• Nenhum resultado encontrado

Novel Control Strategy for VSI and CSI Active Filters and Comparing These Two Types of Filters

N/A
N/A
Protected

Academic year: 2017

Share "Novel Control Strategy for VSI and CSI Active Filters and Comparing These Two Types of Filters"

Copied!
8
0
0

Texto

(1)

1393

CSI

VSI

! "# $

) 1 (

#() $ (

) 2 (

+ , -./

) 3 (

) 1 ( & ' ( )*+, - . / * 01 2+3 41 )* 5 * 6 7& ' 8 9

) ' 9 :&

) 2 ' < 9 (

9 :& ' ) * 5 7& '

) 3 8 ' (

7& ' )

= > ' *8 :& '

: 6 @ A 24

/ 2 / 1393 :D E @ A

23 / 10 / 1393

1 2

:

' G 5 HEI ' J' , (7K =' A 2 L M NA '

5 89' 80 6 )O 3 (86 P ' 3 =' ' 6 (Q A

R ' ' 5 ' . '

=/ 8 *P 9 =' KQ O TU&5 8 9 I ) 80 6 ( P . ' V 80 6 ( KV

(. N5 R ' W ' R *. 8 9 XA' 8 '

89' 80 6

VSI CSI

80 6 W R ' YZ ' & [ 9 =' 5 \ '

THD

Q *+, - = 5

(V N5 (86 P ' .

89' 80 6 ' & *. 8 9 XA' 8 '

VSI

5]1 * 8K5 89' 80 6 & *. 8 9 XA' 8 ' = Q ^K 5 D _.

CSI

( 09 . ' D _. 5]1 * 8K5 `N6 ( K

` a5

MATLAB/Simulink

8 . ' (86 P b ' c

( K *5 = & (9

D D ' 8 80 6 W ' & *. 8 9 *5 *0K3 *. 8 9

89' 80 6

CSI

89' 80 6 ( KV 8 70 1

VSI

( I R86 P \ 5

) ^K 5 = A 9 TA' ' P 0Q ' (

. '

: # 4 ( 6

.* _. . I 8 9 )*+, - )d 8. ^K 5 A ' )= Q ^K 5 A ' ) 89' 80

Novel Control Strategy for VSI and CSI Active Filters and

Comparing These Two Types of Filters

Gholam Reza Arab(1) – Somayeh Yarahmadi(2) – Jafar Soltani(3) (1) Associate Professor - Department of Electrtical Engineering, Shahrekord University

arab-gh@eng.sku.ac.ir

(2) MSc - Department of Electrtical Engineering, Shahrekord University somayeh.yarahmadi@gmail.com

(3) Professor - Department of Electrtical Engineering, Isfahan University of Technology j1234sm@ece.iut.ac.ir

Recently to eliminate the harmonics and improve the power factor of the power networks, much attention has been attracted to active filters. The advantages of these filters are lower volume and their better compensating characteristics than the passive filters. In conventional sliding mode controllers, the source current waveform is fluctuated in near to zero values. In this paper, using a new sliding technique, lower Total Harmonic Distortion (THD) in source current is obtained and the current waveform is improved. As well as, two novel control strategies for two types of active filters, VSI and CSI is proposed and then these two types of filters are compared to reduce THD value of source current.The proposed controlled strategies are simulated by MATLAB/Simulink. The Simulation results confirm that the proposed strategies reduce the THD of source current more than other strategies, and active filter based on CSI has a better performance than active filter based on VSI with a dead time area (for avoiding short circuit of the source) in high powers.

Index Terms: Active filter, current source inverter, voltage source inverter, non-linear load, sliding mode control.

: 5 "#

) 9 :& ' )e 1 L

5]-arab-gh@eng.sku.ac.ir

(2)

1 6 # h h V7 ' h1' *h+, - h ' >8h ' 5'

9 ) 8V A &i j ( ... * N.'

[ ' h6' hI h P

*+, - 5 j U *A' A R i . ' Q =

= k5 h *

G 5 ' * l j *5 ' 8V (

(h )R ' m 9

8V T83' O 3 NA ' [ ' 6' I ( 6 GA

hh ' ] 1 [ ] 4 [ Ghh 5 e 0+5 hh hhn/ (hh0 Q ' . = hh Q hh

8V `h A *h Kj - O h . A : ' ' O K1 O 3

2 / ) 8V I ' [ O ' I . A )=' A 2 L o] ' = , 5 P k . ( A 5 >V ' A p 1

G 5 '

d h8.

O 3 8V ] 5 [ ) ] 6 [ .

=' KQ ' *>08U5 W' ' = 9 A [ 9 \ 5 ( 9

nqA

8V *+, -& O 3 G 87.'

' *7 . '

=' KQ R ' ' 9

* , V 80 6 ) *>0

LC

R ' . ' (

*5 =' ' *I' j > 9 2 L K r1 80 6 m P

= )* ' 5 ) I k K3 ' *As 7 ' ' ' Q R ' ( E_A 8V ` ' ( *:8V ' 8V =' A

] 7 [ ) ] 8 [ 5' .

0 3 ) V 80 6 ( KV 8 70 1 01 ( 89' 80 6 G 5 HEI Q ) 8 9 = I ) 8& \ A K

(86 P ' 3 8& (Q A 5 =' A 2 L ' ] 9 [ ) ] 10 [ . ' 85 *5 A ' 8, 89' 80 6 8, R A .

89' 80 6 *5 VNA (8 ( A ' 8,

:

) d 8. ^K 5 A '

VSI

) = Q ^K 5 A ' (

CSI ( ] 11 [ ' . A

V3 v = , G )d 8. ^K 5 dc

09 P' . '

2Q 5 R * A 9 = 5 A ' R ' G *5 G . = , dc

9 TA' ' V = Q A

09 2 / r1 R ' (9 E: 09 ( *

*5 ] 12 [ .

d 8. ^K 5 A ' ( KV 8& O >0A ' ' = Q ^K 5 A ' b N5 8, ' ' = Q ^K 5 A ' 5' ' ' A

] 13 [ .

D ' 5'

D 5 Q

PWM ] 14 [ ] 16 [ ) (7K *KT1 ] 17 [ 6 p+ 5 ) ] 18 [ ] 21 [ * _. . I )

] 22 [ ] 26 [ . *5 >8 ' 89' 80 6 8 9 ' . I 8 9 .

k . ( ' . ' 89' 80 6 8 9 ' D R A 9 * _. 5 _85 8, 8& 2 A )= 5 _85 8, R8 ' =

' 89' 80 6 ]

6 [ *A T, * _. . I 8 9 R ' ]1 .

8V 85' _A ( KV = K < VI ) 5 N5 5 *P *5 ' ' '

] 4 [ ) ] 27 [ ) ] 28 [ . Os N5 ] 13 [ ] 29 [ G 5 [ 9 ' ' = Q ^K 5 A '

GA 8V G = Q (86 P 9 ( 6

& 8 9 D . '

p8&5 ' )^Q 5 : . A ' *y0y5 z 5 P

= 5 6

A ' 09

CSI *5

p8&5 (7 ' k . ( . Q P

9 *. 8 9 D R ' ' E ^Q 5 . V

] 13 [ D *5 & ' *. 8 9 Y. (9

' >8 ' ' A ' = 5 6

6 H]8,' *y0y5 z 5 = Q +, 180

*5 . A (Q . 9

89' 80 6 8 9 ' * _. . I 8 9 )p NaA R ' CSI

9{ O T, ]1 = i . ' & G 5

*5 [ 9 8& ' =' A 2 L ( 8 = Q . ^Q' 5 ] 22 [ ) ] 24 [ ] 26 [ 89' 80 6 VSI

. I 8 9 ' 5

G 5 [ 9 ' ' * _. GA *+, - = Q

6 9 (

(86 P ^Q 5 . ' ] 24 [ Q * 3' ^K 5 = Q kL >A k I ^K 5 =

^Q 5 . ' 9 l A D _. _85 =' 1 ( ' ^Q 5 ]

22 [ D '

^Q 5 ( &5 ] 24 [ ' 8 9 80 6 89' >8 ' *5 9 . R ' O >A (9 ( \ 5 K ) P 5 . I _85 D _. ' ( O W 5 +, :8 ' ' *5 l A ^K 5 = Q +, 8 9 D R ' 2 1 . 9

*.

* . I ' > ' K1 b : ^K 5 = Q (9 ' R ' *5 ^Q 5 . ' z Q 1' ' N5 ]

26 [ H' j' l A

*5 l A ( I R ' *A >85 * 09 :.' )^K 5 d 8. > 9

(9 *5 > ' K1 b : ^K 5 = Q K r1 .

A R ' 8 9 \ 5 ( Q * _. . I 8 9 D ' p Na

89' 80 6 VSI

*5 >8 ' :.' l A ( = (9

^K 5 = Q 86 )^K 5 d 8. > *.' I O >85 * 09 *5 K ' > ' K1 b : . &U

* 8K5 89' 80 6 )(. N5 R ' b ' VSI

CSI \ ' '

G 5 [ 9 =' 5 D )*+, -

* _. 8 9

*5 (V N5 ) & . 9

2 6 #

7 8

) k7 1 *5 = & ' * 5 8V ( k5 h 8hV Rh ' . h

*5 ' 5 89' 80 6 *+, - )^K 5 .

) k7 1 ' 5 89' 80 6 :( *+, -

Fig. (1): Shunt active filter with nonlinear load

GA 89' 80 6 ' 85 A ' 8, ) k7 6

2 ' = & (

= . ' ) k7 (9 j 2

*5 (l.'. 89' 80 6 )

8, VSI V3 v = , G ' ' dc

(0 ( '

l0 G *5 k *+, - ( ) k7 .

2 89' 80 6 (e.

8, CSI *5 = & ' .

CSI V3 l0 G ' '

(0 ( ' *5 k ( EP R | 80 6 G

80 6 R ' .

G 5 K1 ^ 5 (9 s Y 9 6 80 6 G EP R | 09 ' * *

Q ( *5 ^K 5 = .

(3)

1393 (l.') (e) ) k7 2 (l.' :( 8, 89' 80 6

VSI

8, 89' 80 6 (e )

CSI

Fig. (2): a) Active power filter with VSI structure, b) Active power filter with CSI structure

3 6 +9:;< =< )

h ' R ' 89' 80 6 P 9 ( ' H b h6 (h `h, = h Q (h9

* p +5 e 0+5 `, = Q R ' . `, d 8. 6

(+ ' ) 1 *5 l A (

.

S *

S

v

i

=

α

(1 )

(9

α

(9 ' _85 = 5 *K L (

*8 ' , =' A

*5 \ A (+ ' O ( = Q +, .

) 2 *5 = ( . S S * S

S

i

i

v

i

e

=

=

α

( 2 )

80 6 ^Q 5 = Q O R ' ) k7 ( (Q A

1 (+ ' p +5 )(

) 3 *5 l A ( .

L S *

F

v

i

i

=

α

(3 )

(. 5 = ' ' 3 > ' P' )

2 ' * _. }+ ( (

. I 8 9 . ' , P 5 . I +, ' ' 8V ) / +, P 5 . I +, *.' :8 ' [U R8 ' 01 ( * _. - 85' _A *5 (K0

. I +, [ 9 ' k . R ( m 9

(. 5 5 ' D _. _85 P 5 )

4 *5 l A ( . 9

λ +

= e e

S ( 4 ) *. 8 9 85' (9

λ

*5 5 D _. 2 L .

> ' ' * _. }+ (+ ' = ' ' 3

) 4 *5 ( ( ' . /

D _. ~ )* _. . I 70 1 ' = j'

0 S . S lim 0 S→ <

*5 (9 . /

(+ ' O ( ' A )

5 . = (

0

S

S→0

+

<

SS→0− >0 (5)

4 6 ? VSI ^Q 5 ] 22 [

89' 80 6 8 9 \ 5 (

VSI

h. I h8 9 D '

. ' 9 >8 ' * _. O R ' ( ^Q 5 R ' * 09 :.'

(hh9 hh ' hh 09

1

S

2

S

hh ) ^hhK 5 = hh Q hh+, < hh '

09 3

S

4

S

*h5 * h 09 ^K 5 d 8. 5]1 < ' . h

^Q 5

]

26

[

d 8. l A

Vp >8h ' d 8. ^K 5 > *.' I

^Q 5 * 09 :.' '

]

22

[

) :.' *5 l A Q * 09 . 9

r1 *0K3 * 09 :.' (V N5 * 09 :.' R ' ' >8 ' G 5 8& [ 9 *.' hI = h Q hK = h Q

*5 > :.' R ' . * 09

G l A

Vp

h 09 )^hK 5 d h8. >h H' j'

S3

S4 h ' (h9 * h5

P S| V

v | ≤

5 2 A A (

S2

S1 *h5 * 09 h:.' Rh ' . h 9

) Q * 09 1

* 09 :.' R ' P' . ' 5/ (

Vp '

^Q 5 ( &5 * 09 :.' >

] 22 [ . ' , Table (1): Switching pattern of [26]

) Q 1 ^Q 5 * 09 :.' :(

] 26 [ VF iF S4 S3 S2 S1 vS 0 0 off on off on P S V

v ≤−

-VC iC off on on off 0 0 on off on off P S V v ≥ VC -iC on off off on VC -iC on off off on P S| V

v | ≤ -VC iC off on on off :.' & * 09 ) Q (. N5 R '

2 . ' 5/ (

09 S1

S2 ' . I ( KV ^K 5 = Q +, < ' )

09 =/ ^Q 5 * / S3

S4 = Q 5]1 < '

*5 * 09 ^K 5 )

Vc>|vS| *83 (9 j ( .( • 6

0<iS 09 ) S4 ' R = R

S2 ( 5' iF [ ' 6'

*5 = R S1

) iF *5 [ 9 (9 *5 : m

0>iS 09

S3 = R ' R S2

( 5' iF *5 [ ' 6'

= R S1 ) iF *5 [ 9 (9) *. 8 9 85 R ' ' >8 ' .

09 S3

S4 Q 5]1 * 09 ^K 5 =

( 5]1 d 8. (=/ r1 *5 (\a. (9 K1 ' > = Q ^K 5 ( . I

* 09 l A ( =/ K ' G * . K > *.' I O >85

Table (2): Proposed switching pattern ) Q 2 & * 09 :.' :(

F i 4 S 3 S 2 S 1 S S i 0 off on off on 0 S ii − off on on off 0 on off on off 0 S i < i on off off on

) = , d 8. P' Vc

) l0 = Q ( iF

80 6 . I _85 ' (

89' 80 6 . I 46 Os 5 ) : \ 89' VSI p +5 ) ` ' 6 ) ( 7 *5 = ( .

(4)

F S

F v v

dt di

L = − (6)

C

c i

dt dV

C = ( 7 )

: ' l A ( P R ' * 09 ^ A (. N5 R ' gi=1

*

09 i ' R b' gi=0

09 * ) i

' D 5 , b'

) i = ) 09 .( 09 S1

S2 ) )( S3

S4 < 7 5 ' (

*5 k 1 ) Q ( (Q A . 9 2

p +5 (9 80 6 . I Os 5 (

) 6 ) ( 7 : ' ) 8V ( C 3 2 4 1 S

F v (gg g g )V

dt di

L = − − (8 )

C 3 2 4 1

C (g g g g )i

dt dV

C = − (9 )

(+ ' ' >8 ' )

6 ) ' D _. p8&5 ( 10

*5 ( ( . / x ~ x ~

S= +λ (10 )

(+ ' R86 P \ )

4 ) ` ' 'E: Q ( 8 ) ( 9 (+ ' ( ) 10 : ' )( ) v i i ( ) v i ( ) g g g g ( L V L v S S L F S L 3 2 4 1 C S α − + λ + α − + − −

= (11 )

(. 5 = ' ' 3 > ' ) 11 : ' )( ) v i i ( V L ) v i ( V L V v g g g g S L F C S L C C S 3 2 4 1 α − + λ + α − − = − ) 12 ( *5 ' g2=1-g1 ) g3=1-g4

2 ) i sgn( 1 g S 4 + =

= ' ' 3 .

N5 g2 ) g3 g4 (. 5 ) 12 *5 ( =' A g1eq ( ' . / ) v i i ( V L ) v i ( V L V v 2 ) i sgn( 1 g S L F C S L C C S S eq 1 α − + λ + α − + + − = ) 13 (

(+ ' ( (Q A )

13 ' )D _. ` ' ' 3 \ 5 ( (

1

g

0

1eq

: ' '    < > = 0 S 0 0 S 1

g1 (14 )

(9 *5 : R ' S>0

) g1=1 (9 *5 :

S<0 ) g2=1

09 S3

S4 = Q 5]1 < '

iS *5 * 09 .

) k7 ( (Q A 2

K5 89' 80 6 P' (l.' . VSI 09 S1 S2 S3 S4 = , ) R = 5 C

TA'

*5 A 9 ' V = Q R ' . P K1 R • 09

*5 =/ R8, 2Q 5 (9 ) 9 *5

' R ' ' e 8Q' ' .

R 09 G = D 5 , R * A 9 V = 5 ' R86 P \ . (8 ' Q = : 09 =

Y. ' *7i 9 V ,qA 09 i = R = 5 6

)

G . = , = A 9 TA' 8I' dc

*5 R ' ) .

R ' ( 09 = 5 6 : ,qA

( I ) *5 (8>P 5 .

\ ' ' 9{ = 5 :VI ' A )

]1 D ' = V7 G ]9 D & D G . d 8. :VI DC

) . ' ^K 5 d 8. = Q :VI (

*5 ' 5]1 ‚ 0 9 (V N5 ƒ5' „/ *P ( =' A

) > ' N5 . 9 5 6 ? CSI A< 6 B +< C $

CSI ^Q 5 ] 13 [

*5 & ' *. 8 9 D (hV N5 h =/ (h9

h6 H]8h,' (9 *y0y5 : = Q +, 180

(hQ

: ) ' h 09 = h5 6 h

*h5 h . A h ha . h

h . A

: 09 = 5 6 k7 (. N5 =/ = Q ^K 5 A '

) 3 ' = & ( 9 8 9 ' 5 R ' . '

PI

(> … R 5qA

Q 5 : ^ 8 9 +, : (V N5 . ' 1 ' = Q

6 H]8,' *y0y5 z 5 = Q 180

8 9 P 9 ( (Q

9 *5 . A A ' 09 = 5 6 : )Y 8V .

^K 5 A ' * 8K5 89' 80 6 } a 70 1 R 4A \ 5 ( ' )k b A = Q Y 89

LF ( ( P ' N5 (9 P *I' j '

' N5 = Q 9 5 ' N5 ' 8P = Q ` 85 (\a. 80 6 ` A . A 89' =' A O R ' - . =/ '

* =' KQ ' 89' =' A } a j ( 89' . 9

) k7 3 89' 80 6 b 5 8 9 :( (

CSI

Fig. (3): The conventional control of active filter based on CSI

6 D E ? +< C $

CSI

) k7 ( (Q A 2

= 3 1 \ 5 ( (e.

KCL

09 ) h

S1

S2 ) )(

S3

S4 *5 * 09 k 75 O ( ( h 09 h:.' . h

& * ) Q

3 . ' 5/ (

Table (3): Proposed switching pattern for the CSI active filter control with sliding mode control

(5)

1393

(+ ' 5 D _. _85 )

4 ) & D . ' l A (

P 5 +, )* _. }+ ' *.' :8 ' 5 6 ' >8 ' k . ( 8 9 R † . ' kK3 D ' 8 9 9

@ 1 * _.

( ' *P ' 5 85' ( 8 9 *:8V ' ) 8& ( & D (9 ' R ' : 9{ k 3 (87 . ' '

*5 8 O ( ' Q' k 3 *P *. I

D (9

] 13 [ k7&5 v . / O (

' A

*5 8 .

6 6 G9 H 8

hh 89' hh 80 6 *hh09 o hhj

VSI CSI

2hh A A (hh hh&

k7 ) 4 ) ( 5 . ' 5/ (

) k7 4 & 89' 80 6 *09 o j :(

VSI

Fig. (4): Block diagram of the proposed VSI active filter

) k7 5 89' 80 6 *09 o j :( &

CSI

Fig. (5): Block diagram of the proposed CSI active filter ) Q O TU&5 4

. ' 5/ (

Table (4): The load parameters ) Q 4 O TU&5 :( M' Q' N5

LS 0.8mH

RS 10Ω

RO 60Ω

CO 500µF

( K ( 09

‡ | >8 ' 5

89' 80 6

VSI CSI

W '

IGBT

e U8 ' (\a. =' A . '

*6 T5 '

y9' I (

4000VA

( ' H]8,' =/ = Q d 8.

)

φ

(

*5 (> … 89' 80 6 (9 ' 9{ ( b s . =' A k9 R 5qA

^K 5 = Q z 5 k7 A ' ' 89' k7 6

d 8. z 5

. ^K 5

k7 ) 6

. ' A = Q (

) k7 7 ( K c 8 ( 89' 80 6

VSI

D ( ' >8 '

^Q 5 *. 8 9 ]

22 [ ^Q 5 ] 26 [ ' (. N5 R ' & 8 9

) Q 9E5 3

. ' 5/ (

) k7 6 = Q :(

Fig. (6): Load current

(l.')

(6)

(z)

) k7 7 80 6 ' >8 ' (R | ) 89' 80 6 = Q (s ) ^K 5 = Q :(

89'

VSI

^Q 5 8 9 (l.' )

]

22

[

^Q 5 8 9 (e )

]

26

[

(z )

& 8 9

Fig. (7):Source current (up) and filter current (down) by using VSI active filter based on, a) proposed control of [22], b)

proposed control of [26], c) proposed control

THD

) k7 ( ' ^K 5 = Q 7

) )(l.' . 7 ) (e. 7 2 A A ( (z.

' 5 / 5 )% 9 / 3 % 5 / 3 ' K1 b : = Q K 01 . ' %

KV & D ( * 09 > D ( * 09 (

] 26 [ )

9E5 ^Q 5 D ' >8 ' * 09 (9 *A (9 ' R ' ( I > ' K1 b : P O vS>0

vS<0

' ' * 09 . I A .

' >8 ' (9 ' *A R '

' * 09 . I i & D ( * 09 . ' ( I

( I y5 j ( )20+5 R ' } L A ' P' > G '

vS>0 D ( * 09 )

] 26 [ ) S4 5]1 ' R

09 ' *7 )D _. S1

S2 *5 R . I Y m

>8 ' & D ( * 09 ' P' 5' . ' Q * 09 ) 09 ^K 5 = Q 5]1 S4

S3 ' R

09 ' *7 )D _. 5]1 S1

S2 *5 R i Y m

. ' ' , Q * 09 . I

) k7 8 ( K c 8 ( 89' 80 6 '

CSI D

. ' 5/ & * _. . I 8 9 b 5 *. 8 9

l.') (

(e)

) k7 8 80 6 ' >8 ' (R | ) 80 6 = Q (s ) ^K 5 = Q (l.' :(

89'

CSI

& * _. . I 8 9 (e )b 5 8 9 (l.' )

Fig. (8): Source current (up) and filter current (down) by CSI active filter based on a) conventional control, b) proposed

sliding mode control

THD

) k7 = Q 6

k7 ^K 5 = Q ( )

8 (l.'.

) 8 ' 2 A A ( (e. 120

)% 6.5 % 2.13 . ' %

) k7 ^K 5 = Q G [ 9 01 8

) k7 ( KV (l.'. 8

(e.

*5 * 80 6 = Q [ 9 ' Q W 5 ^K 5 = Q ' )

=

. ' = Q 89' 80 6

GA 6 80 6 a5 5 j ( 6

8 9) R | =' A

'

100kVA

*5 ' 3 >8 ' 5 ( V / * 5 @ P

R ) ' A 9 10us

A 10ms 1 5 .( GA 80 6

6

=' A K 5 = i (9 ' R ' R |

*5 9 9 ' A

Y 9 6 . K = 70 1 A 9 ( * s

Q >8 ' 5 † | O TU&5 )

5 ( . ' 5/

80 6 ) 80 6 = , d 8. ' N5 d 8. _A ' 9{ =

VSI

80 6 ) 80 6 = Q ' N5 ( CSI

*5 _A ( 9

~ A

VC>|vS|

If>Is ^Q 5 = Q d 8. ' N5 KV = ( (9

. ' _A ' 80 6

( K c 8 89' 80 6 '

VSI

( I 5

1µS 2µS

89' 80 6 R † CSI

) 07h 2h A A (h 9

) )(lh.'. 9 (e.

) 9 . ' ' = & (z.

THD

^K 5 = Q hA (l.') V3 '

2 A A ( (z) 31

/ 8 )% 45 / 9 % 13 / 2 % *5 . ' (h9

THD

80 6 ' >8 ' b : ^K 5 = Q CSI

80 6 ' 8 9

VSI

h

( I R86 P \ 8 9 * 09 Y 9 6 (7 ' k . ( . ' 5

J 8KV * _. . I ( I R ' ' _85 s

5 hNi

. ' ^K 5 = Q z 5 k7 nqA Gi 9

Table (5): Switch parameters ) Q 5 ‡ | O TU&5 :(

IGBT ‡ | W

0.001 Resistance Ron (ohms)

0 Inductance Lon (H)

1 Forward voltage vf(v)

1e-6 Current 10% fall time

2e-6 Current tail time Tt(S)

0 Intial current Ic (A)

1e5 Snubber resistance Rs (ohms)

(7)

1393

(l.')

(e)

(z)

) k7 9 89' 80 6 (l.' ) ' >8 ' ^K 5 = Q :(

VSI

Y. ,qA

= R

1µS

89' 80 6 (e )

VSI

R Y. ,qA =

2µS

)

89' 80 6 (z

CSI

& * _. 8 9 G 7A

Fig. (9): Source current by using, a) VSI active filter by 1µ s dead zone, b) VSI active filter by 2µs dead zone, c) proposed

CSI active filter 7

6 J K

89' 80 6 ' >8 ' )p NaA R '

VSI

* _. . I 8 9

5]1 < ' R ' (9 ' & D _. ^K 5 = Q

< ' * _. . I 8 9 ( KV 8 70 1 D 5]1 ' >8 ' Q ' R † . ' D _. ^K 5 d 8.

89' 80 6 8 9 ' * _. . I 8 9 D

CSI

o +5

5 D 9 (V N5 * 8K5 b 8 9 ' ( v . /

9

PI

89' 80 6 ( KV 80 6 R ' . ' (V N5

CSI

*5 k 1 8 b 5 8 9 ( K c 8 . 9

*5 = & (9

THD

80 6 ' >8 ' b : ^K 5 = Q

CSI

80 6 ' 8 9

VSI

R86 P \ ( I

. ' 5

References

[1] V. Pires, J. Silva, "A current source active power filter controlled by a sliding mode approach", Proceeding of the IEEE/EPEPEMC, Vol. 1, pp, 1654-1659, Portoroz, Aug. 2006.

[2] K. Firouzjah, A. Sheikholeslami, M.R. Karami-Mollaei, F. Heydari, "A predictive current control method for shunt active filter with windowing based wavelet transform in harmonic detection", Simulation Modelling Practice and Theory, Vol. 17, No. 5, pp. 883-896, 2009.

[3] N. Mendalek, K. Al-Haddad, H.Y. Kanaan, G.Hassoun, "Sliding mode control of three-phase four-leg shunt active power filter", Proceeding of the IEEE/PESC, Vol. 1, pp. 4362-4367, June. 2008.

[4] W.R. Nogueira Santos, E.R. Cabral da Silva, C. Brandao Jacobina, E. de Moura Fernandes, A. Cunha Oliveira, R. Rocha Matias, D. Franca Guedes Filho, O.M. Almeida, P. Marinho Santos,"The transformerless single-phase universal active power filter for harmonic and reactive power compensation", IEEE Trans. on Power Electronics, Vol. 29, No. 7, pp. 3563-3572, July 2014.

[5] M. Ch. Jiang, Ch. M. Wang, Sh. Sh. Perng, H.K. Fu, M.L. Tsai, K.Y. Lu, “A novel single-phase soft-switching unipolar PWM shunt active power filter”, Proceeding of the IEEE/ICIEA, pp. 2081-2086, Singapore, July. 2012. [6] J.J.E. Slotine, W. Li, Applied nonlinear control, Prentice-Hall Englewood Cliffs, NJ, 1991.

[7] B. Singh, K. Al-Haddad, A. Chandra, "A review of active filters for power quality improvement", IEEE Trans. on Industrial Electronics, Vol. 46, No. 5, pp. 960-971, Oct. 1999.

[8] A. Massoud, S.J. Finney, B.W. Williams, "Review of harmonic current extraction techniques for an active power filter", Proceeding of the IEEE/ICHQP, pp. 154-159, Sep. 2004.

[9] F.R. Jimenez Lopez, C.A., E. Forero, "Current and voltage harmonics acquisition and obtaining reference currents for an single phase shunt active power filter", Proceeding of the IEEE/PEPQA, pp. 1-8, Bogota, July. 2013.

[10] Z. Wei-ping, Z. Wei-ping, L. Da-ming, W. Zheng-guo, X. Li, Y. Xuan-fang, "The optimization-sliding mode control for three-phase three-wire DSP-based active power filter", Proceeding of the IEEE/IPEMC, Vol. 3, pp. 1-5, Shanghai, Aug. 2006.

[11] M. El-Habrouk, M.K. Darwish, P. Mehta, "Active power filters: A review", Proceeding of the IEE/EPA, Vol. 147, No. 5, pp. 403-413, 2000.

(8)

[13] F.P. Souza, I. Barbi, "Power factor correction of linear and non-linear loads employing a single phase active power filter based on a full-bridge current source inverter controlled through the sensor of the AC mains current", Proceeding of the IEEE/PESC, Vol. 99, pp. 387-392, Charleston, SC, Aug. 1999.

[14] O.S. Yu, N.J. Park, D.S. Hyun, "A novel fault detection scheme for voltage fed PWM inverter", Proceeding of the IEEE/IECON, pp. 2654-2659, Paris, Nov. 2006.

[15] R. Ribeiro, F. Profumo, C.B. Jacobina, G. Griva, E. Da Silva, A. Lima, G. Penneta, "Two fault tolerant control strategies for shunt active power filter systems", IEEE/IECON, Vol. 1, pp. 792-797, Nov. 2002.

[16] B.R. Lin, D.J. Chen, "Single-phase neutral point clamped AC/DC Converter with the function of power factor corrector and active filter", Proceeding of the IEE/EPA,Vol. 149, No. 1, pp. 19-30, Jan. 2002.

[17] R. Costa-Castelló, R. Grinó, E. Fossas, "Odd-harmonic digital repetitive control of a single-phase current active filter", Power Electronics, IEEE Trans., Vol. 19, No. 4, pp. 1060-1068, July. 2004.

[18] A. Bhat, P. Agarwal, "A fuzzy logic controlled three-phase neutral-point clamped bidirectional PFC rectifier", IEEE, Conf., pp. 238-244, Dec. 2007.

[19] S. Saad, L. Zellouma, "Fuzzy logic controller for three-level shunt active filter compensating harmonics andreactive power", Electric Power Systems Research, Vol. 79, pp. 1337-1341, 2009.

[20] H. Usman, H. Hizam, M.A.M. Radzi, "Simulation of single-phase shunt active power filter with fuzzy logic controller for power quality improvement", Proceeding of the IEEE/CEAT, pp. 353 – 357, Lankgkawi, Nov. 2013. [21] L. Zellouma, S. Saad, "Fuzzy logic controller for three-phase shunt active filter compensating harmonics and

reactive power simultaneously", Proceedings of the ICCIM, Setif, Algeria, pp. 03-04, 2007.

[22] J. Matas, L.G. de Vicuña, J. Miret, J.M. Guerrero, M. Castilla, "Feedback linearization of a single-phase active power filter via sliding mode control", IEEE. Trans. on Power Electronics, Vol. 23, pp. 116-125, Jan, 2008. [23] M.H. Antchev, M.P. Petkova, V.T. Gurgulicov, "Sliding mode control of a single-phase series active power filter",

Proceeding of the IEEE/EURCON, pp. 1344-1349, Warsaw, Sep. 2007.

[24] S. Sladic, M. Odavic and Z. Jakopovic, "Single phase active power filter", Proceeding of the IEEE/MELECON, Vol. 3, pp. 1133-1136, May 2004.

[25] M. Nayeripour, A. Yazdian, M. Mohamadian, "Optimization of an improved sliding mode controller for shunt active power filter", Proceeding of the IEEE/POWERENG, pp. 42-47, April. 2007.

[26] D. Stanciu, M. Teodorescu, A. Florescu, D.A. Stoichescu, "Single- phase active power filter with improved sliding mode control", Proceeding of the IEEE/AQTR, Vol. 1, pp. 1-5, Cluj-Napoca, May 2010.

[27] V.I. Utkin, Sliding modes in control and optimization, Springer-Verlag Berlin, 1992.

[28] S. George, V. Agarwal, "A DSP based optimal algorithm for shunt active filter under nonsinusoidal supply and unbalanced load conditions", IEEE Trans on Power Electronics, Vol. 22, No. 2, pp. 593-601, March. 2007.

[29] H. Komurcugil, O. Kukrer, "A robust current control strategy for single-phase shunt active power filters", Proceeding of the IEEE/IECON, Vol. 3, pp. 2277-2281, Nov. 2003.

Referências

Documentos relacionados

de trabalho, a capacidade de detectar áreas problemáticas na distribuição de dose e os dados dos controles da qua- lidade analisados, foram estabelecidos os níveis de ação

Mesmo quando o Haru estava vivo, agora não sei como está, mas era muito difícil, o escritório tinha problemas de atender as pessoas porque estão traba lhando

Evidentemente que o perigo da captura dos mercados por reguladores pró- ximos dos incumbentes, sejam eles públicos ou privados, tem sido também infelizmente um dado fatal, não

In a general form, three basic input data must be defined: (1) the observations, that are problem instances; (2) one known response variable, which is the objective reference value

Como vimos, pensar o lugar / ensino de PB nas escolas indígena e não indígena nos põe diante de alguns dilemas, dentre os quais reiteramos a necessidade de pensar o valor, o

Parallel (or shunt) active filters have been recognized as a valid solution to current harmonic and reactive power compensation of nonlinear loads. The principle of operation of

Após a definição da pena-base (a partir das diretivas do artigo 59 do Código Penal) e da pena provisória (com a incidência das circunstâncias legais agravantes e atenuantes),

social assistance. The protection of jobs within some enterprises, cooperatives, forms of economical associations, constitute an efficient social policy, totally different from