• Nenhum resultado encontrado

Climate projectionsfor the urban environment in the assessment of the wind energy potential of buildings ВОПРОСЫ ПРОГНОЗИРОВАНИЯ МИКРОКЛИМАТА ГОРОДСКОЙ СРЕДЫ ДЛЯ ОЦЕНКИ ВЕТРОЭНЕРГЕТИЧЕСКОГО ПОТЕНЦИАЛА ЗАСТРОЙКИ

N/A
N/A
Protected

Academic year: 2017

Share "Climate projectionsfor the urban environment in the assessment of the wind energy potential of buildings ВОПРОСЫ ПРОГНОЗИРОВАНИЯ МИКРОКЛИМАТА ГОРОДСКОЙ СРЕДЫ ДЛЯ ОЦЕНКИ ВЕТРОЭНЕРГЕТИЧЕСКОГО ПОТЕНЦИАЛА ЗАСТРОЙКИ"

Copied!
9
0
0

Texto

(1)

БЕЗОПАСНОСТЬ СТРОИТЕЛЬНЫХ СИСТЕМ.

ЭКОЛОГИЧЕСКИЕ ПРОБЛЕМЫ В СТРОИТЕЛЬСТВЕ.

ГЕОЭКОЛОГИЯ

УДК 620/91 + 711

О.О. Егорычев, И.В. Дуничкин

ФГБОУ ВПО «МГСУ»

ВОПРОСЫ ПРОГНОЗИРОВАНИЯ МИКРОКЛИМАТА

ГОРОДСКОЙ СРЕДЫ ДЛЯ ОЦЕНКИ

ВЕТРОЭНЕРГЕТИЧЕСКОГО ПОТЕНЦИАЛА ЗАСТРОЙКИ

1

Освещены вопросы прогнозирования микроклимата города на примере г. Москва. Рассмотрена климатическая структура такого города как Москва. Указана взаимосвязь ветрового режима с климатическими и градостроительными фактора-ми. Представлены возможные подходы к оценке ветроэнергетического потенциала застройки. Проанализирован зарубежный опыт и классификация факторов, влияю-щих на размещение ветроэнергетических установок. Приведены различные приме-ры размещения малых ветроэнергетических установок мощностью 1 кВт и подходы к проектированию модифицированных проектных решений застройки. Указана воз-можность детализации данных микроклимата о ветровом режиме для размещения ветроэнергетических установок с учетом городского благоустройства и озеленения. Рассмотрен вопрос первичной привязки ветроэнергетических установок в застройке на основе ветроэнергетического потенциала зданий и территории.

Ключевые слова: микроклимат, ветровой режим, ветроэнергетический потен-циал, малые ветроэнергетические установки.

Прогноз микроклимата в городской застройке необходим не только для регулирования температурно-влажностного режима, загазованности и запы-ленности воздуха, обоснования плотности жилого фонда, повышения эффек-тивности использования территории города и др., а также для многофакторной оценки ветроэнергетического потенциала городской застройки и территории [1]. В коллективных работах О.И. Поддаевой и других авторов указывается один из основных критериев оценки ветроэнергетического потенциала: «ин-формация о среднегодовых скоростях ветра по территории позволяет сориен-тироваться на перспективную выработку электроэнергии…» [2] и вероятные реальные условия, в которых методики оценки микроклимата применимы для принятия решения об эффективности работы ветроэнергетических установок: «застойные зоны воздуха свидетельствуют о неэффективности размещения ве-троэнергетических установок, в первую очередь горизонтально-осевого типа» [3, с. 225]. Поэтому для принятия решения по объектам на локальном уровне необходимо среднегодовые скорости ветра анализировать совместно с други-ми факторадруги-ми други-микроклимата. В связи с этим требуется определять взаимос-вязь ветрового режима с объектами городской среды, физико-техническими

(2)

факторами, формирующими климат на всех уровнях. Это влечет, в свою оче-редь, необходимость представления схемы их взаимодействия как основы для оценки ветроэнергетического потенциала. В качестве модели воздушного про-странства поселений использована разработка в виде двухъярусной структуры на основе трудов Ф.Л. Серебровского (рис. 1) [4, с. 34].

В [5, с. 120] П.П. Коваленко дополнил эту схему трехступенчатой града-цией шероховатости подстилающей поверхности (макро-, мезо-, микро-), ко-торым в нижнем приземном ярусе воздушных масс соответствуют основные уровни аэрационного режима как слагающие микроклимата, являющиеся ис-ходными данными для оценки ветроэнергетического потенциала. Скорость и направление движения воздушных масс формируется под влиянием факторов географической среды только выше границы нижнего (приземного) яруса.

Рис. 1. Схема воздушных пространств поселений (по Ф.Л. Серебровскому) Анализ воздушного пространства над городом показывает, что его можно представить как различные слои — верхние (до 1000 м) и нижние (до 200 м). Зона открытого движения воздуха представлена верхними слоями. Зона дви-жения воздуха с препятствиями представлена нижними слоями. Они делятся на макроуровень, мезоуровень и микроуровень:

до 200 м над поверхностью земли оказывает влияние в основном высоко-этажная застройка (например, башенного типа) — это макроуровень;

до 25 м над поверхностью земли оказывает влияние вся застройка (высо-коэтажная, среднеэтажная, частично малоэтажная) — это мезоуровень;

до 3 м над поверхностью земли оказывают влияние высокоэтажная, сред-неэтажная и малоэтажная застройки, а также элементы благоустройства и озе-ленение — это микроуровень.

Здесь можно сделать вывод о том что, каждый городской объект влияет на ветровой режим на соответствующем уровне, испытывая при этом на себе воздействие от этих уровней в зависимости от градостроительной организации пространства.

(3)

воздуш-ные течения. Поэтому широкие обобщения о влиянии городов на ветровой режим, встречающиеся в литературе, могут быть, в лучшем случае, отправны-ми точкаотправны-ми для понимания механизмов этого влияния» [6, с. 80]. Эта оценка еще раз подтверждает необходимость структурировать ветроэнергетический потенциал в соответствии с системой уровней городского климата. Таким об-разом, систематизация элементов воздушной среды позволяет в дальнейшем выполнять уровенную оценку ветроэнергетического потенциала.

Для решения вопроса прогнозирования микроклимата необходимо отме-тить, что Москва является городом «двух сезонов», поэтому при архитектур-но-климатическом анализе обычно решается одновременно 2 задачи: защита от ветра и холодового стресса в зимнее время и обеспечение аэрации и ком-фортных микроклиматических условий летом. Хотя, анализируя современную проектную практику, следует отметить, что она не соответствует в полной мере классическим рекомендациям ЦНИИП градостроительства и зарубежных уче-ных [7—9]. Возникает вопрос о поиске инструмента учета в практике проек-тирования результатов прогнозирования микроклимата для оценки ветроэнер-гетического потенциала, а в связи с этим — еще одна задача, относящаяся ко всем сезонам года, — определение оптимальных мест для расположения ма-лых ветроэнергетических установок.

Этапами учета природно-климатических условий при планировке новой и реконструкции существующей застройки являются:

выявление комплекса природно-климатических и градостроительных фак-торов и установление их взаимосвязи применительно к конкретной стадии строительного проектирования и градостроительной ситуации;

проведение оценки по комплексу выявленных природных факторов; разработка системы требований по защите городской среды от неблаго-приятного воздействия природных условий;

разработка предложений по рациональному использованию природных ресурсов, а именно энергии ветра и солнца;

разработка градостроительных и архитектурно-строительных решений, обеспечивающих практическую реализацию выявленных требований.

Градостроительное освоение территории вызывает целый ряд послед-ствий в мезо- и микроклиматической обстановке местности. Их причиной яв-ляется изменение условий мезо- и микромасштабной циркуляции атмосфер-ного воздуха в результате появления новых строительных объемов, изменение теплового баланса за счет эмиссии техногенного тепла и изменения альбедо (отражательной способности) подстилающей поверхности, повышается коэф-фициент поверхностного стока с застраиваемой территории и т.д. В результате исследований учебно-научно-производственной лаборатории по аэродинами-ческим и аэроакустиаэродинами-ческим испытаниям строительных конструкций ФГБОУ ВПО «МГСУ» были выявлены в более мелком масштабе наиболее значимые микроклиматические процессы, которые состоят:

в изменении условий инсоляции территории, учитываемых при располо-жении фотоэлектрических панелей в застройке;

(4)

формировании зон теплового дискомфорта — перегрева летом и переох-лаждения зимой;

образовании зон усиления скорости ветра при определенных его направ-лениях на границе застройки, оптимальных для расположения малых ветроэ-нергетических установок.

Таким образом, получение информации о расположении в пространстве сезонных зон усиления ветра позволяет переходить к оценке ветроэнергети-ческого потенциала для размещения малых ветроэнергетических установок.

Характерные примеры расположения ветроэнергетических установок в пространстве городской застройки можно рассмотреть в работе М. Дж. Даффи (рис. 2—5) [10].

Рис. 2. Визуализация малых ветроэнергетических установок CATIA V5 на углу зна-ния («Figure 8-1: CATIA V5 render of building corner mounted small wind turbines») [10, pp. 31—33, 78]

(5)

Рис. 4. Визуализация малой ветроэнергетической установки CATIA V5 на мачте городского освещения («Figure 8-5: CATIA V5 render of street light pole mounted small wind turbines») [10, pp. 31—33, 78]

Рис. 5. Визуализация малой ветроэнергетической установки CATIA V5 на крыше здания («Figure 11-6: A CATIA V5 render of various mounting conigurations for a small wind turbine on a building, including mounting to the walls and corners») [10, pp. 31—33, 78]

(6)

«основ-ными факторами влияющими на размещение ветроэнергетической установки на зданиях вляются следующие:

климатический фактор (скорость ветра в нижнем ярусе воздушных масс, использование карт ветровой обстановки);

ветровой режим (скорость ветра на мезоуровне городской среды, данные метеостанций);

планировочная ситуация застройки (скорость ветра на локальном уровне городской среды, данные численного моделирования и физические экспери-менты);

экологические ограничения (взаимовлияние ветроэнергетической уста-новки аэрационного режима и распределения загрязненных масс воздуха, шу-мовое загрязнение);

архитектурно-конструктивные ограничения (конструктивная схема и не-сущая способность конструкций);

архитектурно-эстетические ограничения (целостность композиции здания и ветроэнергетической установки);

подобное комплексное ориентирование позволяет вести дальнейшую раз-работку типологии по энергетической автономности» [11, с. 125].

Таким образом, складывается типологическая взаимосвязь между факто-рами микроклимата, комплексно взаимодействующими с ветроэнергетическим потенциалом застройки и территории города, в которую необходимо добавлять конструктивные условия самой застройки и конструктивные ограничения ма-лых ветроэнергетических установок, а также требования безопасности [12]. Подводя итог, следует отметить, что по обобщенной оценке на основании про-гноза микроклимата, например г. Москвы, первоочередные объекты исследо-вания — это башенная и разноэтажная застройка, в которой наблюдается по-вышение ветроэнергетического потенциала. Наиболее часто это встречается при расстановке зданий, в которой низкое здание, встречающее поток воздуха, расположено перед следующим за ним высоким, так как это связано с увеличе-нием турбулентности воздушного потока [13]. Корректировка методов оценки ветроэнергетического потенциала согласно проанализированным материалам позволит не только оценить потенциал застройки и территории, но и детали-зировать эти данные для благоустройства и озеленения. Это даст возможность рассмотреть целесообразность размещения ветроэнергетических установок. Так может выполняться первичная привязка ветроэнергетических установок в застройке.

Библиографический список

1. Climate booklet for urban development: references for zoning and Planning. Baden-Wurttemberg Innen Ministerium, Stuttgart, 2004.

2. Поддаева О.И., Дуничкин И.В., Кочанов О.А. Основные подходы к исследова-нию возобновляемых источников энергии как энергетического потенциала территорий и застройки // Вестник МГСУ. 2012. № 10. С. 221—228.

(7)

4. Серебровский Ф.Л. Аэрация населенных мест. М. : Стройиздат, 1985. 170 с. 5. Коваленко П.П., Орлова Л.Н. Городская климатология. М. : Стройиздат, 1993. 144 с.

6. Город, архитектура, человек и климат / М.С. Мягков, Ю.Д. Губернский, Л.И. Конова, В.К. Лицкевич ; под ред. М.С. Мягкова. М. : Архитектура-С, 2006. 320 с.

7. Руководство по оценке и регулированию ветрового режима жилой застройки. М. : ЦНИИП градостроительства, 1986.

8. Lawson T.V. The Wind Content of the Built Environment // Journal of Industrial Aerodynamics, 3. 1978. Pp. 93—105.

9. Oke T.R. Street Design and Urban Canopy Layer Climate // Energy and Buildings, Vol. 11. 1988. Pp. 103—113.

10. Duffy M.J. Small wind turbines mounted to existing structures. Thesis for the Degree of Master of Science in Aerospace Engineering. Georgia Institute of Technology. Atlanta. USA. 2010. P. 105.

11. Прохорова Т.В. Особенности и перспективы развития ветроэнергетики в урба-низированной среде// Вестник Поволжья. 2013. № 2. С. 121—128.

12. Лазарева И.В. Urbi et orbi. Пятое измерение города // Тр. РААСН. Сер. Теоретические основы градостроительства. М. : ЛЕНАНД, 2006. 80 с.

13. Ghiaus С., Allard F., Santamouris M., Georgakis C., Nicol F. Urban environment inluence on natural ventilation potential //Building and Environment, Volume 41, Issue 4. 2006. рp. 395—406.

Поступила в редакцию в мае 2013 г.

О б а в т о р а х : Егорычев Олег Олегович — доктор технических наук, научный кон-сультант учебно-научно-производственной лаборатории по аэродинамическим и аэро-акустическим испытаниям строительных конструкций, ФГБОУ ВПО «Московский государственный строительный университет» (ФГБОУ ВПО «МГСУ»), 129337, г. Москва, Ярославское шоссе, д. 26, ol3ol@narod.ru;

Дуничкин Илья Владимирович — кандидат технических наук, заместитель руководителя учебно-научно-производственной лаборатории по аэродинамическим и аэроакустическим испытаниям строительных конструкций, доцент кафедры про-ектирования зданий и градостроительства, ФГБОУ ВПО «Московский государ

-ственный строительный университет» (ФГБОУ ВПО «МГСУ»), 129337, г. Москва, Ярославское шоссе, д. 26, ecse@bk.ru.

Д л я ц и т и р о в а н и я : Егорычев О.О., Дуничкин И.В. Вопросы прогнозирования микроклимата городской среды для оценки ветроэнергетического потенциала застрой-ки // Вестник МГСУ. 2013. № 6. С. 123—131.

O.O. Egorychev, I.V. Dunichkin

CLIMATE PROJECTIONS FOR THE URBAN ENVIRONMENT IN THE ASSESSMENT OF THE WIND ENERGY POTENTIAL OF BUILDINGS

(8)

Any climate projections are based on the fact that Moscow is a city of the “two seasons”; therefore, any architectural and climatic analysis is employed to resolve two problems at the same time: one problem consists in the protection from wind and cold stress in winter, and the other one consists in the aeration and development of comfort-able conditions in summer. The analysis of contemporary design solutions has proven that contemporary urban designers do not follow all scientiic recommendations. The objective of the research is to develop the instrument that will make it possible to take ac-count of climate projections in the assessment of the wind power potential. The practical objective is the identiication of optimal locations of small wind turbines.

The relationship between the wind pattern and urban planning factors is analyzed in the article. The authors provide approaches to the assessment of the wind energy poten-tial of cities on the basis of the analysis of the international experience and classiication of factors inluencing the positioning of wind turbines. They also demonstrate various examples of arrangement of small wind turbines with a capacity of 1 kW. Moreover, the authors provide advanced design solutions for wind turbines. This publication is made within the framework of State Contracts 16.552.11.7064, 13.07.2012.

Key words: microclimate, wind pattern, wind energy potential, small wind turbines.

References

1. Climate Booklet for Urban Development: References for Zoning and Planning. Baden-Wurttemberg Innen Ministerium, Stuttgart, 2004.

2. Poddaeva O.I., Dunichkin I.V., Kochanov O.A. Osnovnye podkhody k issledovaniyu vozobnovlyaemykh istochnikov energii kak energeticheskogo potentsiala territoriy i zastroyki [Basic Approaches to Research into Renewable Sources of Energy as the Energy Potential of Territories and Built-up Areas]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2012, no. 10, pp. 221—228.

3. Poddaeva O.I., Dunichkin I.V., Prokhorova T.V. Vliyanie prostranstvennoy organi-zatsii rekonstruiruemoy zhiloy zastroyki na vetroenergeticheskiy potentsial sredy [Effect of Spatial Organization Patterns of Restructured Residential Housing Areas on the Wind Energy Potential of the Environment]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2013, no. 2, pp. 221—228.

4. Serebrovskiy F.L. Aeratsiya naselennykh mest [Aeration of Populated Areas]. Moscow, Stroyizdat Publ., 1985, 170 p.

5. Kovalenko P.P., Orlova L.N. Gorodskaya klimatologiya [Urban Climatology]. Moscow, Stroyizdat Publ., 1993, 144 p.

6. Myagkov M.S., Gubernskiy Yu.D., Konova L.I., Litskevich V.K.; Myagkov M.S., edi-tor. Gorod, arkhitektura, chelovek i klimat [City, Architecture, Man, and Climate]. Moscow, Arkhitektura-S Publ., 2006, 320 p.

7. Rukovodstvo po otsenke i regulirovaniyu vetrovogo rezhima zhiloy zastroyki [Guidebook for Assessment and Regulation of the Wind Regime of Residential Areas]. Moscow, TsNIIP gradostroitel’stva publ., 1986.

8. Lawson T.V. The Wind Content of the Built Environment. Journal of Industrial Aerodynamics. 1978, no. 3, pp. 93—105.

9. Oke T.R. Street Design and Urban Canopy Layer Climate. Energy and Buildings. 1988, vol. 11, pp. 103—113.

10. Duffy M.J. Small Wind Turbines Mounted to Existing Structures. Georgia Institute of Technology. USA, Atlanta, 2010, 105 p.

11. Prokhorova T.V. Osobennosti i perspektivy razvitiya vetroenergetiki v urbanizirovan-noy srede [Features and Prospects for Development of Wind Energy Generation in Urbanized Areas]. Vestnik Povolzh’ya [Proceedings of the Volga Regions]. 2013, no. 2, pp. 121—128.

(9)

13. Ghiaus S., Allard F., Santamouris M., Georgakis C., Nicol F. Urban Environment Inluence on Natural Ventilation Potential. Building and Environment. 2006, vol. 41, no. 4, pp. 395—406.

A b o u t t h e a u t h o r s : Egorychev Oleg Olegovich — Doctor of Technical Sciences, Research Advisor, Research and Production Laboratory of Wind-tunnel and Aeroacoustic Testing of Civil Engineering Structures, Moscow State University of Civil Engineering

(MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; ol3ol@narod.ru;

Dunichkin Il’ya Vladimirovich — Candidate of Technical Sciences, Deputy Director, Training, Research and Production Laboratory of Wind-tunnel and Aeroacoustic Testing of Civil Engineering Structures, Associate Professor, Department of Design of Buildings and Urban Development, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; ecse@bk.ru.

Referências

Documentos relacionados

Ousasse apontar algumas hipóteses para a solução desse problema público a partir do exposto dos autores usados como base para fundamentação teórica, da análise dos dados

The main objective was to develop a comparative analysis of the Urban Metabolism of LMA, in two historical periods (1900 and 1950). Aware of the growing restrictions on the

The probability of attending school four our group of interest in this region increased by 6.5 percentage points after the expansion of the Bolsa Família program in 2007 and

спектроскопии для оценки динамики формирования меристематических очагов в культуре ткани в зависимости от кислотности питательной среды и определение

didático e resolva as ​listas de exercícios (disponíveis no ​Classroom​) referentes às obras de Carlos Drummond de Andrade, João Guimarães Rosa, Machado de Assis,

Para refazer a proposta, preciso avaliar meu trabalho, (re)olhar para meu planejamento e (re)elaborar a proposta. Ali há algo a ser aprendido, desenvolvido. É importante

Alguns ensaios desse tipo de modelos têm sido tentados, tendo conduzido lentamente à compreensão das alterações mentais (ou psicológicas) experienciadas pelos doentes

The iterative methods: Jacobi, Gauss-Seidel and SOR methods were incorporated into the acceleration scheme (Chebyshev extrapolation, Residual smoothing, Accelerated