• Nenhum resultado encontrado

Chemosensory control by commissural nucleus of the solitary tract in rats

N/A
N/A
Protected

Academic year: 2017

Share "Chemosensory control by commissural nucleus of the solitary tract in rats"

Copied!
8
0
0

Texto

(1)

ContentslistsavailableatSciVerseScienceDirect

Respiratory

Physiology

&

Neurobiology

jo u rn a l h om epa g e :w w w . e l s e v i e r . c o m / l o c a t e / r e s p h y s i o l

Chemosensory

control

by

commissural

nucleus

of

the

solitary

tract

in

rats

Michele

T.

Favero

a,1

, Ana

C.

Takakura

b,1

, Patrícia

M.

de

Paula

a

, Eduardo

Colombari

a

,

José

V.

Menani

a

,

Thiago

S.

Moreira

c,∗

aDepartmentofPhysiologyandPathology,SchoolofDentistry,SãoPauloStateUniversity(UNESP),14801-903Araraquara,SP,Brazil bDepartmentofPharmacology,InstituteofBiomedicalScience,UniversityofSãoPaulo(USP),05508-900SãoPaulo,SP,Brazil

cDepartmentofPhysiologyandBiophysics,InstituteofBiomedicalScience,UniversityofSãoPaulo(USP),Av.ProfLineuPrestes,1524,05508-900SãoPaulo,SP,Brazil

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Accepted18August2011

Keywords:

Centralandperipheralchemoreflex Breathing

Sympatheticactivity NTS

Hypoxia

a

b

s

t

r

a

c

t

Thecommissuralnucleusofthesolitarytract(commNTS)isamainareathatreceivesafferentsignals involvedinthecardiovascularandrespiratorycontrollikethoserelatedtochemoreceptoractivation, however,theimportanceofthecommNTSforthecardiorespiratoryresponsestochemoreceptor activa-tionisstillcontroversial.Inthepresentstudy,weinvestigatedthecardiorespiratoryresponsestohypoxia orhypercapniainanesthetizedandconsciousratstreatedwithinjectionsoftheGABA-Aagonist musci-molintothecaudalportionofthecommNTS.MaleHoltzmanrats(280–300g)wereused.Inconscious ratsthathadastainlesssteelcannulapreviouslyimplantedintothecommNTS,theinjectionof mus-cimol(2mM)intothecommNTSreducedthepressorresponse(16±2mmHg,vs.saline:36±3mmHg) andtheincreaseinventilation(250±17ml/min/kg,vs.saline:641±28ml/min/kg)producedbyhypoxia (8–10%O2).Inurethaneanesthetizedrats,theinjectionofmuscimolintothecommNTSeliminatedthe pressorresponse(5±2mmHg,vs.saline:26±5mmHg)andtheincreaseinphrenicnervedischarge (PND)(20±6%,vs.saline:149±15%)andreducedtheincreaseinsplanchnicsympatheticnerve dis-charge(sSND)(93±15%,vs.saline:283±19%ofbaseline)producedbyhypoxia.However,muscimol injectedintothecommNTSdidnotchangehypercapnia(8–10%CO2)inducedpressorresponseorthe increaseinthesSNDorPNDinurethaneanesthetizedratsortheincreaseinventilationinconsciousrats. Thepresentresultssuggestthatthecardiorespiratoryresponsestohypoxiaarestronglydependenton thecaudalportionofthecommNTS,however,thisareaisnotinvolvedintheresponsestohypercapnia.

Crown Copyright © 2011 Published by Elsevier B.V. All rights reserved.

1. Introduction

Theneuralmechanismsinvolved in thecontrolof breathing mustberesponsivetochallengesaffectingO2,CO2,andpH lev-elsinthebody,suchasexercise,sleep,hypercapniaandhypoxia (Feldmanetal.,2003;Nattie,2006).Thephysiologicalprocessby whichbloodgasesaredetected,calledchemoreception,depends onchemicalsensorspresentintheaorticorcarotidbody (periph-eralchemoreceptors)andwithinthecentralnervoussystem(CNS) (centralchemoreceptors)(BallantyneandScheid,2001;Feldman etal.,2003;Guyenet,2008;Loeschcke,1982).

Theperipheralchemoreceptors,locatedmainlyinthecarotid body intherat,detectchanges inthepartialO2 pressure (PO2) ortheCO2 pressure(PCO

2)inthearterialbloodandsendsignals through theglossopharyngealnerve tothecommissuralregion ofthenucleus of thesolitarytract(commNTS)(Blessing,1997; CampanucciandNurse,2007;Colombarietal.,1996;Finleyand

∗Correspondingauthor.Tel.:+551130917764;fax:+551130917285.

E-mailaddress:tmoreira@icb.usp.br(T.S.Moreira).

1 Thesetwoauthorscontributedequallytothestudy.

Katz,1992;Sapru,1996;Smithetal.,2006).Similartothehypoxia, theintravenous(iv)injectionoflow doseofpotassium cyanide (KCN)activatestheperipheralchemoreceptorsproducing tachyp-neic,pressorandbradycardicresponsesthatareabolishedbythe bilateralligatureofthecarotidbodyarteries(Bragaetal.,2007; FranchiniandKrieger,1993;Haibaraetal.,1999;Moreiraetal., 2006).Thepressorandbradycardicresponsestoi.v.KCNarealso abolishedbyelectrolyticlesionsofthecommNTS(Colombarietal., 1996).Underanesthesia,theactivationofbreathingandtherisein sympatheticnervedischarge(SND)causedbycarotidbody stimula-tionareblockedbytheinjectionofglutamatergicantagonistsinto thecommNTS,whichsuggeststhattheprimaryafferentneurons arelikelyglutamatergic(Sapru,1996).

Detection of an increase in PCO

2 by central and peripheral chemoreception acts to maintain stable arterial PCO2 (Feldman etal.,2003; Smithetal.,2006).It isstill notclearwhetherthe centralchemoreceptiondependsonafewspecializedcellclusters locatedwithinthebrainstemoronmultipletypesofacid-sensitive neurons(Chernovetal., 2008;Guyenet etal.,2010; Nattieand Li, 2009). The retrotrapezoid nucleus (RTN), locus coeruleus, medullaryraphe,hypothalamicorexinergicneuronsandtheNTS neurons are the main sites suggested to beinvolved with the

1569-9048/$–seefrontmatterCrown Copyright © 2011 Published by Elsevier B.V. All rights reserved.

(2)

centralchemoreception(Abbottetal.,2009;Biancardietal.,2008; Deanetal.,1989;Dengetal.,2007;Johnsonetal.,2008;Moreira etal.,2007;Mulkeyetal.,2004;NattieandLi,2008;Richerson, 2004;Takakuraetal.,2006;Williamsetal.,2007).

Themainfocusofthepresentstudyistoreexaminethe ques-tionwhethertheNTS,particularlythecommissuraldivisionofthe NTScaudaltotheareapostrema,isinvolvedinchemoreception. Studiesfromtheliteraturehave suggestedthat acid-responsive neuronsare locatedin theNTSandtheacidificationof theNTS regionaltersbreathing(Deanetal.,1989;NattieandLi,2008). Addi-tionally,previousstudieshavetestedtheeffectsofthelesionsor theglutamatergicblockadeinthecommNTS,suggestingthatthis regionisessentialforthecardiorespiratoryresponsestothe periph-eralchemoreceptoractivation(Colombarietal.,1996;Sapru,1996; Bragaetal.,2007).Ontheotherhand,amorerecentstudy evalu-atedtheeffectsofmuscimolmicrodialysisinamorerostralportion ofthecommNTS,suggestingthattherostralportionofthe comm-NTSisinvolvedmainlywithrespiratoryresponsestohypercapnia (NattieandLi,2008).Basedontheassumptionsdescribedabove, inthepresentstudy,alsousingmuscimolinjectiontoblockthe neuronalactivity,weinvestigatedtheimportanceoftheneurons locatedinamorecaudalportionofthecommNTSforthe cardiores-piratoryresponseselicitedbychemoreflexactivationwithhypoxia (8–10%O2inthebreathingair)orhypercapnia(8–10%CO2inthe breathingair)inconsciousoranesthetizedrats.

2. Methods

2.1. Animals

Theexperimentswereperformedon36male Holtzmanrats weighing 300–330g. The animals were housed individually in stainless steel cages in a room with controlled temperature (24±2◦C)andhumidity(55±10%).Lightswereonfrom7:00am to7:00pm.StandardGuabiratchow(Paulinia,SP,Brazil)andtap waterwereavailableadlibitum.Theexperimentalprotocolswere approvedbytheAnimalExperimentationEthicsCommitteeofthe InstituteofBiomedicalScienceofUniversityofSãoPaulo.Allefforts weremadetominimizeanimaldiscomfortandthenumberof ani-malsused.

2.2. Surgicalprocedures

2.2.1. Consciousanimals

Ratswereanesthetizedwithintraperitoneal(i.p.)injectionof ketamine(80mg/kgofbodywt)combinedwithxylazine(7mg/kg ofbodywt)andplacedinastereotaxicframe(model1760;David KopfInstruments).Astainlesssteelcannulawasimplantedintothe commNTSusingthecoordinates:15.0mmcaudaltobregma,inthe midlineand7.5mmbelowduramater.Thecannulaswerefixed tothecraniumusingdentalacrylicresinandjewelerscrews.Rats receivedaprophylacticdoseofpenicillin(30,000IU)given intra-muscularlyandasubcutaneousinjectionoftheanalgesicKetoflex (ketoprofen1%,0.03ml/rat)post-surgically.Afterthesurgery,the ratsweremaintainedinindividualboxwithfreeaccessoftapwater andfoodpellets[Guabiratchow(Paulínia,SP,Brazil)]foratleast7 daysbeforethetests.

Torecordpulsatilearterialpressure(PAP),meanarterial pres-sure(MAP)andheartrate(HR)inunanesthetizedfreelymoving rats,onedaybeforethetests,ratswereanesthetizedagainwith i.p.injectionofketamine(80mg/kgofbody wt)combinedwith xylazine(7mg/kgofbodywt)toreceiveapolyethylenetubing (PE-10connectedtoPE-50;ClayAdams,Parsippany,NJ,USA)inserted into the abdominal aorta through the femoral artery. Another polyethylenetubingwasalsoinsertedintothefemoralveinfor

drugadministration.Bothcannulasweretunneledsubcutaneously tothebackoftheratstoallowaccessinunrestrained,freelymoving rats.Wehaveevidencethattheanimalsrecoveryfromthe anes-thesiaand operativestress,because1dayafterthesurgerythe animalshadnormaldrinkandfoodintakeandnoimpairmentof motoractivity.Althoughmotoractivitywasnotquantified,visual observationintheirhomecagesandduringhandlingrevealedno apparentdifferencesinreactivity orlocomotion1 dayafterthe surgery.

2.2.2. Anesthetizedanimals

Generalanesthesia was induced with5% halothane in 100% oxygen.Theratsreceivedatracheostomyandsurgerywasdone underartificialventilationwith1.4–1.5%halothanein100% oxy-gen.Allratsweresubjectedtothefollowingpreviouslydescribed surgicalprocedures:femoralarterycannulationforarterial pres-suremeasurement,femoralveincannulationforadministrationof fluidsanddrugs,removaloftheoccipitalboneandretractingthe underlyingduramaterforinsertionofapipetteformicroinjection intothemedullaoblongataviaadorsaltranscerebellarapproach (Moreira et al., 2005,2006).All animals werebilaterally vago-tomizedtopreventanyinfluenceofartificialventilationonphrenic nervedischarge(PND).Thephrenicnervewasaccessedbya dor-solateralapproachafterretractionoftherightshoulderblade.In a groupof rats (n=7), usedto test cardiorespiratoryresponses tohypercapnia,acompletebaro-andperipheralchemoreceptor deafferentationwasperformedbysectioningthevagosympathetic trunks, thesuperior laryngealnerves and theglossopharyngeal nerves(proximaltothejunctionwiththecarotidsinusnerves). Anotherrats(n=6),usedtotestthecardiorespiratoryresponsesto hypoxia,wasagroupofbaro-andchemo-receptorintactrats,that hadthevaginervescarefullyseparatedfromthevagosympathetic trunkandselectivelytransectedbilaterally.

Splanchnicsympatheticnervedischarge(sSND)wasrecorded aspreviouslydescribed(MandelandSchreihofer,2008;Moreira etal.,2006;Takakuraetal.,2011).Therightsplanchnicnervewas isolatedviaaretroperitonealapproach,andthesegmentdistalto thesuprarenalganglionwasplacedonapairofteflon-coated sil-verwiresthathadbeenbaredatthetip(250␮mbarediameter; A-MSystems,www.a-msystems.com).Thenervesandwireswere embeddedinadhesivematerial(Kwik-CastSealant,WPI,USP),and thewoundwasclosedaroundtheexitingrecordingwires.

Upon completion of the surgicalprocedures, halothane was replacedbyurethane(1.2g/kgofbodyweight)administeredslowly i.v. All rats were ventilated with 100% oxygen throughout the experiment.Therectaltemperaturewasmaintainedat37◦Cand theendtidal-CO2(ETCO2)weremonitoredthroughoutthe exper-imentwithacapnometer(CWE,Inc.,Ardmore,PA,USA)thatwas calibratedtwiceperexperimentagainstacalibratedCO2/N2mix. Theadequacyoftheanesthesiawasmonitoredduringa20min sta-bilizationperiodbytestingfortheabsenceofwithdrawalresponse, thelackofarterialpressurechangeandlackofchangeinthePND rateoramplitudetofirmtoepinch.Afterthesecriteriawere sat-isfied,themusclerelaxantpancuroniumwasadministeredatthe initialdoseof1mg/kgi.v.andtheadequacyofanesthesiawas there-aftergaugedsolelybythelackofincreaseinarterialpressureand PNDrateoramplitudetofirmtoepinch.Approximatelyhourly sup-plementsofone-thirdoftheinitialdoseofurethanewereneeded tosatisfythesecriteriaduringthecourseoftherecordingperiod (4h).

2.3. Intraparenchymalinjections

(3)

7.4)waspressureinjectedintothecommNTS(50nlin5s)through single-barrelglasspipettes(20␮mtipdiameter).Injectionsinto thecommNTSweremade400␮mcaudaltothecalamus scripto-rius,inthemidlineand0.3–0.5mmbelowthedorsalsurfaceofthe brainstem.

Inconsciousfreelymovingrats,thesamedoseofmuscimolwas injectedintothecommNTSusing1␮lHamiltonsyringesconnected by polyethylenetubing (PE-10)to theinjection needle 1.5mm longerthantheguidecannulasimplantedintothebrain.

Thesolutionofmuscimolcontaineda5%dilutionoffluorescent latexmicrobeads(Lumafluor,NewCity,NY,USA)forlater histolog-icalidentificationoftheinjectionsites(Moreiraetal.,2006).

2.4. Recordingsofphysiologicalvariables

2.4.1. Consciousanimals

Twenty-fourhoursafterthearteryandveincannulation,when theratswerecompletelyrecoveredfromthesurgeryandadapted totheenvironmentoftherecordingroom,thearterialcatheterwas connectedtoapressuretransducer(MLT844,ADInstruments, Syd-ney,NSW,Australia)coupledtoapreamplifier(BridgeAmp,ML221, ADInstruments,Sydney,NSW,Australia) that wasconnectedto aPowerlabcomputerdataacquisitionsystem(PowerLab16/30, ML880,ADInstruments).

Therespiratoryrate(fR,breaths/min)andthetidalvolume(VT, ml/kg)inconscious,freelymovingratsweremeasuredby whole-bodyplethysmographyasdescribedindetailpreviously(Malan, 1973;Onoderaetal.,1997).Allexperimentswereperformedat roomtemperature (24–26◦C). In brief,freelymoving ratswere keptinaplexiglassrecordingchamber(5L)thatwasflushed con-tinuouslywithamixtureof79%nitrogenand21%oxygen(unless otherwiserequiredbytheprotocol)atarateof1L/min.The concen-trationsofO2andCO2inthechamberweremonitoredon-lineusing afast-responseO2/CO2monitor(ADInstruments,NSW,Australia). Thepressuresignalwasamplified,filtered,recorded,andanalyzed off-lineusingPowerlabsoftware(Powerlab16/30,ML880/P, ADIn-struments,NSW,Australia).ThevaluesoffRandVTanalyzedwere thoserecordedfor2minbeforetheexposuretothestimulusand for2moreminattheendofeachstimulus,whenbreathing stabi-lized.ChangesinthefR,VT,andminuteventilation( ˙VE)(fR×VT;

ml/min/kg)wereaveragedandexpressedasmeans±SEM.

2.4.2. Anesthetizedanimals

Themeanarterialpressure,thedischargeofthephrenicand splanchnicnervesandthetrachealO2andCO2wererecordedas previouslydescribed(Moreiraetal.,2006,2007).

Beforestartingtheexperiments,theventilationwasadjusted tohavetheETCO2at3–4%atsteady-state(60–80cycles/s;tidal volume1–1.2ml/100g).Thisconditionwasselectedbecause3–4% end-expiratoryCO2wasbelowthethresholdofthePND.Variable amountsofpureCO2wereaddedtothebreathingmixturetoadjust ETCO2tothedesiredlevel.

All analog data (ETCO2, sSND, PND and MAP) were stored ona computerviaa micro1401 digitizer(CambridgeElectronic Design)andwereprocessedoff-lineusingversion6oftheSpike 2software(CambridgeElectronicDesign)asdescribedpreviously (Takakuraet al.,2006,2011).Theintegrated phrenicnerve dis-charge(iPND)andtheintegratedsplanchnicnervedischarge(iSND) wereobtainedaftertherectificationandsmoothing(=0.015and 2s,respectively)oftheoriginalsignal,whichwasacquiredwitha 30–300Hzbandpass.

Neuralminute×volume(mvPND,ameasureofthetotalphrenic nervedischargeperunitoftime)wasdeterminedbyaveragingthe iPNDover50sandnormalizingtheresultbyassigningavalueof0to thedependentvariablerecordedatthelowlevelsofend-expiratory CO2(belowthreshold)andavalueof1atthehighestlevelofPCO2

investigated(between9.5and10%).TheiSNDwasnormalizedfor eachanimalbyassigningthevalueof100totherestingSNAandthe valueof0totheminimumvaluerecordedeitherduringthe admin-istrationofadoseofphenylephrinethatsaturatedthebaroreflex (5␮g/kg,i.v.)oraftertheganglionicblockade(hexamethonium; 10mg/kg,i.v.).

2.5. Chemoreflexandbaroreflextests

2.5.1. Chemoreflextests

Inanesthetized rats,thehypoxiawasdoneby switchingthe breathingmixturefrom100% O2 to8–10%O2 balancedwithN2 for60s,thesameprotocolusedinapreviousstudy(Takakuraetal., 2006).ThehypercapniawasdonebyincreasingETCO2from3–3.5% to8–10%inhyperoxiacondition(100%O2)for5min(Takakura etal.,2011).

Conscious rats were maintained for at least 30min at nor-moxia/normocapnia(21%O2,79%N2,and<0.5%CO2)toadaptto thechamberenvironmentbeforestartingthemeasurementsofthe baselinearterialpressureandventilation.Hypoxiawasinducedby loweringtheO2concentrationintheinspiredairdowntoalevel of8–10%for60s.HypercapniawasproducedbyaddingCO2inthe respiratorymixtureupto8–10%CO2 for5minunderhyperoxic condition(90–92%O2),tominimizepossibleeffectsofperipheral chemoreflexactivation(Trappetal.,2008).

2.5.2. Baroreflextests

Inconsciousor anesthetizedrats,thearterialbaroreflexwas examined by raising the arterial pressure with phenylephrine (5␮g/kgofbodyweight,i.v.)andloweringthearterialpressure withsodiumnitroprusside(30␮g/kgofbody weight,i.v).These dosesofi.v.drugswerethesameusedinpreviousstudies(Moreira etal.,2005,2006;Takakuraetal.,2009).Forthei.v.injections,the drugswerepreparedinsterileisotonicsalineandthereflextests wereperformedinthesameorderwithdruginjectionsseparated bya5mininterval.

2.6. Histology

Attheendoftheexperiments,ratsweredeeplyanesthetized withhalothaneandperfusedtranscardiallywithsalinefollowedby 10%bufferedformalin(pH7.4).Thebrainwasremovedandstored inthefixativefor24hat4◦C.Themedullawascutin40m coro-nalsectionswithavibratingmicrotome(Vibratome1000SPlus– StarterCE,220V/60Hz,USA),andstoredinacryoprotectant solu-tionat−20◦C(NattieandLi,2008).Theinjectionsitewasverified withaconventionalmultifunctionmicroscope(OlympusBX50F4, Japan).Thesectionalignmentbetweenthebrainswasdonerelative toareferencesection.ToalignthesectionsaroundNTSlevel,the mid-areapostremalevelwasidentifiedineachbrainandassigned thelevel13.8mm(Bregma−13.8mm)accordingtotheatlasof PaxinosandWatson(1998).Thecoordinatesofsectionsrostraland caudalofthisreferencesectionwerecalculatedwithrespecttothe referencesection,usingthenumberofinterveningsectionsandthe sectionthickness.

2.7. Statistics

ThestatisticalanalysiswasdonewithSigmaStatversion3.0 (JandelCorporation,PointRichmond,CA).Thedataarereportedas means±standarderrorofthemean(SEM).Thet-testoroneway parametricANOVAfollowedbytheNewman–Keulsmultiple com-parisonstestwereusedasappropriate.Thesignificancewassetat

(4)

Fig.1.(A)PhotomicrographshowingthetypicalinjectionsiteintothecommNTS inconsciousrats(arrows).Scale=1mm.(B)Thecenterofmuscimolinjectionsinto thecommNTSinthedifferentratstestedrepresentedonasinglesection(Bregma

−14.3mm,accordingtoPaxinosandWatson,1998).Scale=1mm.cc,centralcanal; IO,inferiorolive;py,pyramide;Sp5,spinaltrigeminaltract;XII,hypoglossalnucleus.

3. Results

3.1. Histologicalanalysis

Muscimolinjections into thecommNTS were located about 400␮mcaudaltothecalamusscriptoriusasillustratedinFig.1Aand B.Asingleinjectionofmuscimolwasadministeredinornearthe midlineasrepresentedinFig.1B.Basedontheareaofthe distribu-tionofthefluorescentmicrobeads,theinjectatespreadbilaterally (approximately500␮mfromtheinjectioncenter)andalittlelessin therostrocaudaldirection(approximately300␮mfromthe injec-tioncenter).

3.2. Cardiorespiratoryresponsestohypoxiainanesthetizedor consciousratstreatedwithmuscimolintothecommNTS

3.2.1. Anesthetizedanimals

Inurethane-anesthetizedrats,incontrolconditions(aftersaline injectedintothecommNTS),abriefperiodofhypoxia(8–10%O2 inthebreathingairfor60s)producedaninitialincreaseinMAP (26±5mmHg)inthefirst5–10sfollowedbyadecreaseinMAP (−47±6mmHg)thatreachthemaximumattheendoftheperiod ofhypoxia (Fig. 2A1 and B1). In theseconditions, hypoxiaalso increasedsSND(283±19%ofthebaseline)andmvPND(calculated astheproductofphrenicnervefrequencyandamplitude–f×a

–ameasureofthetotalphrenicneuraloutput)(149±25%ofthe baseline)(Fig.2A1,CandD).

Injectionofmuscimol(100pmol/50nl)intothecommNTSdid notchangerestingMAP(112±3mmHg,vs.saline:110±5mmHg,

p>0.05),sSNDandmvPND(Fig.2A2).ThePNDamplitude(98±6% ofcontrol;p>0.05)andduration(from0.48±0.02to0.47±0.05s,

p>0.05)alsodidnotchange.Muscimolinjectedwithinthe comm-NTS blocked the pressor response (5±2mmHg, p<0.01) and reducedsympathoexcitation(93±15%ofthebaseline,p<0.01)and theincreaseinPND (20±6%ofthebaseline, p<0.01) produced byhypoxia (Fig.2A2,2B–D). Muscimolinto thecommNTSalso

increasedthehypotensionproducedby60sofhypoxiain anes-thetizedrats(−63±4mmHg,p<0.05)(Fig.2A2andB).

3.2.2. Consciousanimals

In consciousrats,in controlconditions (after salineinjected into thecommNTS), 60s ofhypoxia (8–10% O2 in theinspired air)undernormocapniaincreasedMAP(36±3mmHg),fR(60±4 breaths/min),VT(4±0.3ml/kg)and ˙VE (641±28ml/min/kg)and

reduced HR (−96±6bpm) (Fig. 3A–E). Injection of muscimol (100pmol/50nl) into the commNTS, in conscious rats, did not change resting MAP (113±6mmHg, vs. saline: 117±5mmHg,

p>0.05)andHR(335±21bpm,vs.saline:341±18bpm,p>0.05). MuscimolinjectionwithinthecommNTSreducedtheincreaseon MAP(16±2mmHg,p<0.05),fR(26±3breaths/min,p<0.05),VT (1.8±0.2ml/kg,p<0.05)and ˙VE(250±17ml/kg/min,p<0.01)and

blockedthebradycardia(1±2bpm,p<0.01)producedbyhypoxia (Fig.3A–F).

3.3. Cardiorespiratoryresponsestohypercapniainanesthetized orconsciousratstreatedwithmuscimolinjectedintothe commNTS

3.3.1. Anesthetizedanimals

Inurethane-anesthetizedrats,incontrolconditions(aftersaline injectedintothecommNTS),hypercapnia(from5%to10%CO2for 5min)producedanimmediatehypotension(−22±4mmHg)that wasgraduallyreducedwithMAPreturningtoorslightlyabove con-trollevelsattheendofhypercapnia.Immediatelyafterstopping hypercapnia(returningto5%CO2),MAPincreased(27±5mmHg) andreturnedtocontrolvaluesafteraround5min(Fig.4A1andB). Incontrolcondition,hypercapniaalsoincreasedsSND(108±13% ofbaselineat5%CO2)andmvPND(111±8%ofthebaselineat5% CO2)(Fig.4A1,CandD).Injectionofmuscimol(100pmol/50nl) intothecommNTSdidnotaffectrestingMAP,sSNDormvPNDor hypercapnia-inducedincreaseinMAP,sSNDormvPNDinurethane anesthetizedrats(Fig.4A2,B–D).

3.3.2. Consciousanimals

Inconsciousrats,incontrolconditions(aftersalineinjectedinto thecommNTS),hypercapnia(8–10%CO2 intheinspiredair)for 5minunderhyperoxiccondition(92–98%O2,tominimizepossible effectsofperipheralchemoreflexactivation)increasedfR(55±6 breaths/min), VT (3.7±0.4ml/kg) and ˙VE (611±19ml/min/kg), however,producednosignificantchangeinMAP(5±2mmHg)or HR(−4±3bpm)(Table1).Injectionofmuscimol(100pmol/50nl) intothecommNTSproducednochangeinrestingMAP,HRandVE oroncardiorespiratoryresponsestohypercapniainconsciousrats (Table1).

3.4. Cardiovascularresponsestobaroreflexactivationinrats treatedwithmuscimolinjectedintothecommNTS

3.4.1. Anesthetizedanimals

Injectionsofmuscimol(100pmol/50nl)withinthecommNTS inanesthetizedratsdidnotaffectthepressorresponseand sympa-thoinhibitiontoi.v.phenylephrine(PHE,5␮g/kgofbodyweight)or thehypotensionandsympathoactivationtoi.vinjectionofsodium nitroprusside(SNP,30␮g/kgofbodyweight)(Table2).PHEorSNP i.v.didnotmodifymvPND(Table2).

3.4.2. Consciousanimals

(5)

Fig.2.(A)Typicalrecordingsofarterialpressure(AP),splanchnicsympatheticnervedischarge(sSND)andphrenicnervedischarge(PND)inoneratrepresentativeofthe groupsubmittedto60sofhypoxia(8–10%O2)afterinjectionof(A1)salineor(A2)muscimol(100pmol/50nl)intothecommNTSunderanesthesia.(B,CandD)Changesin

meanarterialpressure(MAP),sSND(sSND)andmvPND(mvPND),respectively,producedby60sofhypoxiaafterinjectionofsalineormuscimolintothecommNTSin anesthetizedrats.*Differentfromsaline(p<0.05);n=6rats/group.

Fig.3. (A)Typicalrecordingsofbreathing,arterialpressure(AP),meanarterialpressure(MAP)andheartrate(HR)inoneratrepresentativeofthegroupsubmittedto60s ofhypoxia(8–10%O2)afterinjectionofsalineormuscimol(100pmol/50nl)intothecommNTSinconsciousrats.(B–F)Changesinmeanarterialpressure(MAP),heartrate

(HR),ventilation( ˙VE),respiratoryfrequency(fR)andtidalvolume(VT),respectively,producedbyhypoxia(8–10%O2)before(salineinjection)andaftermuscimolinjection

(6)

Fig.4. (A)Typicalrecordingsofarterialpressure(AP),splanchnicsympatheticnervedischarge(sSND)andphrenicnervedischarge(PND)inoneratrepresentativeofthe groupsubmittedto5minofhypercapnia(steppingETCO2from5to10%)after(A1)salineor(A2)injectionofmuscimol(100pmol/50nl)intothecommNTSunderanesthesia.

(B–D)Changesinmeanarterialpressure(MAP),sSND(sSND)andmvPND(mvPND),respectively,producedbyhypercapniaafterinjectionofsalineormuscimolinto thecommNTSinanesthetizedrats.*Differentfromsaline(p<0.05);n=6rats/group.

Table1

CardiorespiratoryresponsestohypercapniainconsciousratstreatedwithmuscimolinjectedintothecommNTS.

Treatment n MAP(mmHg) HR(bpm) fR(breaths/min) VT(ml/kg) V˙E(ml/min/kg)

Saline(control) 6 +5±2 −4±3 +55±6 +3.7±0.4 +611±19

Muscimol 6 +5±3 −6±2 +53±5 +3.8±0.5 +668±28

Valuesaremeans±SEM.n=numberofrats.MAP,changesinmeanarterialpressure;HR,changesinheartrate;fR,changesinrespiratoryfrequency;VT,changesin tidalvolume;V˙E,changesinventilation.Muscimol(100pmol/50nl).Hypercapnia(8–10%CO2intheinspiredair)for5minunderhyperoxiccondition(100%O2).

Table2

CardiovascularresponsestophenylephrineandsodiumnitroprussideinanesthetizedratstreatedwithmuscimolinjectedintothecommNTS.

Treatment n MAP(mmHg) sSND(%) mvPND(%)

PHE SNP PHE SNP PHE SNP

Saline(control) 5 +32±3 −34±5 −98±3 +101±6 +9±9 +6±13

Muscimol 6 +34±7 −38±4 −94±8 +97±13 +10±4 +8±11

Valuesaremeans±SEM.n=numberofrats.PHE,phenylephrine(5␮g/kgofbodyweight);SNP,sodiumnitroprusside(30␮g/kgofbodyweight);MAP,changesinmean arterialpressure;sSND,changesinsplanchnicsympatheticnervedischarge;mvPND,changesinphrenicnervedischarge.

PHEandSNPi.v.,respectively,didnotchange ˙VEinconsciousrats (Table3).

3.5. SpecificityofcommNTSasthesitefortheeffectsofmuscimol

Injections of muscimol outside the commNTS (n=4) did not change the pressor (25±4mmHg, p>0.05), sympathetic (270±15%ofbaseline,p>0.05)andphrenic(136±9%ofbaseline,

p>0.05) responsesevoked byperipheralchemoreflexactivation withbrief period of hypoxia in anesthetized rats. In conscious rats,theinjectionofmuscimoloutsidecommNTS(n=7)produced nochangeonpressor(33±6mmHg),fR(54±9breaths/min),VT (4.2±0.4ml/kg)and ˙VE(631±33ml/min/kg)responsesandonthe

bradycardia(−84±11bpm)producedbyhypoxia.

4. Discussion

Thepresentresultsprovidefunctionalevidencethatthecaudal portionofthecommNTSisessentialforthepressorresponseand theincreaseintheSNDandbreathingproducedbyhypoxiain con-sciousoranesthetizedrats.However,theresultsshownoevidence thatthisportionoftheNTSisinvolvedinmediating cardiorespi-ratoryresponsestohypercapnia.Inaddition,theinhibitionofthe caudalcommNTSneuronsdidnotmodifytheresponsesproduced bybaroreflexactivationaspreviouslydemonstrated(Moreiraetal., 2009).

(7)

Table3

CardiovascularresponsestophenylephrineandsodiumnitroprussideinconsciousratstreatedwithmuscimolinjectedintothecommNTS.

Treatment n MAP(mmHg) HR(bpm) V˙E(ml/kg/min)

PHE SNP PHE SNP PHE SNP

Saline(control) 6 +49±5 −28±6 −59±8 +88±4 +21±8 +11±5

Muscimol 6 +54±6 −31±5 −44±11 +93±8 +25±7 +18±8

Valuesaremeans±SEM.n=numberofrats.PHE,phenylephrine(5␮g/kgofbodyweight);SNP,sodiumnitroprusside(30␮g/kgofbodyweight);MAP,changesinmean arterialpressure;HR,changesinheartrate;V˙E,changesinventilation.

centrallymediatedvasoconstrictionthatdependson chemorecep-torand sympatheticactivation.Previousstudieshavesuggested thatanestheticsmayaffectneurotransmissiononthebrainstem andconsequentlyreflexresponses(Accorsi-Mendonc¸aetal.,2007; MachadoandBonagamba,1992).Therefore,inthepresentstudy, cardiorespiratory responses to hypoxia and hypercapnia were testedinanesthetizedratsandalsoinconsciousratsusing whole-bodyplethysmography,whichallowssimultaneousmeasurements ofrespiratoryandcardiovascularresponseswithoutrestrainingthe animal(Biancardietal.,2008;Bracciallietal.,2008;dePaulaand Branco,2005).

In urethane-anesthetized,vagotomized andartificially venti-latedrats,incontrolconditions,hypoxiaorhypercapniaproduced a dual response onarterialpressure. The hypoxiaproduced an initialincreaseinMAPinthefirst5–10sthatwasfollowedbya decreaseinMAPthatreachtheminimumvalueattheendofthe periodofhypoxia.Thehypercapniareducedarterialpressurein thefirstminutefollowedbyanincreaseattheendofthe5-min hypercapnia.ThehypoxiaorhypercapniarapidlyincreasedPND andgraduallyincreasedsSNDwhichreachesthemaximumatthe endofthetest.Inconsciousrats,incontrolconditions,hypoxia orhypercapniaincreasedventilationandhypoxiaincreasedMAP, whereashypercapniaproducednochangeinMAP.

The blockade of neuronal activity with muscimol injection intothecommNTSalmostabolishedthepressor,sympatheticand phrenicresponsestohypoxia inanesthetized ratsand partially reducedthepressorandrespiratoryresponsestohypoxiain con-sciousrats,whereasthesametreatmentinthecommNTSproduced nochangesinthecardiorespiratoryresponsestohypercapniain consciousoranesthetizedrats.Therefore,inanesthetizedor con-scious rats, it seems that chemoreflex-mediated cardiovascular andrespiratoryresponsestohypoxiaarestronglydependenton caudalcommNTSmechanisms.However,inconsciousrats, neu-ronal blockade in the commNTS with muscimol only partially reducedcardiorespiratoryresponsestohypoxia.Theeffectsof mus-cimolinjectedintothecommNTSinconsciousratsaresimilarto those previously demonstrated in theworking heart-brainstem preparationaftercombiningglutamatergicandpurinergic recep-torblockadeinthecommNTS(Bragaetal.,2007),whichsuggest thatinthiscasecardiorespiratoryresponsestohypoxiaarealso mediatedbysignalsthatarisefromothercentralsitesnotrelated tocommNTS.

Apreviousstudyshowedthatelectrolyticlesionsofthe comm-NTSabolishedthepressorandbradycardicresponsestoperipheral chemoreceptor activationwith i.v. injectionof KCN(Colombari etal.,1996).Itisinterestingtonotethattheresultsofthepresent studyshowedthatmuscimolintothecommNTSonlyreducedthe pressor responsesto hypoxiain consciousrats, whereas inthe previousstudyelectrolyticlesionsofthecommNTSabolishedthe pressorresponsetoi.v.KCN.Thesedifferencesalsosuggestthat, inconsciousrats,besidestheactivationofperipheral chemore-ceptors,additionalmechanismsareactivatedbyhypoxia,probably centrally,thatdonotdependoncommNTS(Colombarietal.,1996). Although the cardiorespiratory responses to hypoxia are stronglydependentoncommNTSneuronactivation,thepresent

resultssuggestthatthesamecommNTSneuronsinvolvedinthe responses tohypoxia are not involved in thecardiorespiratory responsestohypercapnia.MuscimolinjectionsintothecommNTS didnotchangetheincreaseinarterialpressure,SNDor breath-ingproducedbyhypercapnia.However,apreviousstudyshowed thatitispossibletoreducetherespiratoryresponsesto hypercap-niabymuscimolmicrodialysisinthecommNTS,suggestingthat commNTSmaydetectCO2 (NattieandLi,2008).Thesamestudy alsoshowedthatmuscimolmicrodialysisinthecommNTSdidnot affectrespiratoryresponsestohypoxiawhenratsweretestedat roomtemperatureof24◦C,thesameroomtemperaturethatrats were exposed in thepresent study. Therefore, thepresent and thepreviousstudyshowdifferenteffectsofthecommNTS inhi-bitionwithmuscimolinthecontroloftherespiratoryresponsesto hypoxiaorhypercapnia.Possiblereasonsforthedifferentresults arethedifferencesinthesiteofmicrodialysis/injectionsintothe commNTS,thevolumeofmicrodialyis/injectionsandthe concen-trationofmuscimolreleasedinthecommNTS.Inthepreviousstudy (NattieandLi,2008),microdialysisprobesreleasedmuscimolinto thecommNTSbilaterallyattheleveloftheareapostrema,whereas inthepresentstudyjustoneinjectionwasperformedinthe mid-linearound400␮mcaudaltotheareapostrema,i.e.,theprevious studytestedtheeffectsofmuscimolinamorerostralportionof thecommNTSandthepresentstudyinamorecaudalportionof thecommNTS.Although,differentsitesofinjections/microdialysis seemtobethemainreasonforthedifferentresults,inthe pre-viousstudy,theconcentrationofmuscimolwas0.5mMandthe volumeofmicrodialyiswas4␮l/mincontinuouslythroughoutthe entireexperiment (Nattieand Li,2008), whereasinthepresent studytheconcentrationofmuscimolwas2mMandavolumeof 50nlwasinjectedinasingleinjection.Althoughinbothstudies thenomenclatureisthesame(commissuralNTS),theydidnottest thesamearea/neurons:thepresentstudytestedamorecaudal por-tionofthecommNTSandthepreviousstudy(NattieandLi,2008) testedamorerostralpartofthecommNTS.Therefore,basedon thepresentandthepreviousstudy(NattieandLi,2008)itis possi-bletosuggestthatdifferentpartsofthecommNTSareinvolvedin therespiratoryresponsestohypoxiaandhypercapnia.According tothepresentresults,amorecaudalportionofthecommNTSis involvedincardiorespiratoryresponsestohypoxia,whereasa pre-viousstudysuggeststhatamorerostralportionofthecommNTS isthesiteofthepH-sensitivecells oftheNTSimportantmainly for therespiratory responsestohypercapnia.Thesesuggestions arecoherentwiththemassiveprojectionsfromthecommNTSto therespiratorycentralpatterngenerator(CPG)(Aicheretal.,1996; EzureandTanaka,2004;KoshiyaandGuyenet,1996;Kubinetal., 2006)thatprobably conveyimportantsignals fromcentraland peripheralchemoreceptors.

Acknowledgements

(8)

References

Abbott,S.B.,Stornetta,R.L.,Fortuna,M.G.,Depuy,S.D.,West,G.H.,Harris, T.E., Guyenet, P.G., 2009. Photostimulation of retrotrapezoid nucleus phox2b-expressingneuronsinvivoproduceslong-lastingactivationofbreathinginrats. J.Neurosci.29,5806–5819.

Accorsi-Mendonc¸a,D.,Leão,R.M.,Aguiar,J.F.,Varanda,W.A.,Machado,B.H.,2007. UrethaneinhibitstheGABAergicneurotransmissioninthenucleusofthesolitary tractofratbrainstemslices.Am.J.Physiol.(Regul.Integr.Comp.Physiol.)292, R396–R402.

Aicher,S.A.,Saravay,R.H.,Cravo,S.,Jeske,I.,Morrison,S.F.,Reis,D.J.,Milner,T.A., 1996.MonosynapticprojectionsfromthenucleustractussolitariitoC1 adren-ergicneuronsintherostralventrolateralmedulla:comparisonwithinputfrom thecaudalventrolateralmedulla.J.Comp.Neurol.373,62–75.

Ballantyne,D.,Scheid,P.,2001.Centralrespiratorychemosensitivity:cellularand networkmechanisms.Adv.Exp.Med.Biol.499,17–26.

Biancardi,V.,Bícego,K.C.,Almeida,M.C.,Gargaglioni,L.H.,2008.Locuscoeruleus noradrenergic neurons and CO2 drive to breathing. Pflugers Arch. 455,

1119–1128.

Blessing,W.W.,1997.Breathing.In:TheLowerBrainstemandBodilyHomeostasis, vol.10.OxfordUniversityPress,NewYork,pp.1–164.

Braccialli,A.L.,Bonagamba,L.G.,Machado,B.H.,2008.Glutamatergicandpurinergic mechanismsonrespiratorymodulationinthecaudalNTSofawakerats.Respir. Physiol.Neurobiol.161,246–252.

Braga,V.A.,Soriano,R.N.,Braccialli,A.L.,DePaula,P.M.,Bonagamba,L.G.,Paton, J.F.,Machado,B.H.,2007.Involvementofl-glutamateandATPinthe neuro-transmissionofthesympathoexcitatorycomponentofthechemoreflexinthe commissuralnucleustractussolitariiofawakeratsandintheworking heart-brainstempreparation.J.Physiol.581,1129–1145.

Campanucci,V.A.,Nurse,C.A.,2007.Autonomicinnervationofthecarotidbody:role inefferentinhibition.Respir.Physiol.Neurobiol.157,83–92.

Chernov,M.,Putnam,R.W.,Leiter,J.C.,2008.Acomputermodelofmammalian centralCO2chemoreception.Adv.Exp.Med.Biol.605,301–305.

Colombari,E.,Menani,J.V.,Talman,W.,1996.CommissuralNTScontributetopressor responsestoglutamateinjectedintothemedialNTSofawakerats.Am.J.Physiol. (Regul.Integr.Comp.Physiol.)270,R1220–R1225.

Dean,J.B.,Lawing,W.L.,Millhorn,D.E.,1989.CO2decreasesmembrane

conduc-tanceanddepolarizesneuronsinthenucleustractussolitarii.Exp.BrainRes. 76,656–661.

Deng,B.S.,Nakamura,A.,Zhang,W.,Yanagisawa,M.,Fukuda,Y.,Kuwaki,T.,2007. Contributionoforexininhypercapnicchemoreflex:evidencefromgeneticand pharmacologicaldisruptionandsupplementationstudiesinmice.J.Appl. Phys-iol.103,1772–1779.

dePaula,P.M.,Branco,L.G.,2005.Glutamatergicreceptorsoftherostralventrolateral medullaareinvolvedintheventilatoryresponsetohypoxia.Respir.Physiol. Neurobiol.146,125–134.

Ezure,K.,Tanaka,I.,2004.GABA,insomecasestogetherwithglycine,isusedasthe inhibitorytransmitterbypumpcellsintheHering-Breuerreflexpathwayofthe rat.Neuroscience127,409–417.

Feldman,J.L.,Mitchell,G.S.,Nattie,E.E.,2003.Breathing:rhythmicity,plasticity, chemosensitivity.Annu.Rev.Neurosci.26,239–266.

Finley,J.C.,Katz,D.M.,1992.Thecentralorganizationofcarotidbodyafferent pro-jectionstothebrainstemoftherat.BrainRes.572,108–116.

Franchini,K.G.,Krieger,E.M.,1993.Cardiovascularresponsesofconsciousratsto carotidbodychemoreceptorstimulationbyintravenousKCN.J.Auton.Nerv. Syst.42,63–69.

Guyenet, P.G., 2008. The 2008 Carl Ludwig Lecture: retrotrapezoid nucleus, CO2 homeostasis, and breathing automaticity. J. Appl. Physiol. 105,

404–416.

Guyenet,P.G.,Stornetta,R.L.,Bayliss,D.A.,2010.Centralrespiratorychemoreception. J.Comp.Neurol.518,3883–3906.

Haibara,A.S.,Bonagamba,L.G.,Machado,B.H.,1999.Sympathoexcitatory neuro-transmissionofthechemoreflexintheNTSofawakerats.Am.J.Physiol.276, R69–R80.

Johnson,S.M.,Haxhiu,M.A.,Richerson,G.B.,2008.GFP-expressinglocusceruleus neuronsfromPrp57transgenicmiceexhibitCO2/H+responsesinprimarycell

culture.J.Appl.Physiol.105,1301–1311.

Koshiya,N.,Guyenet,P.G.,1996.Tonicsympatheticchemoreflexafterblockadeof respiratoryrhythmogenesisintherat.J.Physiol.491,859–869.

Kubin,L.,Alheid,G.F.,Zuperku,E.J.,McCrimmon,D.R.,2006.Centralpathwaysof pulmonaryandlowerairwayvagalafferents.J.Appl.Physiol.101,618–627. Loeschcke,H.H.,1982.Centralchemosensitivityandthereactiontheory.J.Physiol.

332,1–24.

Machado,B.H., Bonagamba,L.G., 1992.Microinjection ofl-glutamateintothe nucleustractussolitariiincreasesarterialpressureinconsciousrats.BrainRes. 576,131–138.

Malan,A.,1973.Ventilationmeasuredbybodyplethysmographyinhibernating mammalsandinpoikilotherms.Respir.Physiol.17,32–44.

Mandel,D.A.,Schreihofer,A.M.,2008.GlutamatergicinputstotheCVLM indepen-dentoftheNTSpromotetonicinhibitionofsympatheticvasomotortoneinrats. Am.J.Physiol.(HeartCirc.Physiol.)295,H1772–H1779.

Moreira,T.S.,Sato,M.A.,Takakura,A.C.,Menani,J.V.,Colombari,E.,2005.Roleof pressormechanismsfromtheNTSandCVLMinthecontrolofarterialpressure. Am.J.Physiol.(Regul.Integr.Comp.Physiol.)289,R1416–R1425.

Moreira,T.S.,Takakura,A.C.,Colombari,E.,Guyenet,P.G.,2006.Central chemore-ceptorsandsympatheticvasomotoroutflow.J.Physiol.577,369–386. Moreira,T.S.,Takakura,A.C.,Colombari,E.,West,G.H.,Guyenet,P.G.,2007.Inhibitory

inputfromslowlyadaptinglungstretchreceptorstoretrotrapezoidnucleus chemoreceptors.J.Physiol.580,285–300.

Moreira,T.S.,Takakura,A.C.,Colombari,E.,Menani,J.V.,2009.Antihypertensive effectsofcentralablationsinspontaneouslyhypertensiverats.Am.J.Physiol. (Regul.Integr.Comp.Physiol.)296,R1797–R1806.

Mulkey,D.K.,Stornetta,R.L.,Weston,M.C.,Simmons,J.R.,Parker,A.,Bayliss,D.A., Guyenet,P.G.,2004.Respiratorycontrolbyventralsurfacechemoreceptor neu-ronsinrats.Nat.Neurosci.7,1360–1369.

Nattie,E.,2006.Whydowehavebothperipheralandcentralchemoreceptors?J. Appl.Physiol.100,9–10.

Nattie,E.,Li,A.,2008.MuscimoldialysisintothecaudalaspectoftheNucleustractus solitariiofconsciousratsinhibitschemoreception.Respir.Physiol.Neurobiol. 164,394–400.

Nattie,E.,Li,A.,2009.Centralchemoreceptionisacomplexsystemfunctionthat involvesmultiplebrainstemsites.J.Appl.Physiol.106,1464–1466.

Onodera,M.,Kuwaki,T.,Kumada,M.,Masuda,Y.,1997.Determinationofventilatory volumeinmicebywholebodyplethysmography.Jpn.J.Physiol.47,317–326. Richerson,G.B.,2004.Serotonergicneuronsascarbondioxidesensorsthatmaintain

phhomeostasis.Nat.Rev.Neurosci.5,449–461.

Paxinos,G.,Watson,C.,1998.TheRatBraininStereotaxicCoordinates,4thed. Aca-demicPress,SanDiego.

Sapru,H.N.,1996.Carotidchemoreflexneuralpathwaysandtransmitters.Adv.Exp. Med.Biol.410,357–364.

Smith, C.A.,Rodman, J.R., Chenuel,B.J., Henderson, K.S., Dempsey,J.A., 2006. ResponsetimeandsensitivityoftheventilatoryresponsetoCO2in

unanes-thetizedintactdogs:centralvsperipheralchemoreceptors.J.Appl.Physiol.100, 13–19.

Takakura,A.C.,Moreira,T.S.,Colombari,E.,West,G.H.,Stornetta,R.L.,Guyenet,P.G., 2006.Peripheralchemoreceptorinputstoretrotrapezoidnucleus(RTN)CO2

-sensitiveneuronsinrats.J.Physiol.572,503–523.

Takakura,A.C.,Moreira,T.S.,Colombari,D.S.,DeLucaJr.,L.A.,Menani,J.V.,2009. Activation ofalpha(2)-adrenoceptors in the lateral hypothalamus reduces pilocarpine-inducedsalivationinrats.Neurosci.Lett.450,225–228.

Takakura,A.C.,Colombari,E.,Menani,J.V.,Moreira,T.S.,2011.Ventrolateralmedulla mechanismsinvolvedincardiorespiratoryresponsestocentralchemoreceptor activationinrats.Am.J.Physiol.(Regul.Integr.Comp.Physiol.)300,R501–R510. Trapp,S.,Aller,M.I.,Wisden,W.,Gourine,A.V.,2008.AroleforTASK-1(KCNK3) chan-nelsinthechemosensorycontrolofbreathing.J.Neurosci.28(35),8844–8850. Williams,R.H.,Jensen,L.T.,Verkhratsky,A.,Fugger,L.,Burdakov,D.,2007.Controlof hypothalamicorexinneuronsbyacidandCO2.Proc.Natl.Acad.Sci.U.S.A.104,

Referências

Documentos relacionados

Ao Dr Oliver Duenisch pelos contatos feitos e orientação de língua estrangeira Ao Dr Agenor Maccari pela ajuda na viabilização da área do experimento de campo Ao Dr Rudi Arno

Neste trabalho o objetivo central foi a ampliação e adequação do procedimento e programa computacional baseado no programa comercial MSC.PATRAN, para a geração automática de modelos

Ousasse apontar algumas hipóteses para a solução desse problema público a partir do exposto dos autores usados como base para fundamentação teórica, da análise dos dados

In an earlier work 关16兴, restricted to the zero surface tension limit, and which completely ignored the effects of viscous and magnetic stresses, we have found theoretical

gulbenkian música mecenas estágios gulbenkian para orquestra mecenas música de câmara mecenas concertos de domingo mecenas ciclo piano mecenas coro gulbenkian. FUNDAÇÃO

i) A condutividade da matriz vítrea diminui com o aumento do tempo de tratamento térmico (Fig.. 241 pequena quantidade de cristais existentes na amostra já provoca um efeito

Alguns ensaios desse tipo de modelos têm sido tentados, tendo conduzido lentamente à compreensão das alterações mentais (ou psicológicas) experienciadas pelos doentes

Extinction with social support is blocked by the protein synthesis inhibitors anisomycin and rapamycin and by the inhibitor of gene expression 5,6-dichloro-1- β-