• Nenhum resultado encontrado

Differential effects of exercise intensities in hippocampal BDNF, inflammatory cytokines and cell proliferation in rats during the postnatal brain development

N/A
N/A
Protected

Academic year: 2017

Share "Differential effects of exercise intensities in hippocampal BDNF, inflammatory cytokines and cell proliferation in rats during the postnatal brain development"

Copied!
6
0
0

Texto

(1)

ContentslistsavailableatScienceDirect

Neuroscience

Letters

j o ur na l h o me p a g e :w w w . e l s e v i e r . c o m / l o c a t e / n e u l e t

Differential

effects

of

exercise

intensities

in

hippocampal

BDNF,

inflammatory

cytokines

and

cell

proliferation

in

rats

during

the

postnatal

brain

development

Alexandre

Aparecido

de

Almeida

a

,

Sérgio

Gomes

da

Silva

a,b,∗

,

Jansen

Fernandes

a

,

Luiz

Fernando

Peixinho-Pena

a

,

Fulvio

Alexandre

Scorza

c

,

Esper

Abrão

Cavalheiro

c

,

Ricardo

Mario

Arida

a,∗

aDepartmentofPhysiology,UniversidadeFederaldeSãoPaulo(UNIFESP),SãoPaulo,SP,Brazil

bInstitutodoCérebro(INCE),InstitutoIsraelitadeEnsinoePesquisaAlbertEinstein(IIEPAE),SãoPaulo,SP,Brazil cDepartmentofNeurologyandNeurosurgery,UniversidadeFederaldeSãoPaulo(UNIFESP),SãoPaulo,SP,Brazil

h

i

g

h

l

i

g

h

t

s

•BDNFlevelsandcellularproliferationinthehippocampusaredependentsofexerciseintensity.

•Itwasnotedthatexerciseintensityisaninflammation-inducingfactor.

•Exercise-inducedinflammatoryresponseisalsorelatedtodevelopmentalstage.

a

r

t

i

c

l

e

i

n

f

o

Articlehistory: Received25May2013

Receivedinrevisedform7August2013 Accepted8August2013

Keywords: Exercise Intensity Development Inflammation Brain Plasticity

a

b

s

t

r

a

c

t

Ithasbeenestablishedthatlowintensitiesofexerciseproducebeneficialeffectsforthebrain,whilehigh intensitiescancausesomeneuronaldamage(e.g.exacerbatedinflammatoryresponseandcelldeath). Althoughtheseeffectsaredocumentedinthematurebrain,theinfluenceofexerciseintensitiesinthe developingbrainhasbeenpoorlyexplored.Toinvestigatetheimpactofexerciseintensityin develop-ingrats,weevaluatedthehippocampallevelofbrainderivedneurotrophicfactor(BDNF),inflammatory cytokines(TNF␣,IL6andIL10)andtheoccurrenceofhippocampalcelldegenerationandproliferation

atdifferentstagesofpostnatalbraindevelopmentofratssubmittedtotwophysicalexerciseintensities. Tothispoint,maleratsweredividedintodifferentagegroups:P21,P31,P41andP51.Eachagegroup wassubmittedtotwoexerciseintensities(lowandhigh)onatreadmillover10consecutivedays,except thecontrolrats.Weverifiedthatthedensityofproliferatingcellswassignificantlyhigherinthedentate gyrusofratssubmittedtolow-intensityexercisefromP21toP30comparedwithhigh-intensityexercise andcontrolrats.Asignificantincreaseofproliferativecelldensitywasfoundinratssubmittedto high-intensityexercisefromP31toP40whencomparedtolow-intensityexerciseandcontrolrats.Elevated hippocampallevelsofIL6weredetectedinratssubmittedtohigh-intensityexercisefromP21toP30 comparedtocontrolrats.FromP41toP50period,higherlevelsofBDNF,TNF␣andIL10werefoundin

thehippocampalformationofratssubmittedtohigh-intensityexerciseinrelationtotheircontrolrats. Ourdatashowthatexercise-inducedneuroplasticeffectsonBDNFlevelsandcellularproliferationinthe hippocampalregionaredependentonexerciseintensityanddevelopmentalperiod.Thus,exercise inten-sityisaninflammation-inducingfactorandexercise-inducedinflammatoryresponseduringthepostnatal braindevelopmentisalsorelatedtodevelopmentalstage.Ourfindingsindicatethatneuroplasticchanges inducedbyexerciseindevelopingratsdependonbothageandtrainingintensity.

Crown Copyright © 2013 Published by Elsevier Ireland Ltd. All rights reserved.

∗Correspondingauthorsat:DepartamentodeFisiologia,UniversidadeFederal deSãoPaulo(UNIFESP),RuaBotucatu862,Ed.CiênciasBiomédicas,5◦andar.Vila Clementino,CEP:04023-900,SãoPaulo–SP,Brazil.Tel.:+551155764513; fax:+551155739304.

E-mailaddresses:sergio.gomes@unifesp.br,sgomesilva@hotmail.com(S.Gomes daSilva),arida.nexp@epm.br(R.M.Arida).

1. Introduction

Brain development is a complex process characterizedby a seriesofcritical stages.Eachstagemust beproperly fulfilledin orderforthebraintoconfiguretheirnormalstructure.Although thebrain’sstructureisformedbeforebirth,itsfulldevelopment dependsonpostnatalstimulifromtheenvironment.Stimuliduring

0304-3940/$–seefrontmatter.Crown Copyright © 2013 Published by Elsevier Ireland Ltd. All rights reserved.

(2)

2 553 (2013) 1–6

thispostnatal period maymodulatethebrain’s functional mat-uration and determine its lifelong integrity [1]. Evidence from humanstudieshasshownthatsomeenvironmentalstimulisuch as physical activity habits in infancy and adolescence seem to haveafavorableinfluence[3,11,22].Forinstance,apositive cor-relationbetweenphysical activityandlearning andintelligence scoreshasbeenobservedinschool-agechildren[22].In preado-lescentchildren,singleorvariousexercisesessionsmaymodify neuronalactivity,improvetheperformanceinattentiontasks,and enhancereading comprehension and response accuracyin aca-demicachievementtests [3,11].Data from animalstudies have shownthatexercisecanmodulatethefunctionalmaturationofthe developingbrainbymeansofneuroplasticprocesses[8,24].Ina studyconductedbyourgroup,weverifiedthatanexerciseprogram undertakenduringadolescentperiodofratswasabletoincrease axonaldensityofgranulecells ofthedentategyrus,toenhance hippocampalexpressionofneurotrophicfactors,andtoimprove learningand memory[8].Together, theseinteresting data sug-gestthatphysicalexerciseduringpostnataldevelopmentresults inpositivechangesforthebrain,particularlyinthehippocampal formation–ahighlyplasticregionofthebrainlinkedtocognitive andemotionalprocesses.However,itisimportanttopointoutthat exercise-inducedneuroplasticeffectsmayvaryaccordingtoanimal age[14]andtrainingintensity[15].

It is usually accepted that low and moderate intensities of exerciseproducebeneficialeffectsforthebrain,whilehigh inten-sitiescancausesomedamage (e.g.celldeath). Indeed,harmful effectscouldappearinundue conditionsofphysicalor psycho-logicalstress.Ofthefewstudiesconductedwithphysicaltraining injuvenilerats,itwasdemonstratedthatexercise-induced neuro-plasticitywasdependentuponexerciseintensity[15].Thelow-,but notthehigh-,intensityexerciseresultedinenhancedneurogenesis andgeneexpressionofbrainderivedneurotrophicfactor(BDNF),

N-methyl-d-aspartatereceptor type1 (NMDAR1)andfetal liver kinase-1(Flk-1)inthehippocampalformationof35-day-oldrats [15].Nevertheless,itisunclearwhetherthereisadevelopmental stageinwhichexerciseintensitycouldinduceagreater neuroplas-ticinfluence.Moreover,ithasbeendescribedthatexercisecanalter thebrainexpressionofinflammatorycytokines[4,5],small cell-signalingproteinsknowntoaffecttheintegrityoftheblood–brain barrierandinducecelldeathduringdevelopment[6,10].Inviewof theseobservations,weevaluatedthehippocampallevelsofBDNF andinflammatorycytokinesandtheoccurrenceofhippocampal celldegenerationandproliferationatdifferentstagesof postna-talbraindevelopment(prepuberte:P21–P30;juvenile:P31–P40; adolescent:P41–P50;lateadolescent:P51–P60)ofratssubmitted totwophysicalexerciseintensities.

2. Methods

2.1. Exerciseparadigm

Wistarratswereusedinthisstudy.Allexperimentalprotocols describedbelowwereapprovedbytheethicscommitteeofthe Uni-versidadeFederaldeSãoPaulo(#0607/09).Thecolonyroomwas maintainedat21±2◦Cwitha12hlight/darkschedule,andad libi-tumfoodandwaterthroughouttheexperiments.Maleratswere dividedintodifferentagegroups:P21,P31,P41andP51(n=44in eachgroup).Eachagegroupwassubmittedtotwoexercise inten-sities(lowandhigh)onatreadmill(Columbusinstruments)over 10consecutivedays,exceptthecontrolrats.Exerciseintensities weredeterminedinaccordancewiththedevelopmentstageofeach group:theratsranfromP21toP30atlow-intensityof12m/min andhigh-intensityof16m/min,fromP31toP40atlow-intensity of14m/minandhigh-intensityof18m/min,fromP41toP50at

low-intensity of 16m/min and high-intensity of 20m/min, and fromP51toP60atlow-intensityof18m/minandhigh-intensity of22m/min.Ratssubmittedtolow-andhigh-intensityexercise ranonatreadmillfor 30minperday.Exercise sessionsstarted witha3minwarm-upat8m/min,andelectricshockswereused sparinglytomotivatetheratstorun[7].Wechosethetreadmill runningbecausetheintensityanddurationofexercisecaneasily becontrolled,differentiallyofthevoluntarywheelrunning.

2.2. Methodsofproteinimmunodetection

2.2.1. Tissuepreparation

The hippocampal formations of twenty-seven animals from each agegroup(n=9in thecontrol,low-intensity exerciseand high-intensity exercise subgroups) were removed immediately afterdecapitationandhomogenizedin0.01MTris–hydrochloride (pH7.6)containing5.8%ofsodiumchloride,10%ofglycerol,1% ofNonidetP40(NP-40),0.4%ofethylenediaminetetraaceticacid (EDTA) and protease inhibitors. Animals submitted to physical trainingwerekilled1hafterthelastexercisesession.Sampleswere sonicatedandstoredat−80◦C.

2.2.2. Enzyme-linkedimmunosorbentassay(ELISA)

HippocampalBDNFlevelswereexaminedbyELISAkitE-max® (Promega).Samplespreviouslystoredat−80◦Cwerecentrifuged for5minat14,000rpmat4◦Candthesupernatanttransferredto a96-wellplate(CorningCostar)coatedwithanti-BDNF(1:1000) thenincubatedfor2hatroomtemperature.Afterthisperiod,the platewaswashedwithTris-bufferedsalineTween-20(TBS-T)and incubatedwiththefollowingantibodies:anti-human(1:500)for 2h,andconjugateanti-IgYHRP(1:200)for1h.Then,color reac-tionwithtetramethylbenzidinewasquantifiedinaplatereaderat 450nm(QuickElisa).

2.2.3. Immunoassay

Hippocampal levels of inflammatory cytokines were deter-minedbymeansofimmunoassay.Samplespreviouslystoredat

−80◦Cwerecentrifugedfor5minat10,000×gat4Candcytokine concentrationsmeasuredwithaMilliporemultiplexRatCytokine KitontheLuminex®xMAP®platform.Thelevelsoftumornecrosis factoralpha(TNF␣),interleukin6(IL6)andinterleukin10(IL10)

weredetermined.

2.3. Histologicalmethods

2.3.1. Tissuepreparation

Seventeen animals from each age group (n=5 for control subgroup, n=6 for low-intensity exercise subgroup and n=6 for high-intensity exercisesubgroup)were deeply anesthetized (Tionembutal, 50mgkg, i.p.) and perfused transcardially with solutionof0.01Mphosphate-bufferedsaline(PBS), followedby solutioncontaining4%formaldehydein0.1Mphosphate-buffered, pH7.4.Animalssubmittedtophysicaltrainingwerekilled1hafter thelastexercisesession.Afterperfusion,theanimals’brainswere removedfromtheskull,cutcoronallywithavibratome(Leica)in 50␮m-thickslicesandstoredat−20◦Cinthebiologicaltissuebank inourlaboratory(forpreservationoftissue).Toinhibitthe forma-tionoficecrystalsthatdamagethestructureofcells,thesliceswere maintainedinanantifreezesolutioncontaining30%ofsucrose,1% ofpolyvinylpyrrolidone40(PVP-40)and30%ofethyleneglycolin PB(pH7.2).

2.3.2. Ki-67immunohistochemistry

(3)

553 (2013) 1–6 3

storedinthetissuebankwereselectedinordertoanalyzethe cel-lularproliferationrateinthehippocampalregionofthedentate gyrus(bregma−2.8/−3.6mm)[19].Fiveslicesperanimalwere pre-treatedwith3%ofH2O2for10mintoblockendogenousperoxidase activity,rinsedinPBS,pre-incubatedfor45mininPBScontaining 10%of normal serumand 0.2%of TritonX-100,and then incu-batedinprimaryantibodyagainsttheKi-67proliferationmarker (1:1000;Abcam)at4◦Covernight.Pairedslicesofeachsubgroup wereprocessedinthesamevialinordertominimizethedifferences duringtheimmunohistochemicalprocedure.Afterasequenceof procedures(similartothatdescribedbyGomesdaSilvaetal.[8]), thesliceswerefinallywashedinPBS,mountedongelatin-coated slides,dehydrated,coverslippedwithEntellan(Merk).Afterwards, thehippocampalregionofthedentategyrusofeachanimalwas digitizedwithabright-fieldmicroscope(NikonEclipse6600)for quantitativeanalysis.ToanalyzetheKi-67staining,weuseda sim-ilarmethodtothatdescribedbyScorzaetal.[21]andGomesda Silvaetal.[8].Briefly,thesignificantpixelswerethenconverted intobinarymatrix(blackandwhite)andquantifiedbytheblack pixelssumperarea(i.e.densityofKi-67staining).The quantifi-cationof pixelswascarriedout bysoftwarethatallows matrix manipulations(Matlab)andinimageswiththesameresolution.

2.3.3. Fluoro-JadeB

A sequence of five hippocampal slices per animal (bregma

−2.8/−3.3mm) [19] previously stored in the tissue bank was selectedtoobservetheimmunohistochemicalstainingof Fluoro-Jade B (FJB), a derivative of fluorescein anionic tribasic that selectivelylabelsdegeneratingneurons[20].ToperformtheFJB histochemicalstaining,weusedasimilarmethodtothatdescribed byGomesdaSilva etal.[8].Asapositive control,weaddedto theimmunohistochemicalprocedureaslice ofthehippocampal region(fromanotherproject)ofananimalinjectedwith350mg/kg of pilocarpine(a potent cholinergic agonistthat induces status epilepticus and leads to severe widespread cell loss in several brain areas). Then, hippocampal slices were rinsed in distilled water,mountedonslides,coverslippedandanalyzedqualitatively inconfocalmicroscope(NikonEclipse6600)bytwoindependent investigators.

2.4. Statisticalanalyses

StatisticalanalyseswerecarriedoutusingaSPSSsoftware ver-sion17.0 (SPSS Inc.,Chicago,IL).The Shapiro–Wilkand Levene testswereusedtoverifydatanormalityandhomogeneity, respec-tively.Datawithnormaldistributionorhomogenyvarianceswere comparedby two-wayANOVAfollowedbyBonferroni posthoc test.Differenceswereconsideredsignificantwhenp<0.05.Data withnon-normaldistributionwerecomparedbynonparametric Kruskal–WallistestfollowedbyMann–Whitneytestsand Bonfer-ronicorrectionwhenp<0.05.Resultsarepresentedasmeanand standarderrorofthemean(±SEM).

3. Results

3.1. HippocampalBDNFlevels

We investigatedthehippocampalBDNFlevelsin ratsat dif-ferent stages of postnatal braindevelopmentsubmitted totwo physicalexerciseintensities.Ratssubmittedtohigh-intensity exer-cise from P41 to P50 presented a significant increase of the hippocampalBDNFlevels(35.51±3.76pg/ml)whencomparedto low-intensityexercise(24.05±1.38pg/ml;p=0.003)andcontrol rats(26.57±2.75pg/ml;p=0.026)(Fig.1).Nosignificantdifference wasfoundinotheragegroups(p>0.05).

3.2. Hippocampalcytokinelevels

A significant increase of the hippocampal levels of pro-inflammatory cytokine IL6 was detected in rats submitted to high-intensityexercisefromP21toP30(36.11±3.79pg/ml) com-paredtocontrolrats(5.84±2.10pg/ml,p=0.001)(Fig.1).From P41toP50period,elevatedlevelsofpro-inflammatorycytokine TNF␣ were found in the hippocampal formation of rats

sub-mitted to high-intensity exercise (TNF␣=15.19±5.50pg/ml) in relationtotheircontrolrats(TNF␣=2.58±0.39pg/ml,p=0.014). Elevatedhippocampallevelsofanti-inflammatorycytokineIL10 werealso detectedin ratssubmittedto high-intensity exercise fromP41toP50(1309.68±459.13pg/ml)comparedtotheir con-trols(56.72±41.38pg/ml,p=0.009)(Fig.1).Inotheragegroups,no significantdifferencewasfoundinthehippocampalinflammatory cytokinelevels(p>0.017;p-valueaftercorrectionofBonferroni).

3.3. Cellularproliferationanddegenerationinthedentategyrus

TheKi-67markerwasusedtoanalyzethecellularproliferation rateinthehippocampalformationofdevelopingratssubmittedto twoexerciseintensities.ProliferativecellsmarkedwithKi-67were observedinsubgranularzoneandhilarregionofthedentategyrus inallagegroups(Fig.2A).However,quantitativeanalysisrevealed thatthedensityofproliferatingcells wassignificantlyhigherin thedentategyrusofratssubmittedtolow-intensityexercisefrom P21toP30comparedwithhigh-intensityexerciseandcontrolrats (p<0.001forboth)(Fig.2B).FromP31toP40,asignificantincrease ofproliferativecelldensitywasfoundinratssubmittedto high-intensityexercisewhencomparedtolow-intensityexerciseand controlrats(p<0.001).Inotheragegroups,nosignificantdifference inthedensityofproliferatingcellswasdetectedamongcontrol, low-andhigh-intensityexerciserats(p>0.05)(Fig.2B).Toverify thepossibilityofcellulardegeneration,weusedFJBhistochemical staininginthedentategyrusofratssubmittedtotwophysical exer-ciseintensitiesatdifferentstagesofpostnatalbraindevelopment. Inthepositivecontrol,theFJBstainingwasobservedinneurons locatedinthehilarregionofthedentategyrus(Fig.3).However, nodegeneratingneuronwasfoundinthedentategyrusofcontrol ratsorthosesubmittedtotwoexerciseintensitiesduringpostnatal braindevelopment(Fig.3).

4. Discussion

Ourstudyexaminedtheinfluenceofexerciseintensityat differ-entstagesofpostnatalbraindevelopmentinrats.Wefoundthat exercise-inducedneuroplasticeffectsonBDNFlevelsandcellular proliferationinthehippocampalregionaredependentsof exer-ciseintensityanddevelopmentalperiod.Moreover,itwasnoted thatexerciseintensityisaninflammation-inducingfactorandthat exercise-induced inflammatory response duringpostnatal brain developmentisalsorelatedtodevelopmentalstage.

(4)

4 553 (2013) 1–6

Fig.1.HippocampallevelsofBDNFandanti-(IL10)andpro-inflammatory(IL6andTNF-␣)cytokinesinratssubmittedtotwoexerciseintensities(lowandhigh)atdifferent stagesofpostnatalbraindevelopment.*p<0.05comparedtocontrolgroup;#p<0.05comparedtorespectiveexercisegroup.BDNFstatisticalanalysiswasperformedby two-wayANOVAfollowedbyBonferroni’sposthoctest.CytokinesstatisticalanalyseswereconductedbyKruskal–WallistestfollowedbyMann–WhitneytestsandBonferroni correction(0.05/3=0.017).

couldalsoincreasethehippocampalBDNFatdifferentstagesof postnatalbraindevelopment.However,theresultsdidnotshow thiseffect.Moreover,elevatedlevelsof inflammatorycytokines werealso foundin the hippocampalformation of rats submit-ted to high-intensity exercise from P41 to P50. Inflammatory cytokinescanexert dualeffects (positive or negative) onbrain functions.Theseeffectsaredependentonnumerousfactors,such asthetypeof cytokineproduced, thefunctionalstateand type ofstimulatedcells, theconcentrationandthedurationof expo-suretothecytokines.The over-expressionof pro-inflammatory cytokinesin thebrain may contribute to unsuccessful mainte-nance of neuronal communication and brain functions. It has

beenobservedthatpro-inflammatorycytokinesenhanceactivity ofstress-activatedproteinkinasesandimpairthebrain’sabilityto maintainhippocampallong-termpotentiation(LTP)[18],a physi-ologicalprocessinvolvedinmemoryconsolidation.Inopposition, it was demonstrated that inflammation-linked LTP impairment canbereversed byintracerebroventricularinfusionof the anti-inflammatorycytokineIL10[16].Althoughoftheseinterestingdata revealanantagoniceffectoftheanti-inflammatorycytokineson deleteriouseventsproduced bypro-inflammatorycytokines,we cannotensurethatourresultsinratssubmittedtohigh-intensity exercise from P41 to P50 are linked to beneficial neuroplastic effects.

(5)

553 (2013) 1–6 5

Fig.3.FJBhistochemicalstaininginthedentategyrusofdevelopingratssubmittedtotwoexerciseintensities.FJBstaininginpositivecontrolwasobservedinneurons (fluorescentgreen)locatedinthepyramidalcelllayerofCA1(A)andCA3(B)andinthehilusofthedentategyrus(C).Nodegeneratingneuronwasfoundinthehippocampal regionofdevelopingratssubmittedtolow-andhigh-intensityofexercise.Toensurethereliabilityofresults,somesamplesreceivedagreatertimeexposurethantheother samples.Scalebar=150␮m.

As mentioned above, over-expression of inflammatory cytokinescouldresult in negativeand positive changes forthe developingbrain.Inourstudy,high-intensityexerciseincreased both pro- and anti-inflammatory cytokines (TNF␣ and IL10,

respectively)in thehippocampalformation ofratsexercised in theP41toP50period.Nevertheless,nohippocampaldegenerating neuron wasfoundin these animals.A possibleexplanation for theseresultscouldbeattributedatleasttotheexercise-induced BDNF.Indeed,apromisinginteractionbetweengrowthfactorsand cytokineshasbeendescribed[17,23].It hasbeenreportedthat BDNFadministrationstimulatesIL10 secretion[17]and reduces theinflammation-inducedbrainlesionsextension[23].Takinginto

accounttheinterplaybetweengrowthfactorsandcytokines,itis possiblethattheincreaseinIL10levelsinourstudycouldalsobe relatedtotheincreaseofBDNFlevelsdetectedinthehippocampal formationofratssubmittedtohigh-intensityexercisefromP41to P50.Alteredneuronalactivityandgenicexpressionmightbeother factorsinvolvedinthisprocess.

(6)

6 553 (2013) 1–6

supporttheidea that beneficial effects in thedeveloping brain dependuponlowintensitiesofexercise[15].Ontheotherhand, thehigh-,butnotthelow-,intensityexerciseparadigmresulted inasignificantincreaseofproliferativecelldensityinratstrained fromP31toP40.Thesefindingsrevealthatnewcellformationmay varyaccordingtoexerciseintensityanddevelopmentalstageofthe brain.Itisimportanttopointoutthatnewcellformationinduced byexerciseintheseearlystagescouldhaveasignificantimpact onbrainstructureand functionaldevelopment.Studiesinadult animalshaveshownthatphysicalexerciseenhancescell prolifera-tionandsurvivalinthedentategyrusandincreasesthemagnitude ofhippocampalLTPand improvesspatiallearning andmemory [14,25]. Considering that new cell formation in the hippocam-palregionismostprevalentinearlylife[14],wespeculatethat exercise-inducedcellularproliferationintheseanimalsmayalso beaccompaniedbyimprovedcognitivecapability.Nevertheless, furtherstudiesareneededtoestablishthisrelationshipbetween exerciseintensity,cellproliferationandcognitivefunctionsduring postnatalbraindevelopment.

Inconclusion,thepresentstudyhasshownthattwo intensi-tiesofexercisemayresultinpositiveandnegativechangesforthe developingbrain.Dependingonthedevelopmentalstage,low-or high-intensityofexercisecanenhancethecellproliferationratein thedentategyrusandincreaseinflammatorycytokinesand neu-rotrophicfactorlevelsinthehippocampalformationofdeveloping rats.These findings indicate that exercise-induced neuroplastic effectsindevelopingratsdependonbothageandtrainingintensity.

Conflictofinterest

Theauthorsdeclarethattheyhavenoconflictsofinterest.

Acknowledgements

ThisstudywassupportedbyCAPES,CNPq,FAPESPandINNT (Brazil).

References

[1]S.L.Andersen,Trajectoriesofbraindevelopment:pointofvulnerabilityor win-dowofopportunity?Neurosci.Biobehav.Rev.27(2003)3–18.

[2]P.Bernd,Theroleofneurotrophinsduringearlydevelopment,GeneExpr.14 (2008)241–250.

[3]S.M.Buck,C.H.Hillman,D.M.Castelli,Therelationofaerobicfitnesstostroop taskperformanceinpreadolescentchildren,Med.Sci.SportsExerc.40(2008) 166–172.

[4]M.Chennaoui,C.Drogou,D.Gomez-Merino,Effectsofphysicaltrainingon IL-1beta,IL-6andIL-1raconcentrationsinvariousbrainareasoftherat,Eur. CytokineNetw.19(2008)8–14.

[5]L.H.Colbert,J.M.Davis,D.A.Essig,A.Ghaffar,E.P.Mayer,Tissueexpression andplasmaconcentrationsofTNFalpha,IL-1beta,andIL-6followingtreadmill exerciseinmice,Int.J.SportsMed.22(2001)261–267.

[6]B.E.Deverman,P.H.Patterson,Cytokines,CNSdevelopment,Neuron64(2009) 61–78.

[7]S.GomesdaSilva,F.Dona,M.J.daSilvaFernandes,F.A.Scorza,E.A. Caval-heiro,R.M.Arida,Physicalexerciseduringtheadolescentperiodoflifeincreases hippocampalparvalbuminexpression,BrainDev.32(2010)137–142. [8]S.GomesdaSilva,N.Unsain,D.H.Masco,M.Toscano-Silva,H.A.deAmorim,B.H.

SilvaAraujo,P.S.Simoes,G.Naffah-MazzacorattiMda,R.A.Mortara,F.A.Scorza, E.A.Cavalheiro,R.M.Arida,Earlyexercisepromotespositivehippocampal plas-ticityandimprovesspatialmemoryintheadultlifeofrats,Hippocampus22 (2012)347–358.

[9]J.A.Gorski,S.A.Balogh,J.M.Wehner,K.R.Jones,Learningdeficitsin forebrain-restrictedbrain-derivedneurotrophicfactormutantmice,Neuroscience121 (2003)341–354.

[10]H.Hagberg,C.Mallard,Effectofinflammationoncentralnervoussystem devel-opmentandvulnerability,Curr.Opin.Neurol.18(2005)117–123.

[11]C.H.Hillman,M.B.Pontifex,L.B.Raine,D.M.Castelli,E.E.Hall,A.F.Kramer,The effectofacutetreadmillwalkingoncognitivecontrolandacademic achieve-mentinpreadolescentchildren,Neuroscience159(2009)1044–1054. [12]M.E.Hopkins,R.Nitecki,D.J.Bucci,Physicalexerciseduringadolescenceversus

adulthood:differentialeffectsonobjectrecognitionmemoryandbrain-derived neurotrophicfactorlevels,Neuroscience194(2011)84–94.

[13]E.J.Huang,L.F.Reichardt,Neurotrophins:rolesinneuronaldevelopmentand function,Annu.Rev.Neurosci.24(2001)677–736.

[14]Y.P.Kim,H.Kim,M.S.Shin,H.K.Chang,M.H.Jang,M.C.Shin,S.J.Lee,H.H.Lee, J.H.Yoon,I.G.Jeong,C.J.Kim,Age-dependenceoftheeffectoftreadmillexercise oncellproliferationinthedentategyrusofrats,Neurosci.Lett.355(2004) 152–154.

[15]S.J.Lou,J.Y.Liu,H.Chang,P.J.Chen,Hippocampalneurogenesisandgene expres-siondependonexerciseintensityinjuvenilerats,BrainRes.1210(2008) 48–55.

[16]A.M. Lynch,C. Walsh, A. Delaney,Y. Nolan, V.A. Campbell,M.A. Lynch, Lipopolysaccharide-inducedincreaseinsignallinginhippocampusis abro-gatedbyIL-10–aroleforIL-1beta?J.Neurochem.88(2004)635–646. [17]O.Noga,M.Peiser,M.Altenahr,H.Knieling,R.Wanner,G.Hanf,R.Grosse,

N.Suttorp,Differentialactivationofdendriticcells bynervegrowth fac-tor and brain-derived neurotrophic factor, Clin. Exp. Allergy 37 (2007) 1701–1708.

[18]E.O’Donnell,E.Vereker,M.A.Lynch,Age-relatedimpairmentinLTPis accom-paniedbyenhancedactivityofstress-activatedproteinkinases:analysisof underlyingmechanisms,Eur.J.Neurosci.12(2000)345–352.

[19]G.Paxinos,C.Watson,TheRatBraininStereotaxicCoordinate,AcademicPress, NewYork,1996.

[20]L.C.Schmued,K.J.Hopkins,Fluoro-JadeB:ahighaffinityfluorescentmarkerfor thelocalizationofneuronaldegeneration,BrainRes.874(2000)123–130. [21]C.A. Scorza,B.H.Araujo,R.M.Arida,F.A.Scorza,L.B.Torres, H.A.Amorim,

E.A.Cavalheiro,DistinctivehippocampalCA2subfieldoftheAmazonrodent Proechimys,Neuroscience169(2010)965–973.

[22]B.A.Sibley,J.L.Etnier,Therelationshipbetweenphysicalactivityandcognition inchildren:ameta-analysis,Pediatr.Exerc.Sci.15(2003)243–256. [23]M.Spedding,P.Gressens,Neurotrophinsandcytokinesinneuronalplasticity,

NovartisFound.Symp.289(2008)222–233,discussion233–240.

[24]N.Uysal,K.Tugyan,B.M.Kayatekin,O.Acikgoz,H.A.Bagriyanik,S.Gonenc, D.Ozdemir,I.Aksu,A.Topcu,I.Semin,Theeffectsofregularaerobicexercise inadolescentperiodonhippocampalneurondensity,apoptosisandspatial memory,Neurosci.Lett.383(2005)241–245.

Referências

Documentos relacionados

The mechanisms by which these compounds prevent these effects include inhibition of stress (acute and chronic)- induced increase in iNOS activity, NF κ B blockade (by

Objective: To evaluate the influence of environmental enrichment (EE) on memory, cytokines, and brain-derived neurotrophic factor (BDNF) in the brain of adult rats subjected

Los islotes donde se fundaron México–Tenochtitlan y México–Tlatelolco, no era los mejores sitios para erigir una ciudad, sobre todo Tlatelolco, que era una zona

The percentage of actual income of the charitable campaigns over the finance objective is similar in the case of the platform Verkami (120% of the non-profit-making campaigns

Single patients showed a marked relative hippocampal volume reduction, but the patients were not different from controls in the volumetric measurements of hippocampal and whole

social assistance. The protection of jobs within some enterprises, cooperatives, forms of economical associations, constitute an efficient social policy, totally different from

Treatment of immature hippocampal neurons with pro-inflammatory cytokines alters the growth cone area and cytoskeleton.. Treatment of immature hippocampal neurons with

Objective: This study investigated whether proliferation, expression of pro-inflammatory cytokines, and osteogenic differentiation of CD105-enriched PDL progenitor cell