm-se a Política Nacional de Desenvolvimento de Pessoal - PNDP, instituída pelo Decreto nº 5.707, de 2006, que insere a gestão de competências na

Este método é responsável em mostrar ao educando a parte prática da disciplina, coloca o aluno em contato direto com uma atividade real da sociedade, fazendo com que ele

The biochemical assays were serum parathyroid hormone (PTH), osteocalcin (OC), osteoprotegerin (OPG), receptor activator for nuclear factor κappa β ligand (RANk-L),

em quando o discípulo se torna um Adepto. Eis outro assunto que não é pemitido falar p ublicamente... Pois, além do mais,  não se deve fazer mau uso dos  siddhis  ou poderes

Este Código de Ética reúne as diretrizes e os princípios que devem ser observados e adotados por todos na empresa para nortear as ações e relações com o público com o

Rennó (2003) também reconheceu que o sensoriamento remoto permite adquirir, a custo relativamente baixo, grandes quantidades de dados distribuídos espacial e temporalmente,

O Manual de Restauração de Pavimentos Asfálticos do DNIT define afundamento como uma deformação permanente devido à depressão do revestimento do pavimento, com ou

O objetivo deste trabalho foi usar cG-EM na obtenção do perfil metabólico de erva-mate cultivada em sistema protegido de semi-hidroponia, comparando genótipos