• Nenhum resultado encontrado

Structural characterization of a new dextran with a low degree of branching produced by Leuconostoc mesenteroides FT045B dextransucrase

N/A
N/A
Protected

Academic year: 2017

Share "Structural characterization of a new dextran with a low degree of branching produced by Leuconostoc mesenteroides FT045B dextransucrase"

Copied!
5
0
0

Texto

(1)

ContentslistsavailableatSciVerseScienceDirect

Carbohydrate

Polymers

jo u r n al h om ep a ge : w w w . e l s e v i e r . c o m / l o c a t e / c a r b p o l

Structural

characterization

of

a

new

dextran

with

a

low

degree

of

branching

produced

by

Leuconostoc

mesenteroides

FT045B

dextransucrase

Mary

Helen

Palmuti

Braga

Vettori

a

,

Sandra

Mara

Martins

Franchetti

b

,

Jonas

Contiero

a,∗

aUnesp–Univ.EstadualPaulista,BiologicalSciencesInstitute,DepartmentofBiochemistryandMicrobiology,LaboratoryofIndustrialMicrobiology,24AAve.,BelaVista,IBRC,Rio

Claro,SP,CEP13506-900,Brazil

bUnesp–Univ.EstadualPaulista,BiologicalSciencesInstitute,DepartmentofBiochemistryandMicrobiology,LaboratoryofPolymerBiotreatments,24AAve.,BelaVista,IBRC,Rio

Claro,SP,CEP13506-900,Brazil

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received11October2011

Receivedinrevisedform14February2012 Accepted18February2012

Available online 25 February 2012

Keywords:

LeuconostocmesenteroidesFT045B dextransucrase

Dextran

Structuralcharacterization ComparisonwithcommercialB-512F dextran

a

b

s

t

r

a

c

t

This paper offers thephysical and chemical characterizationof a new dextran producedby

Leu-conostocmesenteroidesFT045B.ThechemicalstructurewasdeterminedbyFourierTransformInfrared

spectroscopyand1HNuclearMagneticResonancespectroscopy.Thedextranwashydrolyzedby

endo-dextranase;theproductswereanalyzedusingthinlayerchromatographyandcomparedwiththoseof

commercialB-512Fdextran.Thenumber-averagemolecularweightanddegreeofpolymerizationofthe

FT045Bdextranweredeterminedbythemeasurementofthereducingvalueusingthecopper

bicinchon-inatemethodandthemeasurementoftotalcarbohydrateusingthephenol–sulfuricacidmethod.The

datarevealedthatthestructureofthedextransynthesizedbyFT045Bdextransucraseiscomposedof

d-glucoseresidues,containing97.9%-(1,6)linkagesinthemainchainsand2.1%-(1,3)branchlinkages

comparedwiththecommercialB-512Fdextran,whichhas95%␣-(1,6)linkagesinthemainchainsand

5%␣-(1,3)branchlinkages.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Dextran is an extracellular bacterial homopolysaccharide (Sidebotham, 1974; Monsan et al., 2001), the main chain of

whichiscomposedofcontiguous␣-(1,6)-linkedd-glucopyranose residuesand branches, stemmingmainlyside-chains of ␣-(1,6)

glucose units attached by ␣-(1,3) branch linkages to ␣

-(1,6)-linkedchains(Buchholz&Monsan,2001;Dols,Remaud-Simeon, Willemot,Vignon,&Monsan,1998;Naessens,Cerdobbel,Soetaert, &Vandamme,2005;Robyt,1995;Seymour&Knapp,1980).Some dextranshave ␣-(1,2)or ␣-(1,4)branchlinkages, dependingon

thebacterialsource.Theexactstructureofeachtypeofdextran dependsonthedegreeofbranching,involving␣-(1,2),␣-(1,3)and ␣-(1,4)linkages(Seymour&Knapp,1980),whichdependsonthe

specificmicrobialstrainand,hence,onthespecificityof dextran-sucrase(s)EC.2.4.1.5involved(Jeaneset al.,1954).Dextranscan beproducedbygrowingvariousbacterialstrainsofLeuconostoc mesenteroidesandStreptococcusspeciesonamediumcontaining

Abbreviations: DPn,numberaveragedegreeofpolymerization;FTIR,Fourier TransformInfrared;1HNMR,1HNuclearMagneticResonance;MWn, number-averagemolecularweight;NCBI,NationalCenterforBiotechnologyInformation; Pyr/Ac,Pyridine/Acetate;TFA,trifluoroaceticacid;TLC,thinlayerchromatography.

∗Correspondingauthor.Tel.:+551935264180;fax:+551935264176.

E-mailaddresses:marypalmuti@bol.com.br(M.H.P.B.Vettori),

samaramf@rc.unesp.br(S.M.M.Franchetti),jconti@rc.unesp.br(J.Contiero).

sucrose(Kim,Robyt,Lee,Lee,&Kim,2003).Dextranproductionis influencedbyanumberoffactors:physicalandchemicalproperties (Jeanes,1965),suchassolubility,viscosity,specificopticalrotation andthecontentofnitrogen,phosphorusandashinthemedium, whichfurtherdependsonthespecificmicroorganismsinvolved (Jeanesetal.,1954).Asingleenzymecancatalyzethesynthesisof severaltypesofdextranlinkages,therebypermittingthe forma-tionofabranchedpolymer(Neely&Nott,1962;Smith,Sahnley,& Goodman,1994).Ontheotherhand,certainbacterialstrainshave beenshowntoproducedextransofdifferentstructures,whichhave beenattributedtotheexcretionofdifferentdextransucrases(Côté &Robyt,1982;Figures&Edwards,1981;Zahley&Smith,1995). Thus,thestructureofeachdextranisacharacteristicofthespecific dextransucrase(Jeanesetal.,1954).Thepresentstudydiscussesthe structureofawater-solubledextranproducedbyadextransucrase elaboratedbyL.mesenteroidesFT045B.FourierTransformInfrared (FTIR) spectroscopy,1H Nuclear Magnetic Resonance(1HNMR)

spectroscopyandTLC(ThinLayerChromatography)of oligosaccha-ridesobtainedfrompolymerhydrolysisbyendodextranaseisolated fromPenicilliumspwereusedforthedeterminationofthe struc-ture.

Thenumberaveragemolecularweight(MWn)and degreeof polymerization(DPn)weredeterminedbythemeasurementofthe reducingvalueusingthecopperbicinchoninatemethodandthe measurementoftotalcarbohydrateusingthephenol–sulfuricacid method.

(2)

2. Experimental

2.1. Organism

L.mesenteroidesFT045Bwasisolatedfromanalcoholandsugar millplantandwasprovidedbytheMicrobiologyIndustrialProcess ControlDivision ofFermentec(Brazil).Thenucleotidesequence wassubmittedtotheGenBanksequencedatabase(GenBankID: JF812153.1).

2.2. Enzymes

(a)L. mesenteroides B-512FMC dextransucrase (heretofore B-512FMC dextransucrase) was obtained from a constitutive mutant of L. mesenteroides B-512FMC (Kim & Robyt, 1994; Zahley&Smith,1995)whichwasprovidedbytheLaboratory ofCarbohydrateChemistryandEnzymology,IowaState Univer-sity(USA).Theculturesupernatantwasconcentratedbypassing itthroughapolysulfoneultrafiltrationhollowfibercartridge (0.1m×1.0m,H5P100-43,Amicon,Inc.,Beverly,MA,USA)ata

flowrateof4Lmin−1at21C.Whenthevolumeofthe

concen-tratewasapproximately1L,smallmoleculeswereremovedby passing,(10times)through500mLof20mMpyridine/acetic acidbuffer,pH5.2,containing0.04%PVA10Kand1mMCaCl2.

Theconcentratedenzymewasthencollectedandthehollow fibercartridgewaswashedwithapproximately400mLofthe bufferwhichwasaddedtotheconcentrate(Kitaoka&Robyt, 1998).B-512FMCdextransucrase activitywas89IUmL−1,as

determined by the 14C-sucrose assay (Vettori, Mukerjea, & Robyt,2011),inwhich1.0IU=1.0␮molof␣-d-glucose incor-poratedintodextranpermin.

(b) L.mesenteroides FT045B dextransucrase (hereinafter FT045B dextransucrase)wasobtainedfromL.mesenteroides FT045B. The growth medium for L. mesenteroides FT045 B was sucrose(40gL−1),yeastextract(20gL−1),K2HPO4 (20gL−1),

CaCl2 (0.02gL−1), MgSO4 (0.2gL−1),NaCl (0.01gL−1), FeSO4

(0.01gL−1)andMnSO

4 (0.01gL−1).Thestrainwasstoredat −20◦Cinacryogenicsolutionuntilpreparationofthe

inocu-lumfor fermentation.Thefermentationinoculum accounted for up to5% (v/v) of the total volume of the medium. The microorganismwastransferredfromthestockculturetothe samemediumandwasgrownfor18hat25◦Cand150rpm.

The culturesupernatant wasobtained by centrifugation for 30min at 13,000×g and stored at 4◦C during the

execu-tionoftheexperiments.FT045B dextransucraseactivitywas 2IUmL−1,asdeterminedbythe14C-sucroseassaydescribed

above.

(c)Dextranase from Penicillium sp was obtained from Sigma [lyophilized powder, 10–25unitsmg−1 of solid]; one unit

releases1.0␮moleofisomaltose(measuredasmaltose)permin

atpH6.0and37◦Cusingdextranassubstrate.Thepowderwas

dissolvedinabuffersolution(about4mLof20mMPyr/Ac,pH 5.5for1mgofpowder)toobtain5UmL−1.

2.3. Dextranreference

TheB-512FdextranwaspurchasedfromSigmaChemicalCo.

2.4. Dextranproduction

Theenzymedigestsolutionwaspreparedwiththeadditionof 40mLofbuffersolution(20mMPyr/Ac,pH5.2)to50mLof400mM sucroseandpreheatedto30◦Cfor10min.Theenzymereactionwas

startedbyadding10.0mLofthedextransucrase(2UmL−1)

pro-ducedbyL.mesenteroidesFT045Bandincubatedat30◦Cfor33h

(2conversionperiods).Attheendofthereaction200mLofcold

ethanolwasaddedtoprecipitatethesynthesizeddextranandthe solutionwaskeptat4◦Cfor24h.Theprecipitateddextranwas

cen-trifugedat13,000×gfor30minanddissolvedin100mLofwater.

Aftercomplete solubilization,thesolutionwascooledin icefor 10min.Thedextranwasprecipitatedagainwiththeadditionof 200mLofethanol,whichwasmixedandcentrifugedfor30min at13,000×g.Solubilizationandprecipitationwererepeatedonce

moretoensurethattherewasnoremainingfructoseorsucrose. Thedextranwastreatedfivetoseventimeswithacetone(30mL) andoncewithanhydrousethanol(30mL)andthenplacedintoa vacuumovenat40◦Cfor18h.

2.5. Thenumber-averagemolecularweight(MWn)anddegreeof polymerization(DPn)

TheMWnandDPn(Jane&Robyt,1984)ofthedextranwere determined by the measurement of the reducing value using thecopperbicinchoninatemethodandthemeasurementoftotal carbohydratesusingthephenol–sulfuricacidmethod(Fox&Robyt, 1991);DPn=[(totalcarbohydratesin␮gof d-glucose)/(reducing valuein␮gofmaltose)]×1.9;MWn=[(DPn)×162]+18.

2.6. Dextranhydrolysisbyendodextranase

Thedextran(10mg)wasdissolvedin960␮Lofbuffersolution

(20mMPyr/Ac,pH5.5);analiquotof40␮LofPenicilliumsp

endo-dextranase(5UmL−1)wasaddedandincubatedat37Cfor14h.

Aliquotsof100␮Lweretakenat10,20,30,40,50,60and840min.

Five␮Lofconcentratedtrifluoroaceticacid(TFA)wereaddedand

thealiquots(finalconcentrationof6.14MTFA)wereheatedto50◦C

for10mintostopthereaction.

2.7. Thinlayerchromatography

Analiquotof1␮Lofeachsampleandoftheisomaltodextrin

andmaltodextrinstandardswasapplied15mmfromthebottom ofathinlayerchromatography(TLC)plate(Whatman5K)using a 5␮L Hamiltonmicrosyringe pipette. Eachspot sizewas kept

between2and3mmdistantfromeachotherbyadding1␮Lat

atime,withintervalsfordrying.Theplatewasirrigatedwiththree ascentstothetopat20–22◦C using,85:20:50:70(v/v/v/v)

ace-tonitrile/ethylacetate/1-propanol/water. Afterdevelopment,the carbohydrateswerevisualizedby dippingtheTLCplateintoan ethanolsolutioncontaining0.5% (w/v)␣-naphthol and5%(v/v)

H2SO4.Afterairdrying,theTLCplatewasplacedintoanovenat

120◦Cfor10min.Thedensitiesofthecarbohydratespotsonthe

TLCplateweredeterminedusinganimagingdensitometer (Bio-Raddensitometer,ModelGS-670)(Robyt&Mukerjea,1994;Robyt, 2000).

2.8. 1HNMRspectroscopy

OnemilligramofdextranfromB-512Fand1mgofdextranfrom FT045Bweredissolvedseparatelyin0.5mLofpureD2Oandthen

placedinto5mmNMRtubes.1HNMRspectrawereobtainedfroma

BrukerDRX500spectrometer,operatingat500MHzat25◦C.

Ace-tone(2.22ppm)wasusedasthestandardforadjustingthe1HNMR

chemicalshifts.

2.9. Fourier-TransformInfraredspectrometricanalysis

(3)

Fig.1. TLCanalysisofhydrolysisofdextranFT045Bwithendodextranase(5U/mL) at37◦C.Lane1,2,3,4,5,6,and7refertosamplestakenat10,20,30,60,90, 120and840min,respectively;IM=isomaltodextrinstandards(IM=isomaltose, IM3=isomaltotriose,and soforth);MS=maltodextrin standards(G2=maltose; G3=maltotriose,andsoforth).

3. Resultsanddiscussion

ThedextranproducedbyL.mesenteroidesFT045Bhadanumber average molecular weight of 91,536Da and DPn of 565. Dex-tranhydrolysisbyendodextranaserequiresaminimumofsixor sevennon-substitutedcontiguouslylinked␣-(1,6)glucoseresidues

(Boune,Huston,&Weigel,1962;Côté&Robyt,1984;Richards& Streamer,1978).Thus,thedecisionwasmadetomakecertainthat L.mesenteroidesFT045Bwasproducingarealdextranwith predom-inantly␣-(1,6)-glucopyranosidiclinkageswithinthemainchains

priortocarryingouttheothercharacterizationmethods(Buchholz &Monsan,2001;Dolsetal.,1998;Seymour&Knapp,1980).

ThemixtureofoligosaccharidesobtainedfromFT045Bdextran hydrolysiswereappliedtoTLC(Fig.1)anddensitieswere deter-minedtofindthequantitativeamountofeachproductbyscanning imagingdensitometry,asdescribedbyRobytandMukerjea(1994). Thelimitofhydrolysisbyendodextranasewasexpressedasthe apparent conversioninto isomaltose.The major productsafter 840minofhydrolysiswithPenicilliumspdextranase(Fig.1,lane 7)wereisomaltose(33.2%)andisomaltotriose(24.6%).Thesewere derived fromthelinear regionsof the␣-(1,6)glucanbackbone

chains.Moreover,thebranchedoligosaccharides,representing sig-nificantbranches in dextran, branched isomaltotetraose (0.4%), isomaltopentaose (3.9%) and higher branched isomaltodextrins

Fig.2. FTIRspectraforcommercialdextranfromB512FfromFT045B.

wereobtained,indicatingFT045Bdextranbranching.Thetypeof thebranchingwasthenconfirmedbyNMRas␣-(1,3)linkage.

The type of linkages and thefunctional groups of the com-mercialdextranfromL.mesenteroidesNRRLB-512Fanddextran fromFT045BwerecharacterizedbyFTIRspectroscopicanalysis. Fig.2showstheFTIRspectraofcommercialdextranfromL. mesen-teroidesB-512FanddextranfromFT045B.Bothdextransgavevery similarspectra,indicatingasimilarstructure,althoughwith differ-entdegreesof␣-(1,3)branchlinkages.DextranfromFT045Band

B-512Fcontain␣-(1,6)linkages,asdemonstratedbythepeakat

1010cm−1,whichcharacterizestheconsiderablechainflexibility

presentindextranaroundthistypeofglycosidicbond(Shingel, 2002).The ␣-glycosidicbond is also confirmed by thepeak at

916cm−1andthebandat1159cm−1causedbycovalentvibrations

oftheC O Cbondandglycosidicbridge.Thepeakat1111cm−1

wasduetothevibrationoftheC ObondattheC-4positionofthe glucoseresidue(Shingel,2002).Thehydroxylstretchingvibration ofthepolysaccharidecausedthebandintheregionof3410cm−1

andtheC Hstretchingvibrationcausedthebandintheregionof 2926cm−1 (Capeketal.,2011;Liu,Lin,Ye,Xing,&Xi,2007).The

bandintheregionof1639cm−1 wasduetoboundwater(Park, 1971).The␣-(1,6)linkages werefurtherconfirmedby1HNMR

analysis.

The1HNMRspectraaffordcompellingevidenceforthemain

structuralfeaturesofdextran.Theindividualassignmentsderived fromthepresentexperimentsandthosereportedintheliterature aredisplayedinTable1.

Fig.3displaysthe1HNMRspectraofthenativedextranfromL. mesenteroidesB-512FandFT045BinD2O.Theresultsshowthat

the dextran from L. m. B-512F and L.m. FT045B have a simi-lar structure, although the␣-(1,3) branch linkages and ␣-(1,6)

Table1

Assignmentsofindividualsignalsin1HNMRspectraofthenativedextranfrom B-512F(usedasstandard)andfromFT045Bdextran.

B-512F(reported values)

B-512F (experimental)

FT045B (experimental)

1H(ppm)a 1H(ppm) 1H(ppm)

C1 H 4.99 4.91 4.90

C2 H 3.6 3.50 3.51

C3 H 3.76 3.65 3.63

C4 H 3.52 4.45 3.42

C5 H 3.88–4.04 3.85 3.85

C6 H 3.88–4.04 3.93 3.95

C6′ H 3.81–3.86 3.70 3.70

(4)

Table2

Differentlinkagestructuresfoundinalldextranseriesandreportedinliterature.

Percentofglycosidiclinkagesa

␣-1,6 ␣-1,3 ␣-1,3branch ␣-1,4branch ␣-1,2branch

Leuconostocmesenteroides

FT045B Sb 97.9e 2.1e

B-512F S 95 5

B-742 Lc 87 13

B-742 S 50 50

B-1355 L 95 5

B-1355 S 54 35 11

B-1299 L 66 7 27

B-1299 S 65 35

B-1498 S 50 50

B-1501 S 50 50

Streptococcusdownei

Mfe28 12 88

Mfe28 90 10

Streptococcusmutans

GS5 13 87

GS5 15 85

GS5 70 30

6715 S 64 36

6715 Id 4 94 2

aAdaptedfromMonsanetal.(2001). b S=soluble.

c L=lowsoluble.

d I=insoluble.

eDeterminedinthisstudy.

Fig.3.1HNMRspectraofnativedextranfromLeuconostocmesenteroidesB512-F andFT045BinD2O.

linkagesdifferintermsofpercentage.Dextransofdifferent struc-turescanbeproducedbyspecificdextransucrases,eachexcreted byacertainbacterialstrain(Zahley&Smith,1995).Table2 dis-playsthedifferentlinkagestructuresfoundinthedextranseries producedbyLeuconostocmesenteroides,Streptococcusdownei,and StreptococcusmutansaswellasthecomparisonbetweenFT045B dextran,with97.9%␣-1,6linkagesand2.1%␣-1,3branchlinkages,

andB-512Fdextran, whichhasaboutmorethantwiceasmany

␣-1,3branchlinkages(5%).

The three signals that appear centered at ∼5.25ppm (not

shown)representimportantstructuralcharacteristicsof␣

-(1,3)-linked-d-glucosyl residues. The peak at 4.90ppm is due tothe H-1ofthe␣-(1,6)glucosylresiduesofthemainchain(Purama,

Goswami,Khan,&Goyal,2009;Seymour,Knapp,&Bishop,1979). Theintegrationofsignals5.25and∼4.90givesthepercentageof

␣-(1,3)-linkedd-glucosyland -(1,6)-linkedd-glucosyllinkages, respectively(Table2).

The FTIR and 1H NMR spectral analysesconfirmed that the

polysaccharideproduced fromL.mesenteroides FT045Bis an␣

-(1,6) low-branched dextran, with2.1% ␣-(1,3)branch linkages,

givinganaveragechainlengthof(1/2.1)×100=48glucoseunits

betweenbranchlinkages,with97.9%␣-(1,6)linkages.The

com-mercialB-512FdextranfromSigmaexhibits5.0%branching,giving (1/5)×100=20glucoseunitsbetweenbranchlinkages,whichisa

significantdifference.Thereare21branchlinkagesforevery1000 glucoseunitsofFT045Bdextranand50branchlinkagesforevery 1000glucoseunitsofB-512Fdextran,indicatingasignificant dif-ferenceinstructure.B-512Fdextranhas5%␣-(1,3)branchlinkages

(5)

oneofthese,inwhichthebranchingislessthanhalfthatofthe B-512Fcommercialdextranoranyotherdextranthat hasbeen characterizedsofar.Thisproducesachainlengththatismorethan twicethelength(48vs.20glucoseunits,forFT045Bdextranand B-512Fdextran,respectively).Thisincreasedchainlengthshould givedifferentchemicalandphysicalproperties,incomparisonto otherdextrans.

Thediscoveryof newdextransthathave differentstructures and,hence,potentiallydifferentproperties,resultingfromdifferent structures,is important withregardto potentialnovel applica-tionsandthepotentialimprovementinoralterationstopreviously establishedapplications.

4. Conclusions

Thepresentexperimentsdemonstratedthatthedextran pro-ducedbyL.mesenteroidesFT045Bhasastructuresimilartothat ofL.mesenteroidesB-512Fdextran,butwith97.9%␣-1,6linkages

and 2.1% ␣-1,3 branch linkages, as compared to B-512F

dex-tran,whichhasmorethantwiceasmany␣-1,3branchlinkages

(5%).TheFT045Bdextranhasanaveragebranchchainlengthof 48 d-glucopyranose residues/molecule, as compared to B-512F dextran,whichthathasanaveragebranchchainlengthof20d -glucopyranoseresidues/molecule.

ThestructureoftheFT045Bdextran, with2.1%branching,is obviouslynotlinearandwouldhave12branchlinkagesper565 d-glucoseresiduesinadextranwithaMWnof91,536Da,as deter-minedinthepresentstudy.

Acknowledgements

TheauthorsaregratefultoProf.JohnF.RobytforallowingMary HelenP.B.Vettoritohaveanexternalresearchexperienceinthe LaboratoryofCarbohydrateChemistryandEnzymology, Depart-mentofBiochemistry,Biophysics,andMolecularBiology,atIowa StateUniversity,USA.

Financial support: The authors thank the FAPESP-São Paulo Research Foundation for financial support (grant number 2008/07410-1).

References

Boune,E.J.,Huston,D.H.,&Weigel,H.(1962).Theactionofmoulddextranases onmodifiedisomaltodextrinsandtheeffectofanomalouslinkagesondextran hydrolysis.BiochemicalJournal,85,158–162.

Buchholz,K.,&Monsan,P.(2001).Dextransucrases.InJ.R.Whitaker(Ed.),Handbook ofFoodEnzymology(pp.589–603).NewYork:MarcelDekker.

Capek,P.,Hlavonová,E.,Matulová,M.,Mislovicová,D.,Ruzicka,J.,Koutn ´y,M.,etal. (2011).Isolationandcharacterizationofanextracellularglucansproducedby LeuconostocgarlicumPR.CarbohydratePolymers,83,88–93.

Côté,G. L.,& Robyt, J. F. (1982).Isolationand partialcharacterization of an extracellularglucansucrasefromLeuconostocmesenteroidesNRRLB-1355that synthesizes alternating 1-6, 1-3-alfa-d-glucan. CarbohydrateResearch, 101, 57–74.

Côté,G.L.,&Robyt,J.F.(1984).Theformationofalfa-d-1-3branchlinkagesbya d-glucansucrasefromStreptococcusmutans6715producingasolubled-glucan.

CarbohydrateResearch,127,95–107.

Dols,M.,Remaud-Simeon,M.,Willemot,R.M.,Vignon,M.R.,&Monsan,P.F.(1998). Characterizationofthedifferentdextransucraseactivitiesexcretedinglucose, frutoseorsucrosemediumbyLeuconostocmesenteroidesNRRLB-1299.Applied andEnvironmentalMicrobiology,64,1298–1302.

Figures,W.R.,&Edwards,J.R.(1981).Alfa-d-glucosyltranferaseofStreptococcus mutansisolationoftwoformsoftheenzymethatbindtoinsolubledextran.

CarbohydrateResearch,88,107–117.

Fox,J.D.,&Robyt,J.F.(1991).Miniaturizationofthreecarbohydrateanalysesusing amicrosampleplatereader.AnalyticalBiochemistry,195,93–96.

Gil,E.C.,Colart,A.I.,ElGhzaoui,A.,Durand,D.,Delarbre,J.L.,&Bataille,B. (2008).Sugarcanenativedextranasaninnovativefunctionalexcipientfor thedevelopmentofpharmaceuticaltablets.EuropeanJournalPharmaceutics Bio-pharmaceutics,68,219–329.

Jane,J.L.,&Robyt,J.F.(1984).Structurestudiesofamylose-Vcomplexesand ret-rogradedamylosebyactionof␣-amylasesandanewmethodforpreparing amylodextrins.CarbohydrateResearch,132,105–118.

Jeanes,A.(1965).PreparationofdextransfromgrowingLeuconostoccultures. Meth-odsCarbohydrateChemistry,5,118–126.

Jeanes,A.,Haynes,W.C.,Wilham,C.A.,Rankin,J.C.,Melvin,E.H.,Austin,M.J.,etal. (1954).Characterizationandclassificationofdextransfromninetysixstrainsof bacteria.JournalofTheAmericanChemicalSociety,76,5041–5052.

Kim,D.,&Robyt,J.F.(1994).ProductionanselectionofmutantsofLeuconostoc mesenteroidesconstitutiveforglucansucrases.EnzymeandMicrobialTechnology,

16,659–664.

Kim,D.,Robyt,J.F.,Lee,S.Y.,Lee,J.H.,&Kim,Y.M.(2003).Dextranmolecularsizeand degreeofbranchingasfunctionofsucroseconcentrationpHandtemperatureof reactionofLeuconostocmesenteroidesB-512FMCM.CarbohydrateResearch,338, 1183–1189.

Kitaoka,M.,&Robyt,J.F.(1998).Useofamicrotiterplatescreeningmethodfor obtainingLeuconostocmesenteroidesmutantsconstitutiveforglucansucrase.

EnzymeandMicrobialTechnology,22,527–531.

Liu,C.,Lin,Q.,Ye,L.,Xing,Y.,&Xi,T.(2007).Characterizationandantitumoractivity ofpolysaccharidefromStrongylocentrotusnuduseggs.CarbohydratePolymers,

67,313–318.

Monsan,P.,Bozonnet,S.,Albenne,C.,Joucla,G.,Willemot,R.M.,&Remaud-Siméon, M.(2001).Homopolysaccharidesfromlacticacidbacteria.InternationalDairy Journal,11,675–685.

Naessens,M.,Cerdobbel,A.,Soetaert,W.,&Vandamme,E.J.(2005).Review Leu-conostocdextransucraseanddextran:productionpropertiesandapplications.

JournalofChemicalTechnology&Biotechnology,80,845–860.

Neely,W.B.,&Nott,J.(1962).DextransucraseaninducedenzymefromLeuconostoc mesenteroides.Biochemistry,1,1136–1140.

Park,F.S.(1971).ApplicationofI.R.spectroscopyinbiochemistry,biology,andmedicine. NewYork:Plenum.,pp.100–140)

Purama,R.K.,Goswami,P.,Khan,A.T.,&Goyal,A.(2009).Structuralanalysisand propertiesofdextranproducedbyLeuconostocmesenteroidesNRRLB-640. Car-bohydratePolymers,76,30–35.

Richards,G.N.,&Streamer,M.(1978).ModeofactionofdextranaseD2from Pseu-domonasUQM733onoligosaccharides.CarbohydrateResearch,62,191–196. Robyt,J.F.(1995).Mechanismintheglucansucrasesynthesisofpolysaccharidesand

oligosaccharidesfromsucrose.AdvancesinCarbohydrateChemistryBiochemistry,

51,133–168.

Robyt,J.F.(2000).Carbohydrates/thin-layer(planar)chromatography.InI.D. Wil-son, M.Cooke, &C. F.Poole (Eds.),Encyclopediaof separationscience(pp. 2235–2244).London:AcademicPress.

Robyt,J.F.,&Mukerjea,Ru.(1994).Separationandquantitativedeterminationof nanogramquantitiesofmaltodextrinsandisomaltodextrinsbythin-layer chro-matography.CarbohydrateResearch,251,187–202.

Seymour, F. R., & Knapp, R. D. (1980). Structural analysis of dextran from strainsofLeuconostocandrelatedgenera,thatcontain3-O-␣

-glucosylated-d-glucopyranosylresiduesatthebranchedpoints,orinconsecutive,linear position.CarbohydrateResearch,81,105–129.

Seymour,F.R.,Knapp,R.D.,&Bishop,S.H.(1979).Correlationofthestructureof dextrantotheir1H-NMRspectra.CarbohydrateResearch,74,77–92.

Shingel,K.I.(2002).Determinationofstructuralpeculiaritiesofdextranpullulanand gama-irradiatedpullulanbyFourier-transformIRspectroscopy.Carbohydrate Research,337,1445–1451.

Sidebotham,R.L.(1974).Dextrans.AdvancesinCarbohydrateChemistryBiochemistry,

30,371–444.

Smith,M.R.,Sahnley,J.,&Goodman,N.(1994).Glucosyltransferasemutantsof Leu-conostocmesenteroidesNRLB-1355.AppliedandEnvironmentalMicrobiology,60, 2723–2731.

Vettori,M.H.P.B.,Mukerjea,Ru.,&Robyt,J.F.(2011).Comparativestudyofthe efficaciesofnineassaymethodsforthedextransucrasesynthesisofdextran.

CarbohydrateResearch,346,1077–1082.

Imagem

Fig. 1. TLC analysis of hydrolysis of dextran FT045B with endodextranase (5 U/mL) at 37 ◦ C
Fig. 3. 1 H NMR spectra of native dextran from Leuconostoc mesenteroides B512-F and FT045B in D 2 O.

Referências

Documentos relacionados

Este relatório relata as vivências experimentadas durante o estágio curricular, realizado na Farmácia S.Miguel, bem como todas as atividades/formações realizadas

The participation in the balancing market presents very suitable conditions, although with the used forecast and employed strategies it resulted in an increase in the imbalance

To study the interaction of bacteriocin to the sensitive bioassay organism different amount of crude bacteriocin 16, 32, 64 AU ml -1 was added to cultures of

The analysis of exopolysaccharides produced by the Leuconostoc pseudomesenteroides R2 strain by infrared, 1 H, 13 C and DEPT-135 NMR spectra indicated that it is a

up to 3.2 log cycles in adhered population of L. monocytogenes cells adhered to the stainless steel surface within 48 hours of incubation in the presence of L. monocytogenes

We have successfully produced a series of PbTe/PbEuTe double barrier structures, with different barrier thickness, grown on BaF 2 substrates by molecular beam epitaxy. The

bjective: To evaluate the antibacterial action of an extract of geopropolis produced by the bee Melipona compressipes fasciculata on the concentration of Streptococcus mutans

The aim of this investigation was to analyze the in vitro retention and survival rate of Streptococcus mutans and Streptococcus sanguinis on different toothbrushes.. The impacts