• Nenhum resultado encontrado

Kaleidoscopical configurations in groups

N/A
N/A
Protected

Academic year: 2016

Share "Kaleidoscopical configurations in groups"

Copied!
4
0
0

Texto

(1)

Математичнi Студiї. Т.36, №2 Matematychni Studii. V.36, No.2

УДК 519.4

I. V. Protasov, S. Slobodianiuk

KALEIDOSCOPICAL CONFIGURATIONS IN GROUPS

I. V. Protasov, S. Slobodianiuk.Kaleidoscopical configurations in groups, Mat. Stud.36(2011),

115–118.

A subsetAof a groupGis called a kaleidoscopical configuration if there exists a surjective coloringχ:X →κ such that the restriction χ|gA is a bijection for each g∈G. We give two topological constructions of kaleidoscopical configurations and show that each infinite subset of an Abelian group contains an infinite kaleidoscopical configuration.

И. В. Протасов, С. Слободянюк. Калейдоскопические конфигурации на группах // Мат. Студiї. – 2011. – Т.36, №2. – C.115–118.

Подмножество A группыG называется калейдоскопической конфигурацией, если су-ществует сюръективное раскрашиваниеχ:X →κ, такое что ограничение χ|gAявляется биекцией для всех g ∈ G. Предложено две топологические конструкции калейдоскопи-ческих конфигураций, доказано что каждое бесконечное подмножество абелевой группы содержит бесконечную калейдоскопическую конфигурацию.

Let X be a set and let F be a family of subsets of X. Following [2], we say that the hypergraph (X,F)is kaleidoscopicalif there exists a coloring χ: X →κ (i.e. a mapping

of G onto a cardinalκ) such that the restrictionχ|F is a bijection for each F F.

A subset A of a group G is said to be a kaleidoscopical configuration if the hypergraph

(G,{gA: g ∈G})is kaleidoscopical. Each kaleidoscopical configurationAinGis complemen-ted, i.e. there exists a subset B of G such that G = AB and the multiplication mapping

µ: A ×B → G, µ(a, b) = ab, is a bijection [2, Corollary 1.3]. If G is Abelian then the converse statement holds [2, Corollary 1.5]. We note also that ifAis kaleidoscopical in some subgroup of G then A is kaleidoscopical in G.

In this note, we give two topological constructions of kaleidoscopical configurations and show that each infinite subset of an Abelian group contains an infinite kaleidoscopical confi-guration.

For a hypergraph (X,F), x∈X and A⊂X, we put

St(x,F) = ∪{F ∈F: x∈F}, St(A,F) =∪{St(a,F) :a ∈A}.

Proposition 1. A hypergraph(X,F)is kaleidoscopical provided that, for some cardinal κ,

the following two conditions are satisfied: (1) |F| ≤κ and |F|=κ for each F F;

(2) for any subfamily A ⊂ F of cardinality |A| < κ and any subset B X \∪A of cardinality|B|<κ, the intersection St(B,F)∩(∪A) has cardinality less thanκ.

2010Mathematics Subject Classification:05B45, 05C15, 20K01. Keywords:kaleidoscopical configuration, T-sequence, rigid subset.

c

(2)

116 I. V. PROTASOV, S. SLOBODIANIUK

Proof. [2, Proposition 1.10].

We say that a subset A of a group G isrigid if for each g ∈G\A, the set g−1

A∩A−1

A

is finite.

Proposition 2. If A is a countable rigid subset of a group G then A is a kaleidoscopical configuration.

Proof. We may suppose thatGis countable. To apply Proposition 1, it suffices to show that, for all c∈G,b ∈G\cA, the set

Y =∪{yA∩cA: y∈G, b ∈yA}

is finite. Clearly, Y ⊆ bA−1

A∩cA. We put g = c−1

b and note that g ∈ G \A. By the assumption, the setA−1

g∩A−1

A is finite, so Y is finite.

An injective sequence(an)n∈ω of elements of an infinite groupGis called aT-sequence[3] if there exists a Hausdorff group topology on G in which (an)n∈ω converges to the identity

e of G. By [3, Theorem 3.2.2], a countable group G admits a non-discrete Hausdorff group topology if and only if there is aT-sequence in G. By [3, Theorem 2.1.8], each infinite subset of an Abelian group G contains a T-sequence if and only if, for all g ∈G\ {0} and k ∈ N,

the set {x∈G: kx=g}is finite.

Theorem 1. For everyT-sequence(an)n<ω in a group G, the setA={e, an, a−n1: n ∈ω} is a kaleidoscopical configuration.

Proof. In view of Proposition 2, it suffices to show that the set A = {e, an, a−n1} is rigid. We assume the contrary and pick g ∈ G\A, an injective sequence (bn)n∈ω in A and two sequences (cn)n∈ω, (dn)n∈ω in A such that bng =cndn for each n ∈ ω. Let τ be a Hausdorff group topology on G in which (an)n∈ω converges to e. Since, at least one of the sequences

(cn)n∈ω and(dn)n∈ω must take infinitely many values, passing to limit inτ, we getg ∈A.

Corollary 1. For every T-sequence (an)n<ω in a group G, the set A ={e, an, a−n1: n ∈ ω} is complemented.

Question 1. Let (an)n<ω be a T-sequence in a group G. Are the sets {e, an: n ∈ ω},

{an:n ∈ω} kaleidoscopical?

Remark 1. Let G be an infinite Abelian group, and let A be an infinite subset of G such that A̸=A−1

and A∩A−1

is infinite. Then Ais not rigid because the setA−1

a−1 0 ∩A

−1

A is infinite for each a0 ∈A\A−1. Thus, the sets {an: n∈ω} and {e, an: n∈ω} in Question 1 need not be rigid. Indeed, let G be a direct product G = ⊗i∈ω⟨ai⟩, where ⟨a0⟩ is a cyclic group of order 3, ⟨ai⟩, i >0are cyclic groups of order 2.

For n ∈ N, we denote by Gn[x] the set of all group words in the alphabet G∪ {x} containing ≤n lettersx, x−1

. The family of subsets of G of the form

{g ∈G: w(g)̸=e, w(x)∈F},

where F is a finite subset of Gn[x], forms a base for the Zariski topology ζ

(3)

KALEIDOSCOPICAL CONFIGURATIONS IN GROUPS 117

Theorem 2. LetG be a countable group, and letS be a subset of Gsuch that e /∈S bute

belongs to the closure ofS inζ2(G). Then S contains an infinite sequence (an)n∈ω such that

{an, a− 1

n : n∈ω}is a kaleidoscopical configuration in G.

Proof. We enumerate G={gn: n ∈ω}, g0 =e, construct inductively an injective sequence

(an)n∈ω in S such that the set A={an, a−n1: n ∈ω} is rigid and apply Proposition 2. We put b0 =e, B0 = {b0}, choose an arbitrary element a0 ∈ S and put A0 ={a0, a

−1 0 }. Suppose that we have chosen An={a0, a

−1

0 , ..., an, a−n1}, Bn ={b0, b

−1

0 , ..., bn, b−n1}, An∩Bn

= ∅. We take the first element gm G\ (An Bn) and put bn+1 = gm, Bn+1 = Bn {bn+1, b

−1

n+1}. Then we consider the finite system of relations

x−1

b ̸=a−1

x, x−1

b /∈A−1 n An, A

−1 n b∩x

−1

An=∅, A

−1 n b∩A

−1

n x=∅,

wherea∈Anb ∈Bn+1. Sincee is in the closure ofS inζ2(G)and esatisfies the inequalities

x−1

b ̸= a−1

x, this system has a solution an+1 ∈ S \ (An∪Bn+1). We put An+1 = An ∪

{an+1, a

−1 n+1}.

After ω steps, we put A = {an, a−n1: n ∈ ω}, B = {bn, b−n1: n ∈ ω} and note that

B =G\A. By the construction, for each bn, we have

A−1

bn∩A

−1

A⊂A−1

n an∩A

−1

A,

so A is rigid.

Theorem 3. Every infinite subsetS of an Abelian groupGcontains an infinite kaleidoscopi-cal configuration.

Proof. We may suppose that Gis countable and hence can be enumerated as G={gn: n ∈

ω},g0 =e.

The case when {s2

: s ∈ S} is infinite. We put b0 = e, B0 = {b0}, chose an arbitrary element a0 ∈ S \ {e} and put A0 = {a0}. Assume that we have chosen the subsets An =

{a0, ..., an}, Bn ={b0, ..., bn}, An∩Bn =∅. We take the first element gm ∈ G\(An∪Bn), put bn+1 =gm, Bn+1 =Bn∪ {bn+1}and consider the system of relations

x−1

b ̸=a−1

x, x−1

b /∈A−1 n An, A

−1 n b∩x

−1

An=∅, A

−1 n b∩A

−1

n x=∅, a∈An, b∈Bn+1.

Since the set {s2

: s ∈ S} is infinite, this system has a solution an+1 ∈ S\(An∪ {Bn+1}). We putAn+1 =An∪ {an+1}.

After ω steps, we putA ={an: n ∈ω}, B ={bn: n ∈ω} and note thatB =G\A. By the construction, for each bn, we have:

A−1

bn∩A

−1

A⊂A−1 n bn∩A

−1

A,

so A is rigid and we can apply Proposition 2. The case when {s2

: s ∈ S} is finite. We may suppose that s2

= c for some c ∈ G and every s ∈ S. Choose an arbitrary s0 ∈ S and put S′ = s−

1

0 S. Then s 2

=e for each s ∈ S′

. We denote by H the subgroup of G generated by S′

, consider H as a linear space over Z2

and choose a countable linearly independent subsetA′

of S′

. It is easy to see thatA′

is rigid in H and, by Proposition 2, A′

(4)

118 I. V. PROTASOV, S. SLOBODIANIUK

Corollary 2. Every infinite subset of an Abelian group contains an infinite complemented subset.

Remark 2. LetG be a group with presentation

⟨xm, ym: x 2 m =y

2

m =e, xnxmxn =ym, m < n < ω⟩.

To see that xm ̸= xn, ym ̸= yn, m < n < ω, xi ̸= xj for all i, j ∈ ω, we can use some homomorphisms from G onto the semidirect product

(⟨a0⟩ × ⟨b0⟩)⋋(⟨a1⟩ × ⟨b1⟩),

where a2 0 = b

2 0 = a

2 1 = b

2

1 = e and a1, b1 acts on ⟨a0⟩ × ⟨b0⟩ as the swapping coordinates. Since xmxn =xnym, m < ω, we see that the subsets X ={xn: n ∈ ω} has no infinite rigid subsets.

Question 2. Does every infinite subset of an infinite group contain an infinite kaleidoscopical (complemented) subset?

Acknowledgement. We thank Taras Banakh for a couple of technical and TEXnical remarks.

REFERENCES

1. T. Banakh, I. Protasov,Zariski topologies on groups, preprint available in ArXiv:1001.0601.

2. T. Banakh, O. Petrenko, I. Protasov, S. Slobodianiuk,Kaleidoscopical configurations in G-spaces, avai-lable in ArXiv:1001.0903.

3. I. Protasov, E. Zelenyuk, Topologies on Groups Determined by Sequences, Math. Stud. Monogr. Ser., V.4, VNTL Publisher, Lviv, 1999.

4. I. Protasov, K. Protasova, Kaleidoscopical Graphs and Hamming codes, Voronoi’s Impact on Modern Science, Book 4, V.1, Proc. 4th Intern. Conf. on Analytic Number Theory and Spatial Tesselations, Institute of Mathematics, NAS of Ukraine, Kyiv, 2008, 240–245.

5. E. Zelenyuk,Topologization of groups, J. Group Theory, 10(2007), 235–244.

Faculty of Cybernetics,

Kyiv Taras Shevchenko University, i.v.protasov@gmail.com

Faculty of Mechanics and Mathematics, Kyiv Taras Shevchenko University, slobodianiuk@yandex.ru

Referências

Documentos relacionados

O presente estudo teve como objetivo relatar os efeitos de um programa de RP padrão - caracterizado por englobar exercícios de força e de resistência de musculatura sistêmica

Apesar do aumento da proporção de mulheres no total dos ocupados não agrícolas, variações positivas dos coeficientes de repre- sentação feminina só são observadas nos grupos

As an application, we study the fixation pattern when the infinite population limit has an interior Evolutionary Stable Strategy (ESS): (i) we show that the fixation pattern for

Nesse contexto, no ano de 1984, em São Paulo, buscando sair da camisa de força dos Guias Curriculares, a Coordenadoria de Estudos e Normas Pedagógicas (CENP),

Emanuel Custódio Araújo Carvalho Morais Página 5 nomeadamente o SOICA, o SOSS e o SOTA, para tomar conhecimento dos problemas relativos aos turnos dos serviços ligados ao

Em 2008 e 2009 as duas Instituições de Microfinanças com maior carteira, a Organização das Mulheres de Cabo Verde (OMCV) e a Associação de Apoio à Autopromoção da Mu- lher

Apesar disso, mapearam-se grupos de produtos nos quais os mercados dos EUA exercem demanda líquida destacável para as exportações agrope- cuárias brasileiras.. Questões

Currículo: Teoria e Práxis (3ª ed.). Porto: Porto Editora. Abordagens à Aprendizagem e Auto-Regulação da Aprendizagem na &#34;História&#34; de Alunos do 9º Ano