• Nenhum resultado encontrado

Participation of bone marrow-derived cells in hippocampal vascularization after status epilepticus

N/A
N/A
Protected

Academic year: 2017

Share "Participation of bone marrow-derived cells in hippocampal vascularization after status epilepticus"

Copied!
4
0
0

Texto

(1)

Short

communication

Participation

of

bone

marrow-derived

cells

in

hippocampal

vascularization

after

status

epilepticus

Simone

A.

Romariz,

Karina

de

O.

Garcia,

Daisyle´a

de

Souza

Paiva,

Simone

Bittencourt,

Luciene

Covolan,

Luis

Eugeˆnio

Mello,

Beatriz

Monteiro

Longo

*

DepartmentofPhysiology,FederalUniversityofSa˜oPaulo,RuaBotucatu,862,04023-062Sa˜oPaulo,SP,Brazil

1. Introduction

In neurological disorderssuchas hypoxia/ischemia, epilepsy andbraintumors,theproliferationofendothelialcellsinducesthe growthofnewbloodvesselsinthebrain.1,2Recentstudieshave

shownthatvascular alterationsoccur afterepilepticseizuresin both humans and animals.3–6 Blood–brain barrier permeability

andincreasedblood flowintothebrainareassociatedwiththe increased vascular density and angiogenesis that occur in the epileptic brain.3 In particular, hippocampal vascularization is

severelycompromisedduringepileptogenesisinanimalmodelsof temporal lobe epilepsy.4,6 In addition, after brain damage,

inflammatory and endothelial progenitorcells withinthe bone marrowcellpopulationinfiltrate intothebrainand proliferate, increasingdramaticallyatthesiteofinjury.7–10Thesecirculating

bonemarrowendothelialcellshavebeensuggestedtoparticipate inneovascularizationafterbraininjury.11

According to theseobservations, bone marrow-derived cells canparticipateinstatusepilepticus(SE)-inducedangiogenesisand recruitcirculatingendothelialprogenitorcellsfrombonemarrow to the brain after SE. To test this possibility, we proposed to investigate the role of bone marrow-derived cells in the hippocampal vasculature at various time-points after pilocar-pine-induced SE animals. Chimeric mice engrafted with bone marrow cells expressing enhanced green fluorescent protein (eGFP) were used to visualize and easily track bone marrow-derivedcellsincorporatedintothebloodvessels.

2. Materialsandmethods

AllanimalsweremaintainedinaccordancewiththeGuidefor the Care and Use of Laboratory Animals (National Research Council). All protocols were approved by the Animal Care and EthicsCommitteeoftheUniversity(no.0334/08).

2.1. Chimerapreparation

Wepreparedthechimericmice(n=29)bytransplantingbone marrow from the C57BL/6 eGFP transgenic mice into lethally irradiated(600rad,137Cesiumsourceirradiator)adultmaleC57BL/

Seizure23(2014)386–389

ARTICLE INFO

Articlehistory:

Received16July2013

Receivedinrevisedform24December2013 Accepted22January2014

Keywords:

Hippocampus Bloodvessels Chimericmice Acuteseizures GFP Pilocarpine

ABSTRACT

Purpose:Diseasessuchastemporallobeepilepsy,braintraumaandstrokecaninduceendothelialcell proliferationandangiogenesis inspecificbrain areas.Duringstatusepilepticus (SE),bone marrow-derivedcellsareabletoinfiltrateandproliferate,dramaticallyincreasingatthesiteofinjury.However,it isstillunclearwhetherthesecellsdirectlyparticipateinvascularchangesinducedbySE.

Method: Toinvestigatethepossibleroleofbonemarrow-derivedcellsinangiogenesisafterseizures,we inducedSEbypilocarpineinjectioninpreviouslypreparedchimericmice.Micewereeuthanizedat8h, 7dor15dafterSEonset.

Results:OurresultsindicatedthatSEmodifiedhippocampalvascularizationandinducedangiogenesis. Further,bonemarrow-derivedGFP+cellspenetratedthroughtheparenchymaandparticipatedinthe

formationofnewvesselsafterSE.Wedetectedbonemarrow-derivedcellscloselyassociated with vesselsinthehippocampus,increasingthedensityofbloodvesselsthathaddecreasedimmediatelyafter pilocarpine-inducedSE.

Conclusion:We conclude thatepilepticseizuresdirectlyaffectvascularization in thehippocampus mediatedbybonemarrow-derivedcellsinatime-dependentmanner.

ß 2014BritishEpilepsyAssociation.PublishedbyElsevierLtd.Allrightsreserved.

* Correspondingauthorat:DepartamentodeFisiologia,UNIFESP,RuaBotucatu, 862,04023-062Sa˜oPaulo,SP,Brazil.Tel.:+551155792033/55764513.

E-mailaddresses:beatriz.longo@unifesp.br,beatrizlongo@gmail.com

(B.M.Longo).

ContentslistsavailableatScienceDirect

Seizure

j o urn a l hom e pa g e : ww w . e l se v i e r. c om / l oca t e / y se i z

1059-1311/$–seefrontmatterß2014BritishEpilepsyAssociation.PublishedbyElsevierLtd.Allrightsreserved.

(2)

6mice.Bonemarrow-derivedcellswereobtainedfromadult eGFP-donormice(20–25g)byflushingthefemursandtibiaewithsterile medium.The cells werewashedin Dulbecco’s modified Eagle’s medium (DMEM, Gibco, San Diego, CA, USA), counted, and resuspendedin sterilesaline. Approximately 3107 cells were administeredintoeachirradiatedrecipientanimalviaintravenous injection. The chimeric mice were allowed to recover for one monthpriortoSEinduction.

2.2. SEinduction

Chimeric mice were injected with pilocarpine (280mg/kg, intraperitoneal,i.p.,Merck,Brazil)toinduceSE.Fifteenminutes afterthepilocarpineadministration,theanimalsbeganshowing stereotypicbehaviorsandacuteseizures,asdescribed

previous-ly.12SEwascharacterizedbycontinuousepilepticseizure,rearing

andfalling,straubtail,andrepeatedheadtwitches.Becauseofthe highmortalityrateofthechimericmiceduringSE,we adminis-tered thionembutal (25mg/kg, i.p.) 30min afterthe SE onset.9

Thus,thetotalSEdurationvariedfrom30to50min,withRacine stage 3–5 in the first 30min going down to stage 2–3 after thionembutaladministration.Atthefollowingtime-points post-SE, the animals were deeply anesthetized by overdose of thionembutal (200mg/kg, i.p.): 8h (n=5), 7d (n=7) or 15d (n=7)andcontrolno-SEchimericanimals(n=10).

2.3. Immunofluorescence

Mice were deeply anesthetized and perfused through the heartwith50mLofphosphate-bufferedsaline(PBS)followedby

Fig.1.Photomicrographsshowingimmunofluorescencerepresentativesectionsofco-expressionGFPandlamininintheCA1ofchimericSE-inducedmiceofthefourgroups, (A–C)controlgroup,(D–F)8hafterSE,(G–I)7daysafterSEand(J–L)15daysafterSE.NotethelownumberofGFP+cellsco-localizedwithvesselsinmergedfiguresat8h(F)

comparedwith7and15daysafterSE(IandL).Scalebarsrepresent100mm.

(3)

150mLof4%paraformaldehyde(Sigma–AldrichCorporation,St. Louis, EUA). The brains were removed and processed for immunohistochemistry on free-floating brain slices. Coronal brainsections (30

mm

thick)weremade betweenbregma0.98 andbregma 3.28mm,targetingthehippocampusaccordingto thestereotaxiccoordinatesofthemousebrainatlas.13Tovisualize

GFP+cellsinsertedinbloodvesselwalls,sectionswereincubated withanti-GFPAlexaFluor488(1:600;Molecular Probes/Invitro-gen,Eugene,USA)andwithanti-laminin(1:500,Sigma–Aldrich Corporation, St. Louis, EUA) conjugated with Alexa Fluor 546 (MolecularProbes/Invitrogen,Eugene,USA).Laminin,a constitu-entof the endothelial basal lamina, is a vascular marker that delineatesbloodvessels.4,14,15Lamininstainingby

immunofluo-rescenceallowstheidentificationofGFPcellspresentinthewall andanynewbranchesformed.Allsectionsweremountedusinga nuclear-counterstaining mounting medium containing DAPI (Vector,Burlingame,CA,EUA).Theco-localizationofGFP+cells and laminin-stained microvessels was quantified in dorsal hippocampal regions CA1, CA3 and hilar (polymorphic layer, PoDG)under20magnificationin8hippocampalserialslicesin 10randomnon-overlappingfieldsforthethreetime-pointsafter SE(8h,7dand15d)andinnon-SEchimericanimals.GFP+cells presentintheparenchymawerealsocountedonthesamecapture images.Theslideswereexaminedusingafluorescentmicroscope (Nikon80i)andconfocal(Leica SP5TS).Imageswerecaptured usingaNikonACT-1v.2systemandanalyzedusingtheImageJ imaging system. Statistical analyses were performed using ANOVA followed by the Tukey–Kramer post hoc test and Kruskal–Wallisfollowed bytheDunn test.Asignificancelevel of5%wasassumed.

3. Resultsanddiscussion

Inthepresentwork,theinfiltrationofbonemarrow-derived cells into the brain after pilocarpine-induced SE modified

the pattern of vascularization in the hippocampus. After SE, brightpointsofGFPstainingweredetectedinthevesselwalls, which suggeststhatbonemarrow-derived GFP+cells incorpo-rated into the walls of pre-existing blood vessels. These cells werealsodetectedinnewbranchessproutedfromoldones,as observedbycontinuouslaminin-GFP+stainedformedbranches (Fig.1).

Regardingtheearlystagespost-SE(8h),thenumberof laminin-stained blood vessels with inserted GFP+ cells immediately decreasedinresponsetoseizuresinallthreeanalyzed hippocam-palregions(p<0.001).Ontheotherhand,thenumberof double-stainedlaminin-GFP+bloodvesselsincreasedinthehippocampus at7daysafterSE(p<0.001)andcontinuedincreasinguntil15 daysafterSE(p<0.001),whichwasthelasttimepointexamined. Whenanalyzingthethreehippocampalregionsindividually,this patternwasalsofoundintheCA1andCA3,withasharpreduction soonafterSE(8h;p<0.001)followedbyaslightincreasein7days thatstilldifferedfromcontrol(p<0.001),reachingitslevelsat15 days afterSE. In thePoDG,however,the numberof GFP+ cells presentinthebloodvessels’wallswassignificantlyreducedinall analyzed time points, compared to the control chimera group (p<0.001)andthetotalGFP+bloodvesselscountedinCA1and CA3(p<0.001)(Fig.2A–C).

As proposed by Ndode-Ekane et al.,6 endothelial cell

proliferation and angiogenesis are responsible for recovering from the vascular injury induced by SE by restoring vascular lengthwithin2weeksafterSE.Infact,weobservedthat15days afterSE,thenumberofvesselsformedbybonemarrow-derived cells in the CA1 and CA3 (not the PoDG) reached the control values(p>0.05nscomparedtocontrolgroup;Fig.2).However, the15thdaywasthelasttime-pointweexamined,incontrast

to Ndode-Ekane’ long-lasting experiment (two months)

whichsuggested thatthegenerationof epileptogeniccircuitry was not correlated with the intensity of vascular injury or angiogenesis.

Fig.2.QuantificationofbloodvesselscontainingGFP+/laminin+double-labeledcellsinthehippocampusofchimericmiceat8h,7daysand15daysafterSE.(A)CA1;(B)PoDG

and(C)CA3.Asignificantandlownumberofdouble-labeledvesselsweredetectedat8hand7daysafterSEcomparedtoCTRLinthethreehippocampalareasandafter15 daysonlyinthePoDG(*p< 0.05versusCTRLgroup).IntheCA1andCA3,thenumberofdouble-labeledvesselsincreasedat7and15dayscomparedto8hafterSE(#p< 0.05

versus8hgroup).Inthehippocampalparenchyma,thenumberofGFP+cells(D)increasedat8hand15daysafterSE(*p< 0.05versuschronicgroup).Nodifferencewasfound

betweenthegroupsforlamininquantificationinthehippocampus(E)(one-wayANOVAfollowedbyTukey’multiplecomparisonstest;Kruskal–WallistestfollowedbyDunn’ test).DatarepresentthemeansSEM.

S.A.Romarizetal./Seizure23(2014)386–389

(4)

Theproliferationofendothelialcellsandtheirmigrationfrom bone marrow and adjacent tissue give rise to new blood vessels.11AspresentedinFig.2,controlnon-SEanimalsshowed

anelevatednumberofGFP+cellsinsertedinthevesselwalls.As suggested by Galimi and coleagues,16 in a physiological

situation, bone marrow-derived cells have been shown to participate in the vasculature of the adult central nervous system.ByanalyzingthebrainandothertissuesofchimericGFP+ animals,Galimietal.detectedalargenumberofbone marrow-derivedcellstightlyassociatedwithbloodvesselsinthebrain. However,thosecellswerenotidentifiedasendothelialcellsbut were positive for monocytic and microglial markers. In the presentstudy,incontrasttothehighnumberofbone marrow-derived cells present in the blood vessels’ walls of control animals, there were a low number of GFP+ cells in the hippocampalparenchyma ofthisgroup. Ontheotherhand, in epileptic animals, the GFP+ cells detected in the parenchyma significantly increased after SE induction (p=0.002; Fig. 2D). Thus, it is possible that when SE is induced, bone marrow-derivedGFP+cellsemerge fromthevesselsandmigrate tothe parenchyma,althoughwecannotaffirmthattheseGFP+cellsare thesamecellsfoundintheparenchyma.Accordingly,whennot associatedwithbloodvessels,cellsderivedfrombonemarrow gradually migrate to the brain parenchyma, particularly the hippocampusofepilepticanimals.9

In summary, SE directly affected vascularization in the hippocampus mediated by bone marrow-derived cells. These results are in accordance with other studies proposing that angiogenesisisassociatedwithblood-brainbarrier permeabili-ty3andbonemarrowcellinfiltrationintheepilepticbrain.9The relationwasevidentbetweenthetimeafterSEandthenumber of double-stained laminin-GFP+ vessels in the hippocampus, indicatingthatthenumberofvesselsformedwithbone marrow-derivedcellsincreasesovertimeafterSE.Likewise,ithasbeen suggestedthatvascularchangesaremostactiveduringthefirst monthafterepileptogenicinsults.4,5Onceinitiated,angiogenesis

progressively increases as the time after SE passes.3 In this

regard, the experimental model of pilocarpine-induced SE combinedwithchimericGFPanimalscontributesto understand-ing the role of bone marrow-derived cells in hippocampal vasculaturein a pathologicalsituation and helps clarifysome important aspects associated with SE-induced angiogenesis. Nevertheless, itremainscontroversialwhether theincrease in vasculardensityoftheepilepticbrainrepresentsaprogressive adaptationtoimproveperfusionduringseizures3oris

implicat-edinthemechanismunderlyingtheoccurrenceofspontaneous seizures.4,5

Conflictofinterest

Noneoftheauthorshasanyconflictofinteresttodisclose.

Acknowledgments

WearegratefultoMariaFernandaValenteandEne´asFerrazolli fortheirtechnicalsupport;toProf.Dr.RenatoMortara,Dept.of Microbiology,ImmunologyandParasitology-UNIFESPforconfocal technicalassistance;andtoVegefloraExtrac¸o˜esdoNordesteLtda, which kindlydonatedpilocarpine hydrochloride.Thisworkwas supportedbyFAPESPandCNPq.

Weconfirmthatwehavereadthejournal’spositiononissues involved in ethical publication and affirm that this report is consistentwiththoseguidelines.

References

1.GreenbergDA,JinK.Fromangiogenesistoneuropathology.Nature2005;438: 954–9.

2.HellstenJ,WestMJ,ArvidssonA,EkstrandJ,JanssonL,Wennstro¨mM,et al.

Electroconvulsiveseizuresinduceangiogenesisinadultrathippocampus.Biol Psychiatry2005;58:871–8.

3.RigauV,MorinM,RoussetMC,deBockF,LebrunA,CoubesP,et al. Angiogenesis isassociatedwithblood–brainbarrierpermeabilityintemporallobeepilepsy.

Brain2007;130:1942–56.

4.Marcon J,GagliardiB, BalossoS, MarosoM,Noe´ F,MorinM,et al. Age-dependentvascularchangesinducedbystatusepilepticusinratforebrain: implicationsforepileptogenesis.NeurobiolDis2009;34:121–32.

5.Pitka¨nen A,LukasiukK.Molecularandcellular basisofepileptogenesisin symptomaticepilepsy.EpilepsyBehav2009;14:16–25.

6.Ndode-EkaneXE,HaywardN,Gro¨hnO,Pitka¨nenA.Vascularchangesin epi-lepsy:functionalconsequences andassociationwith networkplasticity in pilocarpine-inducedexperimentalepilepsy.Neuroscience2010;166:312–32.

7.CookLL,PersingerMA.Infiltrationoflymphocytesinthelimbicbrainfollowing stimulationofsubclinicalcellularimmunityandlowdosagesoflithiumanda cholinergicagent.ToxicolLett1999;109:77–85.

8.(a).SimardAR,RivestS.Bonemarrowstemcellshavetheabilitytopopulate theentirecentralnervoussystemintofullydifferentiatedparenchymal micro-glia.FASEBJ2004;18:998–1000;

(b).GalimiF,SummersRG,VanPraagH,VermaIM,GageFH.Aroleforbone marrow-derivedcellsinthevasculatureofnoninjuredCNS.Blood2005;105: 2400–2.

9.LongoB,RomarizS,BlancoMM,VasconcelosJF,BahiaL,SoaresMBP,et al.

Distributionandproliferationofbonemarrowcellsinthebrainafter pilocar-pine-inducedstatusepilepticusinmice.Epilepsia2010;51(8):1628–32.

10.BorlonganCV,GloverLE,TajiriN,KanekoY,FreemanTB.Thegreatmigrationof bone marrow-derived stem cells toward the ischemic brain:therapeutic implications for stroke and other neurological disorders. Prog Neurobiol

2011;95(2):213–28.

11.Zhang ZG, ZhangL, Jiang Q,Chopp M.Bonemarrow-derived endothelial progenitorcellsparticipateincerebralneovascularizationafterfocalcerebral ischemiaintheadultmouse.CircRes2002;90:284–8.

12.BorgesK,GearingM,McDermottL,SmithB,AlmonteG,WainerH,et al.

Neuronalandglialpathologicalchangesduringepileptogenesisinthemouse pilocarpinemodel.ExpNeurol2003;182:21–34.

13.PaxinosG,FranklinK.Themousebraininstereotaxiccoordinates.2nded.New York:AcademicPress;2004.

14.BendfeldtK,RadojevicV,KapfhammerJ,NitschC.Basicfibroblastgrowthfactor modulatesdensityofbloodvesselsandpreservestightjunctionsinorganotypic corticalculturesofmice:anewinvitromodeloftheblood–brainbarrier.J Neurosci2007;27(12):3260–7.

15.MaS, KwonHJ,JohngH,ZangK,HuangZ.Radial glialneuralprogenitors regulatenascentbrainvascularnetworkstabilizationviainhibitionofWnt signaling.PLoSBiol2013;11(1):e1001469.

16.GalimiF, SummersRG,vanPraagH,VermaIM,GageFH.Aroleforbone marrow-derived cells in the vasculature of noninjured CNS. Blood

2005;105(March(6)):2400–2.

Referências

Documentos relacionados

T herapeutic angiogenesis using autologous bone marrow stromal cells: improved blood flow in a chronic limb ischemia model. Marrow-derived stromal cells express genes encoding a

(A&amp;B) Human endometrial sections from 2 different patients, who underwent BMT, showing a positive FISH signal corresponding to chromosome Y (green signal) and chromosome X

Characterization of equine adipose tissue-derived stromal cells: Adipogenic and osteogenic capacity and comparison with bone marrow derived mesenchymal stromal

A feasibility of useful cell-based therapy by bone regeneration with deciduous tooth stem cells, dental pulp stem cells, or bone marrow-derived mesenchymal stem cells for

In bone marrow cells, chromatid breaks were the most frequent aberrations, whereas the number of tetraploid metaphases in bone marrow cells was unaffected by the treatment..

Transplantation of Bone Marrow – Derived Mesenchymal Stem Cells Improves Diabetic Polyneuropathy in Rats.. Transplantation of Bone Marrow-Derived Mononuclear Cells Improves

Bone marrow-derived cells accumulated in the lumbar spinal cord of diseased mice at advanced stages of pathology at both doses, with limited numbers of bone marrow derived

Extremely low-frequency electromagnetic fields induce neural differentiation in bone marrow derived mesenchymal stem cells. The effect