• Nenhum resultado encontrado

Neural networks based predictive control for thermal comfort and energy savings in public buildings

N/A
N/A
Protected

Academic year: 2021

Share "Neural networks based predictive control for thermal comfort and energy savings in public buildings"

Copied!
14
0
0

Texto

(1)

ContentslistsavailableatSciVerseScienceDirect

Energy

and

Buildings

jo u rn al h om epa g e :w w w . e l s e v i e r . c o m / l o c a t e / e n b u i l d

Neural

networks

based

predictive

control

for

thermal

comfort

and

energy

savings

in

public

buildings

P.M.

Ferreira

b,c,∗

,

A.E.

Ruano

a,c

,

S.

Silva

a

,

E.Z.E.

Conceic¸

ão

a

aUniversityofAlgarve,8005-139Faro,Portugal

bAlgarveScienceandTechnologyPark,CampusdeGambelas,Pav.A5,8005-139Faro,Portugal cCentreforIntelligentSystems,IDMEC-IST,Av.RoviscoPais1,1049-001Lisboa,Portugal

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received17February2012

Receivedinrevisedform17May2012 Accepted2August2012

Keywords:

HVACpredictivecontrol Predictedmeanvote Neuralnetworks

Multi-objectivegeneticalgorithm Thermalcomfort

Wirelesssensornetworks

a

b

s

t

r

a

c

t

ThepaperaddressestheproblemofcontrollingaHeatingVentilationandAirConditioning(HVAC) sys-temwiththepurposeofachievingadesiredthermalcomfortlevelandenergysavings.Theformulation usesthethermalcomfort,assessedusingthepredictedmeanvote(PMV)index,asarestrictionand min-imisestheenergyspenttocomplywithit.Thisresultsinthemaintenanceofthermalcomfortandon theminimisationofenergy,whichinmostconditionsareconflictinggoalsrequiringanoptimisation methodtofindappropriatesolutionsovertime.Adiscretemodel-basedpredictivecontrolmethodology isapplied,consistingofthreemajorcomponents:thepredictivemodels,implementedbyradialbasis functionneuralnetworksidentifiedbymeansofamulti-objectivegeneticalgorithm;thecostfunction thatwillbeoptimisedtominimiseenergyconsumptionandmaintainthermalcomfort;andthe optimi-sationmethod,adiscretebranchandboundapproach.Eachcomponentwillbedescribed,withspecial emphasisonafastandaccuratecomputationofthePMVindices.Experimentalresultsobtainedwithin differentroomsinabuildingoftheUniversityofAlgarvewillbepresented,bothinsummerandwinter conditions,demonstratingthefeasibilityandperformanceoftheapproach.Energysavingsresultingfrom theapplicationofthemethodareestimatedtobegreaterthan50%.

©2012ElsevierB.V.Allrightsreserved.

1. Introduction

InEuropeanUnion(EU)countries,primaryenergyconsumption inbuildingsrepresentsabout40%ofthetotalenergyconsumption and,withvariationsfromcountrytocountry,halfofthisenergyis spentforindoorclimateconditioning[1–3].Itisestimatedthatthe useofefficientenergymanagementsystemsinbuildingscansave upto8%oftheenergyconsumptionintheentireEU[4].Around83% oftheEUdwellingswereconstructedbefore1990andabout50%of thembefore1970[1].Thereforeitisoffundamentalimportanceto controlefficientlytheexistingHVACsystems,inordertodecrease energyusageandincreasecompliancewiththeEuropeanDirective (2010/31/EU)ontheenergyperformanceofbuildings[3].

TheuseofArtificialNeuralNetworks(ANNs)invarious appli-cationsrelated withenergymanagement in buildingshasbeen increasingsignificantly over the recent years. Withinthis area, ANNshavebeenmainlyappliedinseveralaspectsofHVACcontrol

∗ Correspondingauthorat:AlgarveScienceandTechnologyPark,Campusde Gam-belas,Pav.A5,8005-139Faro,Portugal.Tel.:+351289800950;fax:+351289800098. E-mailaddresses:pfrazao@ualg.pt(P.M.Ferreira),aruano@ualg.pt(A.E.Ruano), ssilva@ualg.pt(S.Silva),econcei@ualg.pt(E.Z.E.Conceic¸ão).

methodologies [5–11], and in forecasting energy consumption [12–20].

Theauthorshaveadvocated,inpastpublications[21,22],the useofmodelbasedpredictivecontrol(MBPC)withthepurposeof efficientlycontrollingexistingHVACsystemsinlargepublic build-ings.Thepresentpaperisthenaturalfollow-upofthispastwork, wherea remote,wired dataacquisitionsystemwasset-upin a secondaryschoolintheSouthofPortugal.Theperformanceof phys-icalmodels,basedonenergyandmassbalanceintegral-differential equationswereevaluatedagainstblack-box,neuralnetwork mod-elsforthepurposeofmodellingtheinsideairtemperature.Itwas foundthattheroleofthesetwodifferenttypesofmodelsis com-plementary,andnotcompeting.Whilephysicalmodelscanbeused inthephaseoftheprojectofbuildings,andtoassessthe conse-quencesofpossiblebuildingsmodifications,data-drivenmodels suchasneuralnetworksshouldbeused fortheon-linecontrol ofHVACsystems.SimulationsshowedthepotentialofMBPCfor thecontrolofair-conditionedsystems,indicatingboththebetter regulationandtheenergysavingsobtained.

Thisarticleisorganisedasfollows.Theexperimentalsetupis describedinSection2.AsaPMVformulationisemployed,its com-putationisdiscussedinSection3.ToimplementtheMBPCstrategy, severalneuralnetwork modelsareused.Their designis briefly addressedinSection4.Section5describesthebranch&bound(BB) 0378-7788/$–seefrontmatter©2012ElsevierB.V.Allrightsreserved.

(2)

Fig.1.Overviewoftheexperimentalsetupused.

searchtechniquethatisemployedtoimplementtheMBPC,which inturnisformulatedinSection6.Severalexperimentsarethen presentedinSection7,bothinsummerandwinterconditions.The paperendswithconclusionsandadescriptionoffuturework. 2. Experimentalsetup

HVACcontrolexperimentswereconductedinthreeareasofone buildingusedbytheFacultyofSciences&Technologyofthe Uni-versityofAlgarve,inthesouthofPortugal.Intotal,16locations (labs,offices,corridors)arenowequippedwithdataacquisition devicesandtheirinternalHVACunitsmaybeindependently con-trolledwithnewalgorithms,andmonitored.Fortheworkthatis goingtobepresented,fourroomswereused,denotedbytheletters A,B,C,andD.RoomsAandBareadjacentwithwallsfacingwest andnorth(onlyA).RoomCsharesthesamecorridorwithAandB andhaswallsexposedtothenorthandeast.Thesethreeroomsare onthesecondfloor.Finally,roomDisdirectlybelowroomCwith wallsexposedtothenorthandeast.

A weather station locatedin the campus provides air tem-perature(Tao),airhumidity(Hao),andglobalsolarradiation(Rsg)

measurements.All theelementsinvolved are connected tothe TCP/IPnetwork,enablingaPCstationinthecontrolsystems labo-ratorytomonitorandcontrolanyoftherooms.Fig.1providesan illustrationofthesystemintegration.

2.1. Wirelesssensornetworks

WSNsarerapidlygainingpopularity,andarebeingusedina vastspectrumofapplications.Oneofthemostactiveareabeing buildingautomation[23,24].Eachoftheroomswherethe experi-mentswereconductedhasWSNnodeswithsensorstomonitorthe airtemperature(Tai),airhumidity(Hai),globetemperature(Tg),the

stateofwindowsanddoors(open/closed),andmovementusinga passiveinfra-redactivitymonitor.Tgismeasuredbymeansofa

blackglobethermometer[25]anditsmeasurementisthenusedto determinethemeanradianttemperature,Tmr[26].

TheWSNshaveastartopology,whereeachunitiscollecting informationonceperminuteandsendingittoacentralnodewith

storageanddatabasecapabilities.EachnodeconsistsofoneTmote Skyplatformconnectedtotherequiredsensors.Thisplatformisan IEEE802.15.4standardcompliantdevicethatusestheTinyOS[27] operatingsystem.

IneachroomoneWSNnodeisinstalledinthewall,nearly1.75m abovethefloor,whichmeasuresTaiandHaiusingSHT11sensors

fromSensirion.Approximatelyinthemiddleoftheroom,ataheight ofroughly2mabovethefloor(forsecurityreasons),theblackglobe thermometerisinstalled.Itconsistsofamateblackpaintedsphere witha diameterof125mmwitha Tmote(anditstemperature sensingdevice)atitscentre.Plasticwasusedinsteadofcopper, whichismorecommonlyfoundinthisapplication,becauseitwas easilyavailable,butalsobecauseaccordingto[26]itovercomes anundesirablehightimeconstant thatappearswhen copperis employed.Infra-redsensorsareinstalledatonecorneroftheroom tomonitoractivity.Digitalinformation,bothfromthemagnetic switchesindoorsandwindowsandfromthemovementdetector arewiredtooneoftheexistingWSNnodes.

2.2. HVACsystem

TheHVACsystemusedintheexperimentsis composedof3 independentMitsubishiVariableRefrigerantFlow(VRF)systems, each one withan outdoor air cooled inverter compressor unit (denotedinthesequelasoutdoorunit),locatedonthebuilding roof,connectedtoceilingconcealedductedindoorunits(denoted asinteriorunits).Ineachindependentroomthereisatleastone internalunit,withitsownwallcontroller.Thesystemcanbe cen-trallymanagedbyaPCmanagementstationtowhichalltheunits areconnectedviaaLonWorkscommunicationbus.Thisstationis abletomonitorandcontrolmanyaspectsofalltheHVACsystem, throughtheMitsubishiLMAP02interface[28].Thoseofmajor inter-estfortheexperimentsare:specifyingatemperatureset-pointfor agivenunit,switchingtheinternalunitonoroff,anddisablingthe localcontrollersotheoccupantscannotoperatetheinternalunit whileexperimentsarebeingconducted.

The model of the interior units used in the experiments describedinthispaperisthePEFY-P63VMMandthemodelofthe outdoorunitsisthePUHY-250YMF-C.

(3)

3. Predictedmeanvote

Thehollygrailofenergymanagementinbuildingsisthe min-imisationoftheenergyrequiredtomaintainadesiredminimum comfortlevelfortheoccupants.Althoughtheperceptionof com-fortisrelatedtoseveralenvironmentalfactorssuchaslighting, temperatureandairquality,inthisworkonlythethermal com-fortconditionsaspectisaddressed.AsadiscreteMBPCproblem, describedinSection5,issolvedusingtheBBsearchtechnique, find-ingtheoptimalsolutiondependsontheabilityofcomputingmany PMVvalues inasmallamountoftime.AsthePMVformulation involvesiterativecomputationsconsumingvariabletime,itis cru-cialtohaveamethodforfast,possiblyconstantexecutiontime, computationofthePMVindex.

Feed-forwardANNs are direct input-to-output connectionist computingstructurescapableofapproximatingasmoothfunction witharbitraryaccuracyprovidedsufficientneuronsareused.These featuresarethemeanstoachievetherequirementsstatedabove. Thefeed-forwardANNdirectinput-to-outputstructureprovides theconstantexecutiontime,theirabilitytoapproximatenon-linear functionsprovidethecapabilityofapproximatingthePMV func-tion.Theaccuracyoftheapproximationisrelatedtothenumberof neuronsusedintheANNhiddenlayer(s),whichinturnislinearly relatedtotheexecutiontime.Consequentlytheproblemconsistsin findingtheappropriatetrade-offbetweenthePMVindex approxi-mationaccuracyandtheestimationexecutiontime.

TheapplicationofanANNtoestimatethePMVindexfunction hasbeenstudiedbefore[29–31].Inallcasestheapproachtakenwas notthebestforreal-timecontrolapplicationsalthoughthiswasthe mainmotivation.Inthisworkitisshownthatbyfollowinga sim-plerandmoreappropriateapproach,itispossibletoselectadesired compromisebetweenaccuracyandexecutiontime.More impor-tantlyitisshownthat,whencomparedtotheresultsin[29–31],an increasedaccuracywithshorterexecutiontimemaybeachieved. 3.1. ThePMVindex

TheAmericanSocietyofHeatingRefrigeratingandAir Condi-tioningEngineers(ASHRAE)proposedthethermalsensationscale withthepurposeofquantifyingthethermalsensationofpeople [32].Itusesanintegernumericalcodingtoexpressthequalitative thermal sensation, by relating the integer range [−3,3] to the qualitativewordscold,cool,slightcool,neutral,slightwarm,warm, andhot.

Anindex, designatedPMV, was proposedby Fanger[33] in ordertopredicttheaveragevoteofalargegroupofpersonson thethermalsensationscale.Itdependsonsixfactors:metabolic rate,clothinginsulation,airtemperatureandhumidity,air veloc-ity,andthemeanradianttemperature.Itiscomputedbymeansof aheat-balanceequation[34,35]givenby,

PMV=(0.303e−0.036M+0.028)[(M−W)−3.05×10−3 ×[5733−6.99(M−W)−Pa]−0.42[(M−W)−58.15] −1.7×10−5M(5867−Pa)−0.0014M(34−Tai)−3.96×10−8fcl

×[(Tcl+273)4−(Tr+273)4]−fclhc(Tcl−Tai)], (1)

whereMandWarethemetabolicrateandexternalwork,bothin W/m2,P

aisthepartialwatervapourpressureinPascal,andTaiand

Tr aretheairtemperatureandmeanradianttemperature,in◦C.

Thesurfacetemperatureofclothing,Tcl,andtheconvectiveheat

transfercoefficient,hc,aregivenby,

Tcl=35.7−0.028(M−W)−Icl[3.96×10−8fcl×[(Tcl+273)4 −(Tr+273)4]+fclhc(Tcl−Tai)], (2) and hc=



h∗ c ifh∗c>12.1



Va 12.1



Va if h∗c<12.1



Va (h∗c=2.38(Tcl−Tai)1/4),(3)

respectively.Va istheair velocityin m/s andIcl istheclothing

thermalresistanceinm2◦C/W.Thesetwoequationsaresolved

iter-ativelyuntilaprescribeddegreeofconvergenceisattainedora maximumnumberofiterationsisreached.Finally,in(1)and(2), fcl,whichistheratioofbodysurfaceareacoveredbyclothestothe

nakedsurfacearea,isdefinedby: fcl=



1.00+1.290Icl ifIcl≤0.078

1.05+0.645Icl ifIcl>0.078

. (4)

Themeanradianttemperature,Tr,isaquantitywhichishardto measure.Theinstrumentmostcommonlyemployedinits deter-minationisablackglobethermometer[25].Denotingtheglobe temperaturebyTg,themeanradianttemperaturemaybe

deter-minedas[26], Tr=



(Tg+273)4+1.10×10 8V0.6 a



D0.4 (Tg−Tai)



1/4 −273, (5)

whereDand



aretheglobediameterin metersandtheglobe emissivitycoefficient,respectively.

Pa,thewatervapourpressureinPascal,iseasilyrelatedtothe

relativehumidityoftheair,Hai,bymeansofAntoine’sequation

[36]:

Pa=10Haie(16.6536−4030.183/(Tai+235)) (6)

Using(1)–(6),thePMVappearsconceptuallyasafunctionofsix variablesthatcanbemeasuredorestimated:

PMV=f(Tai,Tg,Hai,Va,Icl,M) (7)

3.2. Proposedapproachforreal-timecontrol

PreviousANNmodelsofthePMVindexfoundintheliterature employmulti-layerperceptronnetworks[29,31]orLeast-Squares SupportVectorMachines(LSSVM)[30].

For real-time control applications there are two important featuresthatanyPMVindexapproximationmethodshould effi-cientlybalance: accuracyand computingtime. Thismeansthat the PMV models should simultaneously be as simple and as accurate as possible. Although the motivation of past works [29–31] was their use in real-time control systems and the decreaseinPMVindexcomputingtime,theirinput/output struc-turedidnotoptimiseproperlythatbalance,asitwillbeshown later.

FormostHVACreal-timecontrolapplications,theenvironment iscontrolledinclosedspaceswherealloccupantsareassumedtobe dressedsimilarlyregardingthetypeofclothingtheywear. More-overitislikelythatwithineachtypeofclosedspacetheywillbe performingsimilaractivitieslikeattendingalecture,sitting writ-ingaresearchpaper,orhavingbreakfastatthecafeteria.These twoassumptionsmeanthatforagivenspaceitispossibleto spec-ifythevaluesoftheclothinginsulation,Icl,andthemetabolicrate,

M,thereforethesemayberemovedfromthePMVmodelinput.If itisfurtherassumedthattheairvelocity,Va,varieslittlewithin

thespaceanditsvalueisdeterminedbymeasurements,Vamaybe

consideredconstantandmayalsoberemovedfromthePMVmodel input.

BydefiningacontextvectorC={Icl,M,Va}andbyusing(1)–(6),

asetofinput–outputdatapairsmaybegeneratedinordertotrain anANNmodelforthePMVindexinthecontextC.Thisapproach suggeststhatwithinanHVACcontrolsystemliketheoneinFig.1,

(4)

Fig.2.UsingasetofPMVmodelsinanHVACcontrolsystem.

thereareasetofdistinctPMVmodels,PMVi,eachforadistinct

contextCi.Inthisscheme,asupervisorysystematanupper

oper-ationallevelwilldefinethecorrespondencebetweeneachroom controlledbyHVACsystemsandapair{PMVi,Ci}.Theapproach

isillustratedinFig.2.Thematchingbetweentheroomsandthe assumedcontextscanbedoneonthebasisoftheyearseason,of thepurposeoftheroom,andmaybeofanystrongdeviationsofthe outsideweatherfromwhatisexpected.

TheconsequenceofusingmultiplePMVindexmodels,isthatfor aspecificcontextCi,themodelhasincreasedaccuracyandreduced

computingtimewhencomparedtomodelsconsideringmultiple contexts.Theincreaseinaccuracycomesfromthefactthatthere arelessfeaturestolearninthetrainingdata,whereasthedecrease incomputingtimeresultsfromusingfewerinputsandfromthe necessitytoemployfewerneuronsinthehiddenlayersinorderto achieveadesiredaccuracy.Inourcase,theairvelocityinallrooms consideredwasmeasuredbyaBABUCprobeina6×6gridwith aspacingofonemeter,ataheightof1.2metersaboveground, andduringaperiodof3min.Allthemeasurementswereinthe range[0.04,0.16]m/s.Thesmallvaluesofairvelocityarejustified becausetheairflowfromeachindoorunitpassesthroughanair diffuser(DFU36,fromFranceAir).Fromtheseresultsanaverage valueofapproximately0.08m/swasselectedasaconstantvalue tobeusedinthecontextvectorofPMVindexmodels.Regarding thetwo additionalhumanfactorsinthecontextvector,avalue of69.78W/m2(1.2Met)1wasselectedasthemetabolicrateofa

sedentaryactivity(seeappendixAof[32]), andfortheclothing insulationavalueof0.85clowasused(seeappendixBof[32])in thefollowingexperiences.

3.3. Radialbasisfunctionneuralnetwork

TheRBFANNwasusedinthisworkasafunction approxima-tortothePMVindex(1).TheRBFmodelsaretrained usingthe Levenberg–Marquardt(LM)algorithm[37,38]minimisinga modi-fiedtrainingcriterion[39,40].

RBFANNshavetheform,

ˆ y(x,w,C,)= n



i=0 wiϕi(x,ci,i), (8)

1Metabolicequivalentoftask(Met).1Met=58.15W/m2.

wheretypicallyϕiistheGaussianfunction,

ϕi(x,ci,i)=e−(1/2 2

i)x−ci2, ϕ

0=1. (9)

Foraspecifiednumberofneurons,n,andforadeterminedsetof inputs,Xt,off-linetrainingaRBFNNcorrespondstodetermining

thevaluesofw,C,andsuchthat(10)isminimised:

˚(Xt,w,C,)=12y− ˆy(Xt,w,C,)2. (10)

Pleasenotethat(10)isnowappliedtoasetoftraininginput pat-terns,Xt,andnottoasingleinputpattern,x.Asthemodeloutput

isalinearcombinationoftheneuronactivationfunctionsoutput (8),(10)canbegivenas,

˚(Xt,w,C,)=12y −(Xt,C,)w2, (11)

whereomittingthedependenceofϕonCand, (Xt,C,)=[ϕ(x(1))ϕ(x(2))···ϕ(x(N))]T.

Bycomputingtheglobaloptimumvalue(w*)ofthelinear param-etersw,withrespecttothenonlinearparameters Cand,asa least-squaressolution,

w∗=+(Xt,C,)y, (12)

where“+”denotesapseudo-inverseoperation,andreplacing(12) in(11),thetrainingcriteriontodeterminethenonlinear parame-tersCandis:

(Xt,C,)=1

2y(X

t,C,)+(Xt,C,)y2. (13)

Theinitialvaluesfortheneuroncentrepositionsarerandomly selectedfromthetrainingdata,andthespreadsoftheneuron acti-vationfunctionsareinitialisedusingthesimplerulein[41,p.299]. ThetrainingprocedureprogressesiterativelyusingtheLM algo-rithmminimising criterion(13),until a terminationcriterion is satisfied.Formore detailsaboutthetrainingalgorithm and the trainingcriterionthereadingof[40,42–44]isrecommended. 3.4. Datasetsandmodelstructure

Theinputmatrix fortraining theRBFANNs,definedas Xt= [Tai Tr Hai],wasbuiltusingrandomlygenerateddata.Tai,Trand

HaiarevectorsofNvaluestakenfromtheranges[16,32],[13,35]

and[20,70],respectively.Theywereconstructedasfollows: 1.TaiandHaiwereselectedrandomlyfromauniformdistribution

ofvaluesintherangesspecified;

2.ForeachvalueTaik inTai,acorrespondingvalueTg kinTgwas

generatedusing, Tg k=Taik+(−3.0,3.0),

where(a,b)isarandomnumberfromtheuniformdistribution intherange[a,b].ImplicitlyitisassumedthatTai−3<Tg<Tai+3;

3.Tr wasobtainedbymeansof(5),consideringTai andTg just

described,Va=0.08,D=0.125,and



=0.95.

InordertodeterminethecorrespondingoutputPMVindex val-ues, thecontextvector wasdefinedas describedbefore, i.e.,as C={0.85,1.2,0.08}.Then,Ytwasconstructedbymeansof(1),using

eachtripletXt

kinXtalongwiththevaluesinC.Thisproceduregives

risetothetrainingdataset,Dt={Xt,Yt}.

Usingtheapproachjustdescribed,anadditionaldataset,Dv, waspreparedinordertovalidatethemodelswithunseendata, afterthetrainingstage.Dvhas23,100trainingpairs(N=23,100).

(5)

Fig.3. Input–outputvariablesdistributionwithintherangesofvaluesconsidered. TheplotscorrespondtodatasetDv.

Fig.3 shows how the input–outputpatterns are distributed withintherangesspecifiedfortheinputvariables,consideringthe datainDvforthecontextC.Itmaybeseenonthetopplothow TrdistributesdenselyaroundthevaluesofTaiforthewholerange

considered.

Thesameisvisibleinthemiddleplotfortherelativehumidity andair temperature.Thebottom plots,fromleft toright, illus-tratethescatteringofPMVvaluesaroundtheairtemperatureand relativehumidities,respectively.Thisdatasetallowsgoodmodel evaluationasitefficientlycoversthevariabilityofcombinations thatoccursbetweeninputvariables.

Althoughtheinput–output structure of themodel hasbeen specified,therearestill two designparameters thatneedtobe determined:thenumberofneuronsandthenumberoftraining patterns.Forthefirst,anexhaustivesearchwasconductedover therange[2,32].Forthesecond,asearchwasalsoconductedas describedinthefollowing.Itisknownthatthe“ideal”numberof trainingpatternsis,tosomeextent,relatedtothenumberof param-etersofthemodelbeingfitted[45,46].ConsideringtheRBFin(8)for thePMVindexmodelpresented,eachneuronaccountsfor5 param-eters,thereforethetotalnumberofparametersisgivenbyn×5,n beingthenumberofneuronsemployed.Byspecifyinganumberof patterns(p)permodelparameteritbecomespossibletodetermine thevalueofNforthetrainingdatasetDt,asN=n×5×p.Inthiscase

asearchwasmadeforpin{20,40,60,80,100,120}.Foreachof thesevalues,nwasvariedintherange[2,32]asalreadymentioned. ConsideringthattheRBFparametersareinitialisedrandomly,20 trialswereexecutedforeach(n,p)pair.Eachtrialconsistedonthe applicationofthemodifiedtrainingcriterionLMalgorithmfor200 iterations.

3.5. ResultsforthePMVmodel

Havingdeterminedthemodelsspannedby(n,p)r|20r=1,whereris

thetrialnumber,thefirstresultsoughtwasadecisiononthe num-beroftrainingpatterns.Thedecisionwasmadeonthebasisofthe

Fig.4.Resultsregardingtheselectionofthebesttrainingsetsize,thegeneralisation capacityofthemodels,andtheaccuracyachieved.

modelsmaximumabsoluteerrorobtainedonthevalidationdata set,Dv.Foreachvalueofp,theaverageofthaterrorwascomputed overallthemodels(forallnandr).ThetopplotofFig.4illustrates theresult,whereitisclearlyseenthat,onaverage,itisbesttotrain themodelswith80trainingpatternsforeachmodelparameter.

Themiddleplotillustratesthebestrelationbetweentheresults obtainedwiththetrainingsetandthoseobtainedwiththe vali-dationset,forp=80.Theplotpresentstheminimumandmean oftheaverageabsoluteerrorobtainedoverthe20trialsforeach numberofneuronsn.Thedifferenceisnegligible,whichallowsto concludethatthemodelsprovideexcellentgeneralisation capa-bility.Tothisrespect,itshouldbenotedthatthevalidationdata sethas23,100points,avaluecomparabletothetrainingsetin [29],andthatwithonly1600trainingpatterns(4neuronscase), near25%ofthenumberusedin[30],amaximumabsoluteerror ofapproximately0.015isobtainedbothintrainingandvalidation datasets.Stillforp=80,asitshowedthebestgeneralisation,the lowerplotinFig.4showsforeachnumberofneurons,the mini-mumvalue,obtainedoverthe20trials,ofthemaximumabsolute errorinthevalidationdataset.Itmaybeconcludedthatusingmore than10neuronsisnotnecessaryasnosignificantimprovements areobtained.

Themodelwith5neuronsinthelowerplotofFig.4, correspond-ingto26parameters,achievesanaverageandmaximumabsolute errorof0.0025and0.011,respectively.Thesevaluesare compa-rabletotheresultsin[30],0.0022and0.0097(obtainedwith100 testingpoints),althoughtheRBFmodelisincomparablysmaller. Onlytworesultsarepresentedin[29]:aSumoftheSquareofthe Errors(SSE)onthetrainingsetof0.11,andafigureshowinghow themodelwith97parametersbehavedona9hexperimentwithin aroom.Regardingthefirstitisabitlessthanhalfthevalueof0.23 obtainedbythe5neuronmodel.Regardingthefigurewemayonly commentthatthewellvisibleerrorsclearlyshowthatthemodel doesnotgeneraliseproperly,probablyduetoalargetrainingset andalso,possibly,duetoovertraining,consideringthesmallvalue ofSSE.

(6)

Fig.5. PMVindexfittingonvalidationdataset,obtainedwitha5neuronRBFmodel. Histogramoferroratthetopplot.

Fig.5showsthefittingofthevalidationdatasetbythe5neurons RBFmodel,aswellasthehistogramoftheerrorobtained.

InordertoprovideamorerealisticevaluationofthePMVindex model,itwasappliedtoasetofdataacquiredintheroomdescribed previously.Thedataacquisitiontookplaceduringasystem identi-ficationexperimentwherepseudo-randombinarysequenceswere beingappliedtotheairconditioningset-point,hencetherewas sig-nificantvariabilityintheroomenvironment.Theresultisshown inFig.6.Theestimatesprovidedbythemodelareextremely accu-rate:theaverageandmaximumabsoluteerrorswere0.0014and 0.0075.

Anoteisdueontheimportanttrade-offbetweencomputing timeandestimationaccuracy.Fig.7highlightstherelative perfor-manceofRBFmodelsintermsofcomputingtimeandaccuracy.The lowerplotshowstheratiobetweenthePMVgivenby(1)andthe onecomputedbyanRBFANNwithnneurons.Itmaybeseenthata 13neuronsmodelisabout20timesfasterthan(1)anda5neurons modelisapproximately55timesfaster.Thelimitcaseofinterestis 4neuronscorrespondingtoaspeed-upnear70.

Theupperplotinthesamefigureshowstherelativeaccuracy intermsofaverageabsoluteerror.Thelimitingcaseofinterestis, maybe,12neurons,about20timesfaster,withthedoubleofthe smalleraverageerrorachievedwith32neurons.Althoughthisplot maysuggestthatlessthan12neuronsachievesabadperformance, themiddleplotclearsthisimpression.Itshowstherelative per-formanceintermsofthemaximumabsoluteerror.Itmaybeseen thatwithonly5neuronsthebestperformanceisalmostachieved, althoughintermsofaverageerrorthemodelisabitworsethanthe bestone.Usingthesecurvesonemayselectaspecificmodelwith thedesiredbalancebetweenaccuracyandspeed-up.

Fig.6.PMVgivenby(1)(thickblackline)andby5neuronRBFANN(thinwhiteline) duringasystemidentificationexperiment.Pleasenotethatthelinesarecoincident, hencethewhitelineiswithintheblackline.

Fig.7. RelativeperformanceoftheRBFPMVmodelsregardingcomputingtimeand accuracy.

Whencomparedtothemodelsin[29]or[30],thosehere pre-sentedshowbetterestimationaccuracy,specificallyonunseendata inrealapplication,provideawidercoverageofthePMVinput vari-ables andof thethermalsensationscale, andachieve speed-up improvements.Inthislastcasethegainissignificant,beingvery largewhencomparedto[30]andestimatedtobeabout3.5times fasterthanthemodelin[29].

4. Predictivemodels

Allthepredictivemodels,neededin theMBPC,were imple-mented by RBF NNs, and were trained using the procedure described in Section3.3. The topology of the model, i.e., its input–outputstructureandthenumberofneurons,wasidentified usinga Multi-ObjectiveGeneticAlgorithm (MOGA).Acomplete description of the model structure identification procedure is beyondthescopeofthispaper,theinterestedreadershouldconsult [47,43,48,44].

Three auto-regressive predictive models were selected by MOGAsforTao,Hao,andRsg.Theyareusedtoforecasttheoutside

weatherandareemployedwheneveroneofTao,Hao,orRsgis

neces-sarytoobtainroomtemperatureandhumiditymodelpredictions. Inordertoobtainpredictiveairtemperatureandhumidity mod-elsforaspecificroom,thefirststepwasthepreparationofcontrol inputsignalsfortheHVACinternalunit.Forthat,theroomwas con-trolledrandomlybyvaryingthetemperatureset-pointwithinthe range[18,19,...,27]orbyswitchingofftheunitforvaryingtime intervals.ThistaskwasaccomplishedbymeansofPseudoRandom BinarySignals(PRBS),asdescribedin[49,50].Twosetsof predic-tiveairtemperatureandhumiditymodelsweredesigned,onetobe usedinwinterconditions,andtheotherinsummer.Thefollowing subsectionsdescribetheirdesign.

4.1. Summermodels

PRBSsignalswith4416datapatternsweregenerated, corre-sponding to approximately 15 days of data at 5min sampling interval. Different times-of-day werecovered and distinct days (concerningtheoutsideweather)wereconsidered,allduringearly summer.Fig.8showsasamplePRBSsequenceofset-pointsand theresultingroomairtemperatureandrelativehumidity.

Using the MOGA and thetechniques referenced above, pre-dictivemodelsfortheroomairtemperatureandhumiditywere selected.Thefirstuses14neurons,theseconduses11.Theinput variablesanddelaysusedbytheselectedmodelsaredetailedin Table1.Asexpected,thereissomedelayfromtheoutsidevariables

(7)

Fig.8.SampleofPRBSsequenceappliedtoHVACsystemandtheresulting temper-aturesandhumidities.Summerconditions.

totheroomclimatemodels,asopposedtotheinsidevariablesand HVACtemperatureset-point.

Withinthemodelidentificationproceduresthemodelswere evaluatedforlong-termpredictioncapabilitiesusingasubsetof data.Theyweresimulatedforpredictionover anhorizonof 48 steps,whichcorrespondsto4h.WithinthishorizontheRMSerror increasedfromabout0.06◦Cuptoapproximately0.65◦Cforair temperature,and fromnear 0.5% upto about3.0% for relative humidity.Theseresultswereobtainedbyfollowingtheminimum errorpredictionapproach,whichmeansthatmeasuredvalueswere usedeverytimethatfuturevaluesofexogenousvariableswere nec-essaryatthemodelinputs.Consideringa4hpredictionhorizon, theerrorvaluesmaybeconsideredquitesmallandadequatefor thepurposeofinclusioninaMBPCscheme.

4.2. Wintermodels

Inthiscase,2199datapatternsweregenerated,corresponding toapproximately8daysofdataat5minsamplinginterval.Fig.9 showsasampleofthePRBSsequenceoftemperatureset-points andtheresultingroomairtemperatureandrelativehumidity.

UsingtheMOGA,predictivemodelsfortheroomair temper-atureandhumiditywereselected.Thefirstuses7 neurons,the seconduses11.Theinputvariablesanddelaysusedbytheselected modelsarepresentedinTable2.

Asforsummermodels,thewinteroneswerealsoevaluatedfor long-termprediction,inthiscasewithinapredictionhorizonof2h (24steps-ahead).WithinthishorizontheRMSerrorincreasedfrom about0.13◦Cuptoapproximately0.26◦Cforairtemperature,and from0.5%uptonear2.5%forrelativehumidity.Aswithsummer

Table1

Input–outputstructureforroomclimatesummermodels.

Variable DelaysinTaimodel DelaysinHaimodel

Tai 0,1,6,7,8,10,11 1,6,8 Hai 0,1,2,7,9 0,1,4,6,7,8,9,10 Tao 2,3,4,5,8 – Hao – 3,5,6,8,11 Rsg 7 6,8,11 Tsp 0,1,4 0,1,2,3,6,9,10,11

Fig.9.12hsampleofPRBSsequenceoftemperatureset-pointsappliedtotheHVAC

systemandtheresultingtemperatures(top,redline)andhumidities(bottom,blue

line).Winterconditions.(Forinterpretationofthereferencestocolourinthisfigure

legend,thereaderisreferredtothewebversionofthearticle.)

modelstheminimumerrorapproachwasused,andtheerrorvalues

mayalsobeconsideredquitesmallandamenabletobeemployed

inaMBPCscheme.

5. DiscreteMBPCusingbranchandbound

AsmentionedinSection1,whenthecontrolspaceisdiscrete

ordiscretised it becomespossibleto employsearchtechniques suchastheBBmethodinordertofindanoptimalsequenceof controlactions thatminimises a cost function.BBmethods are structuredsearch techniquescommonly used tosolvecomplex discreteoptimisationandcombinatorialprogrammingproblems bydividingthem intosmallersub-problemsusing atree struc-ture.In a discrete MBPCformulation, the global problemis to findtheoptimalsequenceofcontrolactionsovertheprediction horizon.Thechoiceofanadequatecontrolactionateveryinstant constitutes thevarious sub-problems tobesolved. Assuming A isavectorofnpossiblecontrolactions,attheinitialstepofthe optimisation,intimeinstantk,theBBmethodcreatestheinitial treenodecorrespondingtothedecisionofwhatactionshouldbe takenatthattimestep.Asncontrolcombinationsareavailable, thecorrespondingnumberof branchesis createdbycomputing thepredicted systemoutput, ˆy(k+1), and for each branchthe costfunction,J(k+1),isevaluated.Inthenextpredictionstep,for k+1,theprocessisrepeatedforthenodescreatedineachbranch resultingfromthepreviousstep,creatingn2 newbranches.The

wholeprocessisrepeateduntiltimeinstantk+PH−1isreached, where thenumber of createdbranches isnPH. Theexponential

natureofthewholeprocessisclearandevenforasmallnumberof controloptionsandnottoolargepredictionhorizons,thenumber of available solutions quickly becomes prohibitively large. The optimal solution is chosen by selecting the control trajectory,

Table2

Input–outputstructureforroomclimatewintermodels.

Variable DelaysinTaimodel DelaysinHaimodel

Tai 0,6,7,8,11 1,5,8 Hai 0,1,5,6,9,10,11 0,1,3,6,8,10 Tao 1,4 – Hao – 3,6,9,11 Rsg 0,3,4,8,9 6,9,10 Tsp 0,1,3,10,11 0,1,2,5,8,9,10,11

(8)

U(k)=[u(k)u(k+1)···u(k+PH−1)],thatminimisestheestimated

accumulatedcostfromtimeinstantk+1tok+PH:

J1:PH(k)=

k+PH



i=k+1

J(i) (14)

The description above assumes unrestricted branching and

resultsinanenumerativesearchovertheentirespaceofcontrol

solutionsspannedbyAoverthepredictionhorizonPH.Asalready

pointedoutthistypeofsearcheasilybecomescomputationally

pro-hibitiveandinordertoreducethenumberofsolutionsenumerated,

twoapproachesaretaken:theuseofboundstorestrictbranching

andperformingthesearchoveracontrolhorizon,CH<PH.As

for-mulatedin[51],twoboundsareemployed:anupperboundonthe

totalcostfrominstantk+1tok+PH,andalowerboundonthe costfrominstantk+itok+PH.Attimestepiintheoptimisationa branchisfollowedonlyifthecumulativecostfromstep1tostep i−1,J1:i−1(k),plusthelowerboundonthecostfromitoPH, ˆJi:PH(k),

issmallerthantheupperboundonthetotalcost, ˆJ1:PH(k).Thusthe

branchingruleisgivenby:

J1:i−1(k)+ ˆJi:PH(k)< ˆJ1:PH(k) (15)

Thisrulemaybefurtherdecomposedbynotingthatitssecondterm onthelefthandsideoftheconditionequalsthecostofusinga controlprofileAjatstepi,

J(k+i)|u(k+i−1)=Aj,

plustheestimatedcostfromstepi+1toPH:

J1:i−1(k)+J(k+i)|u(k+i−1)=Aj+ ˆJi+1:PH(k)< ˆJ1:PH(k) (16)

Whentheruledoesnotholdthebranchisnotfollowedbecauseit doesnotcontainanoptimalsolution,thuspruningallthetreenodes thatwouldbecreatedfromthecurrentnode.Thebounds estima-tionmethodandavailabilityareproblemdependent,althougha basicapproachissuggestedby[51]:ateachinstantk,beforethe optimisationstarts,afirstsearchonthetreeofpossiblesolutionsis donebysuccessivelychoosingthecontrolactiongivingthe small-estvaluesofJ(k+i)PHi=1,asearchusuallycalled“greedy”.Thetotal costfoundistheinitialestimatedupperbound, ˆJ1:PH(k).Ifatalater

stageintheoptimisationasmallervalueisfound,itreplacesthe previousone.Regardingthelowerbound, ˆJi+1:PH(k),ifanadequate estimatemaynotbecomputed,itissuggestedthatitissetto0for allstepsioftheoptimisation.Inthetypicalformulation,branching isonlyperformeduntilthecontrolhorizonisreached,therefore theremainingcostmustbeestimatedforallinstantsfromCH+1 uptoPH,forexamplebyusingthegreedyapproachjustdescribed. ItisworthnotingsomeadvantagesoftheBBmethodoverother non-linearoptimisationtechniqueswhenappliedtoMBPC: • Theoptimalsolutionisalwaysfound.Thisguaranteesthatthe

controllerisoptimalinthediscretespaceofcontrolalternatives. Importantly,noassumptionsneedtobemadeontheformulation ofthecostfunction.

• Themethodimplicitlydealswithconstraintswithoutbeing neg-atively affected. Constraints will most certainly improve the efficiencyofboundingbyeliminatingthosealternativesthatlead toconstraintviolation.

• As opposed to other iterative optimisation methods, the algorithmoutcomeisnot negativelyinfluencedbya poor ini-tialisation,althoughthetimespenttofindtheoptimummaybe greater.

6. Problemformulation

Inordertomaintainthermalcomfortandsimultaneously min-imisetheenergyspent,theproblemmaybeformulatedasfollows. Thecostofselectingonecontrolaction,Tsp,atinstantiisdefined

as, ˆJ(i)=

1+|Tsp−Tao|, Tsp>0 0, Tsp=0 (17)

whereTsp=0encodestheactionofswitchingofftheHVACunit.The

scalingfactorisusedonlytomakethattermsmallwhen com-paredto1.Inpracticeitshouldbechosenbytakingintoaccountan estimateofthemaximumvalueof|Tsp− Tao|.Thetermitselfreflects

thenotionthatthehigherthedifference|Tsp− Tao|,thebiggeristhe

energyrequiredtoachieveTsp.Usingthedefinition(17)theHVAC

controlproblemissimply, minimise U(k) J1:PH(k)=

k+PH



i=k+1 ˆJ(i)

U(k) subjectto | ˆ(i)|<T , (18)

where ˆ(i)istheestimatedPMVindexresultingfromselectingthe set-pointTspattimeinstanti.TisathresholdvalueforthePMV

indexwhichshouldguaranteeacceptablethermalcomfortforthe occupantsofthespace.TheASHRAEstandard[26]recommendsa valueof0.5whichpredictsthatlessthan10%oftheoccupantswill bedissatisfied.

7. ResultsoftheMBPCapproach

Usingthemethodologiesdescribedinprevioussections,a num-berofexperiments,bothinsummerandwinterperiods,havebeen carriedouttotestthefunctionalityandassessthecorrectnessand robustnessofthecontrolsystem.

7.1. Summerexperiments

Theresultsthatwillbepresentedanddiscussedinthissection wereobtainedina classroomequippedwithcomputers,where studentshaveanumberofcoursesondifferentcomputerscience topics(roomDdescribedinSection2).Aftermakinganumberof systematicmeasurementsontheairvelocitywithintheroomfor differentsettingsoftheHVACfanspeed, itwasconcludedthat, excludingthevicinityoftheairducts,thevelocitywasonaverage below0.1ms−1.WhencomputingthePMVindex,avalueof0.65clo wasusedfor theclothinginsulationand avalueof1.0Metwas employedforthemetabolicrate.Thismeansthatthecontext,for thePMVmodelsused,wasC={0.65,1.0,0.1}.RegardingtheMBPC systemparameters,thecontrolhorizon,CH,wassetto5samples (25min)andthepredictionhorizon,PH,to48samples(4h). 7.1.1. Experiment1

Fig.10presentsonesituationofahotsummerdaywherethe roomwasinusewhenthesystemstartedoperation.Theinitial thermalcomfortindex,,isabovethe0.5thresholdandtheHVAC takesalmost2hat18◦C set-pointtobringtheroomto accept-ablethermalcomfortconditions.Beyondthispoint,withtheroom withnoload,thesystemisabletomaintainthedesiredconditions byusinghigherset-pointsandbyswitchingofftheHVACwhen possible,thereforeconsuminglessenergy.

The room air temperature model does not have an input accountingfortheroomusage,consequentlythecontrolalgorithm isnotabletoforeseeandactpre-emptivelytocounteractthestrong impactcausedbyaclassenteringtheroom.

(9)

Fig.10.HVACcontrolforthermalcomfortinsummerconditions.Roomisinuse whensystemstarts.Bothplots:shadedareashowsroomactivitymonitor sig-nal.Upperplot:measured(reddash-dot)andone-step-aheadpredicted(reddot) humidity,areshownaboveshadedarea;same(inblue)belowshadedareaforair temperature;dashandsolidlinesshowoutsideairtemperatureandACset-point. (Forinterpretationofthereferencestocolourinthisfigurelegend,thereaderis referredtothewebversionofthearticle.)

7.1.2. Experiment2

Fig.11presentsasecondsituation,onanevenslightlyhotter day,whereafterafirsttimespanofroomoccupancyendingwith acceptablethermal conditions,thesystemwasabletomaintain thoseconditionsonasecondclasswithlesseffortthanthatofthe firstcase.Thiswouldbetheexpectedbehaviourifthesystemcould predicttheroomoccupancy.

7.1.3. Experiment3

Onwhatconcernstheroomairtemperatureandrelative humid-itymodels,itmaybeseenthatthepredictionsarequiteaccurate whichresultsona goodforecast ofthePMV indexand correct operationof thesystemthroughtime. Thisisconfirmedbythe resultspresentedinFig.12,whichgivegoodindicationsregarding robustness.Thesystemoperatedforabout48hmaintaininggood thermalconditionsandshowingexcellentroomclimatemodelling, alsoaccountingpositivelyontheoutsideweathermodels.Ifthey wouldnotprovidesufficientlyaccuratepredictionstheroom cli-matemodelsaccuracywouldsuffer.

7.2. Winterexperiments

Theaimofthefollowingexperimentswasnotonlytotestthe functionalityandassessthecorrectnessandrobustnessofthe con-trolsystem,inwinterconditions,butalsotoassessanypossible energysavingsthatitmaygenerate.Inordertofulfilthesecond goal,3adjacentsimilarroomswereused.Theobjectiveistorun theMBPCalgorithminoneoftheroomsandcomparetheresults tothoseobtainedbytheHVACbuilt-incontrolsystemintheother rooms.Pleaserecalltheroomsdescriptionthatwasgivenin Sec-tion2.RoomAandCwillemploytheconventionalcontrolsystem, andMBPCwillbeappliedinRoomB.Aftermakinganumberof

Fig.11.HVACcontrolforthermalcomfortinsummerconditions.Pre-emptive con-trolimprovesperformance.Thesamestructure,linestyleandcolourcodingofFig.10 wasused.(Forinterpretationofthereferencestocolourinthisfigurelegend,the readerisreferredtothewebversionofthearticle.)

systematicmeasurementsontheairvelocitywithinthe3rooms fordifferentsettingsoftheHVACfanspeed,itwasconcludedthat, excludingthevicinityoftheairducts,thevelocitywasonaverage closeto0.08ms−1.Avalueof1.0clowasusedfortheclothing insu-lationandavalueof1.0Metforthemetabolicrate.APMVmodel withcontextC={1.0,1.0,0.08}wasthereforeemployed.Regarding theMBPCsystemparameters,thecontrolhorizon,CH,wasagain setto5samples(25min)andthepredictionhorizonto48samples (4h).

7.2.1. Experiment4

Fig.13showstheresultsofafirstsmallexperimentcarriedout totesttheexperimentalset-up.

InroomB(solidredline)theset-pointisdeterminedbythe MBPCsystem.InroomsA(blackdash-dotline)andC(bluedash line),fixedset-pointsof23and22◦Cwereemployed,respectively. Thesevaluesarecommonlyusedaspre-programmedset-pointsfor theroomswithintheHVACmanagementsystem.Theoccupants frequentlysetevenlargervalues.Theexperimenttookplaceatthe endoftheday,duringwhichtheaverageoutsideairtemperature was8.8◦C.

Itmaybeseenthatinitiallyalltheroomsareoutsidethecomfort zoneasthePMVindexisbelow−0.5.Afterabout20minallthe roomswerewithinthecomfortzone,inthecaseofBbyactionof theMBPCsystemwhichshowsgoodresponsivenesstothevicinity ofthePMVindexthresholdof−0.5.Wheneverthesystemforesees thatthethresholdwillbereacheditdeterminesoneofthepossible set-pointsandappliesittothesystem.Thisisanindicationofthe goodpredictiveabilityofthemodelsandoftheirusefulnessfor theBBsolutionsearch.Itis alsoobviousthat theHVAC system temperature regulation is very poor,as in rooms A and C the temperaturewasalwaysfarawayfromthetargetvalue.Theresult isthatthesystemwaspermanentlyheatingforapproximately2h and20min.InroomBtheMBPCwasmakinggooddecisionsasit

(10)

Fig.12.HVACcontrolforthermalcomfortinsummerconditions.About48hofoperation.Thesamestructure,linestyleandcolourcodingofFig.11wasused.(For interpretationofthereferencestocolourinthisfigurelegend,thereaderisreferredtothewebversionofthearticle.)

wasmaintainingthecomfortindexabovethe−0.5limitwithout switchingontheACpermanently.Duringthe2:20hthattheAC washeatinginroomsAandC,thetotalactivetimeinroomBwas 55min,whichcorrespondstoareductionofabout60%.

7.2.2. Experiment5

A second experiment was conducted in order to verify the resultsobtainedinthefirstshortexperiment.It startedearlyin theday,around6:00a.m.andlasteduntil12:30.Duringthisperiod theoutsideairtemperatureincreasedfrom7.5to16.5◦C,withan averageof11.7.Thesettingsandset-pointswerethesameasfor thefirstexperiment.TheresultsareillustratedinFig.14usingthe samelinestyleandcolourcodingasinFig.13.

Duringthefirst4hofthisexperimentthebehaviourwassimilar totheoneobservedinthefirstexperiment.Atthatpointthesystem inroomCstartedtoswitchonandofftheACsystemasifithad

reachedtheset-point,although,asmeasuredbytheWSN,itdid not.Surprisingly, asitseemedtohavereacheditsset-point,up totheendoftheexperimenttheACsystemkeptincreasingthe temperatureinthatroom.InroomA,thesameproblemsasbefore wereobserved,astheACsystemiscontinuouslyactive.

TheMBPCsysteminroomBmanagedverywelltomaintain thethermalcomfortandhaverelativelylargeperiodsofinactivity. WhencomparedtoroomsAandCthereductioninheatingtime wasapproximately41%and45%,respectively.Theresultsachieved reinforcetheideathattheexistingHVACsystemprovides inade-quatetemperatureregulationandhasquitedifferentperformance amongtherooms.Becauseofthisanadditionalexperimentwas carriedoutonlyinroomB.

InordertobeabletocomparetheMBPCinroomBwiththe standardcontrolalgorithminthesameroom,rightafterthesecond experimenttheMBPCwassubstitutedbyafixedset-pointof22◦C.

Fig.13. Winterconditionscontrolexperimentinthreeadjacentrooms:A(dash-dotblackline);B(solidredline);andC(dashblueline).Leftplotsare,fromtoptobottom, theroomairtemperatureandthePMVcomfortindex.Thetop-rightplotshowstheevolutionofthetemperatureset-pointoftheAC,andthebottom-rightplotshowsthe state,onoroff,oftheAC.(Forinterpretationofthereferencestocolourinthisfigurelegend,thereaderisreferredtothewebversionofthearticle.)

(11)

Fig.14. Asecondexperimenttoestimaterelativeenergysavingsinwinter condi-tions.ThesamecolourandlinetypecodingasinFig.13,wasusedforroomsA,B, andC.(Forinterpretationofthereferencestocolourinthisfigurelegend,thereader isreferredtothewebversionofthearticle.)

Thisset-pointresultsinaPMVindexvaluenotfarawayfrom−0.5, thethresholdthatwasgoverningthebehaviouroftheMBPC.As theoutsidetemperaturewasstillrising,thefixedset-pointcontrol taskwouldnotbeharderwhencomparedtothepreviouscouple ofhoursinthesecondexperimentwheretheoutsidetemperatures weresmaller,thereforetoagoodextentthelast2hofthesecond experimentarecomparabletothefirstcoupleofhoursofthefixed set-pointexperience,withoutfavouringtheMBPC.

Theresultsfromthecomparisonarevisible inFig.15.Asin previousexperimentstheMBPCkeepsgoodtrackofthethermal comfortrestrictionwhichisonlymarginallyviolatedbecauseof theinevitableerrorofpredictivemodels.Thesystemonlyspends energywhennecessarytomaintaintheminimumlevelof com-fortspecified.Regardingthestandardtemperatureregulation(in dash-dotblackline),itmaybeseenthatregardlessof attaining theset-pointand of switchingonand off sometimes,it keeps increasingtheroomtemperatureunnecessarily,therefore wast-ingenergy.InthiscomparisontheMBPCactivatedtheACsystem approximately37%lessthantheHVACcontrol.

7.2.3. Experiment6

Onwhatconcernstheroomairtemperature,relativehumidity andPMVindex,itmaybeseeninFig.16thattheone-step-ahead predictionsareaccurate, resultingongoodPMVindexforecasts andoncorrectoperationofthesystemthroughtime,whichgive goodindicationsregardingrobustness.Thisfigurewasobtained bylettingthesystemrunforapproximately11h,wheretheunit washeatingonly15%ofthisperiod.Duringthistimethesystem operatedcorrectlyandcontinuously,alwaysmaintainingdesired thermalconditionsandshowingexcellentroomclimatemodelling, alsoaccountingpositivelyontheoutsideweathermodels.

Itshouldbenotedthatfromsample40uptosample95,the roomwasbeingusedforlectures.Thisrepresentsathermalload thatactuallycontributestomaintainthecomfortduringwinter. Onsummerconditions,asitwasseen,thesystemisrequiredto react,therefore,asinsummermodels,aninputmustbeaddedto themodelstoaccountfortheroomoccupancyschedule.

Table3

Energy(inkWh)assignedtoeachindoorunit.

Experiment A B C1 C2

4 5.3 2.5 5.3 4.4

5 13.6 6.9 14.6 11.8

6 24.8 5.6 24.8 16.3

7.3. Energysavings

Aswithinthe16locationsmonitoredthereare14interiorair

conditioningunits,it wasnoteconomically possibletoactually

measuretheelectricenergyspentineveryindoorunit.Asa

com-promisesolution,powertransducerswereinstalledinthethree

outdoorunits,thereforemakingtheelectricenergyvalues

avail-ablefortheseunitsthroughtheLMAP02interface.Aprocedure,

suggestedbyMitsubishi,wasthenfollowedtogiveafirst,crude

approximationtotheelectricenergyconsumptionofeachindoor

unit[52].

DenotingbyEo(T)theelectricalenergyconsumedbytheoutdoor

unit,duringaperiodT,byToniandTthithetime(inhours)thatthe

fanisoperatingoftheithindoorunitandthattheunitiscooling orheating,respectively,thentheenergyEi(T)(inWh),assignedto

theithindoorunit,outofNunits,isgivenby: Ei(T )=Eo(T )

Tthi

iTthi+

220Toni+32N. (19)

Theconstantsin(19)havebeencomputedforthemodelsinuse, following[52].

Inexperiments4–6,theindoorunitsofroomsA,BandCwere connectedtothesameoutdoorunit.RoomAandBhaveasingle indoorunitwhileroomBhad2.RoomsAandCwereunderconstant temperaturecontrol,whilstinroomBtheproposedMBPC method-ologywascontrollingtheindoorunit.Theroomswereadjacent, locatedintheleftcornerofthebuilding(pleaseseeFig.1).Thearea ofroomAisequaltotheareaofroomBandhalfofroomC(hence thetwoindoorunits).Thetotalelectricenergy(inkWh)assignedto eachunit,foreachexperiment,andusingtheproceduredescribed above,isgiveninTable3.

Table4showsthesavings,inpercentage,achievedinthe elec-tricenergyspentbyunitB,comparedwithalltheotherunits,for eachexperiment.Asitcanbeseen,thesavingsrangefrom41%, achievedinthe5thexperimentandtakingthe2ndinteriorunitof roomCasthecomparisonunit,and77%,inexperiment6,forthe interiorunitinroomAandthe1stinteriorunitofroomC.These valuesofenergysavings,ifononehandwereexpectedbecausethe systemhastheabilitytousefutureinformationandbecauseituses moreanddiverseinformation,ontheotherhandtheyalsooccur duetotheinadequateoperationofthestandardcontrolintheHVAC system.Thismayoccurforvariousreasons:malfunctions, inade-quatesensorlocations,badqualityequipment,excessivelysimple controlalgorithms,orinadequateset-pointsbeingset.Whatever thereason is,theresultsobtainedshowthatbyhavinga MBPC commandingtheHVACsystem,importantsavingsinenergy,inthe orderof50%,aretobeexpected.

Table4

Savings(in%)ofBcomparedwithA,C1andC2.

Experiment A C1 C2

4 52 52 43

5 49 52 41

(12)

Fig.15.ComparisonofMBPC(solidredline)withfixedset-pointHVACsystemcontrol(dash-dotblackline)inroomB.Winterconditions.Thesamecolourandlinetype

codingasinFig.14,wasusedforroomB.(Forinterpretationofthereferencestocolourinthisfigurelegend,thereaderisreferredtothewebversionofthearticle.)

Fig.16.PredictedPMV,airtemperatureandrelativehumidity,for11hinwinterconditions.Dotsaremodelpredictedvalues.Activitymonitorsignalshowninshadedarea ofmiddleplot.

8. Conclusionsandfuturework

Amodelbasedpredictivecontrolmethodologyusingthebranch andboundmethodwasformulatedandappliedtocontrol exist-ingHVACsystemsinbuildings.Totheextentthemodelsaccuracy allow,theformulationguaranteesthatanoptimalcontrol trajec-toryiscomputedinordertomaintainadesiredlevelofthermal comfortandtominimisetheenergyspentindoingso.Thesystem isconceptuallysimple andintegrateseasilywithexistingHVAC systems.Thefeasibilityandrobustnesshavebeendemonstrated experimentally.Accordingtotheresults,importantenergysavings

areachievedbyhavingthemodelbasedpredictivecontroller deter-miningtheoperationofHVACsystems.Thesesavingsareprobably above50%.

Asthemodelbasedpredictivecontrolneedsseveralcalculation ofthepredictedmeanvalueindex,itscomputation,usingasetof radialbasisfunctionneuralnetworkmodels,hasbeeninvestigated. Themodelsshowgoodestimationaccuracyoverwiderangesof theinputvariablesandprovidegoodcoverageofthethermal sen-sationscale.Whencomparedtopreviousworks,thedesignofthe modelswasplannedindetailwiththepurposeofusingthemin real-timecontrolapplications,thegeneralisationofthemodelswas

(13)

testedthoroughly,andaprocedurewasshowninordertoselecta modelonthebasisofadesiredcompromisebetweenspeed-upand estimation.

Futureworkwillfocusontheimprovementofthecontrol sys-tembymakingitawareoftheroomsoccupancyschedule,andon estimatingmoreaccuratelythepotentialenergysavings.

Acknowledgements

The authors wish to acknowledge the support of the Portuguese National Science Foundation (project grant PTDC/ENR/73345/2006), the European Commission for the grant PERG-GA-2008-239451 and the University of Algarve for theCeratonia2008Award.ThisworkwasalsosupportedbyFCT, throughIDMEC,underLAETA.

References

[1]B. Poel, G. van Cruchten, C.A. Balaras, Energy performance assess-ment of existing dwellings, Energy and Buildings 39 (2007) 393–403, http://dx.doi.org/10.1016/j.enbuild.2006.08.008.

[2]C.Balaras,E.Dascalaki,A.Gaglia,K.Droutsa,S.Kontoyiannidis,Energy per-formanceofEuropeanbuildings,in:ProceedingsoftheEnergySustainability Conference,Longbeach,USA,2007,pp.387–396.

[3] E.U.Parliament,E.U.Council,OntheEnergyPerformanceofBuildings,2010, June.http://dx.doi.org/10.3000/17252555.L 2010.153.eng

[4]A.Dexter,Intelligentbuildings:factorfiction?HVAC&RResearch2(2)(1996) 105–106,http://dx.doi.org/10.1080/10789669.1996.10391336.

[5] A.E.Ben-Nakhi,M.A.Mahmoud,Energyconservationinbuildingsthrough effi-cientA/Ccontrolusingneuralnetworks,AppliedEnergy73(1)(2002)5–23, http://dx.doi.org/10.1016/S0306-2619(02)00027-2.

[6]S.Wang,Y.Chen,Fault-tolerantcontrolforoutdoorventilationairflowratein buildingsbasedonneuralnetwork,BuildingandEnvironment37(7)(2002) 691–704,http://dx.doi.org/10.1016/S0360-1323(01)00076-2.

[7]A.E. Ben-Nakhi, M.A. Mahmoud, Cooling load prediction for buildings using general regression neural networks, Energy Conversion and Management 45 (13–14) (2004) 2127–2141, http://dx.doi.org/10.1016/j.enconman.2003.10.009.

[8]S. Wang, Z. Ma, Supervisory and optimal control of building HVAC systems: a review, HVAC&R Research 14 (1) (2008) 3–32, http://dx.doi.org/10.1080/10789669.2008.10390991.

[9] A. Dounis, C. Caraiscos, Advanced control systems engineering for energy andcomfort management inabuilding environment–areview, Renewable and SustainableEnergyReviews 13(6–7)(2009) 1246–1261, http://dx.doi.org/10.1016/j.rser.2008.09.015.

[10] C.Chang,J.Zhao,N.Zhu,Energysavingeffectpredictionandpostevaluation ofair-conditioningsysteminpublicbuildings,EnergyandBuildings43(11) (2011)3243–3249,http://dx.doi.org/10.1016/j.enbuild.2011.08.025. [11] S. Soyguder, Intelligent system based on wavelet decomposition

and neural network for predicting of fan speed for energy sav-ing in HVAC system, Energy and Buildings 43 (4) (2011) 814–822, http://dx.doi.org/10.1016/j.enbuild.2010.12.001.

[12] T.Olofsson,S.Andersson,R.Östin,Amethodforpredictingtheannualbuilding heatingdemandbasedonlimitedperformancedata,EnergyandBuildings28 (1)(1998)101–108,http://dx.doi.org/10.1016/S0378-7788(98)00004-8. [13]B.Dong,C.Cao,S.E.Lee,Applyingsupportvectormachinestopredict

build-ingenergyconsumptionintropicalregion,EnergyandBuildings37(5)(2005) 545–553,http://dx.doi.org/10.1016/j.enbuild.2004.09.009.

[14]P.A.González,J.M.Zamarreno,Predictionofhourlyenergyconsumptionin buildingsbasedonafeedbackartificialneuralnetwork,EnergyandBuildings 37(6)(2005)595–601,http://dx.doi.org/10.1016/j.enbuild.2004.09.006. [15]J.Yang,H.Rivard,R.Zmeureanu,On-linebuildingenergypredictionusing

adap-tiveartificialneuralnetworks,EnergyandBuildings37(12)(2005)1250–1259, http://dx.doi.org/10.1016/j.enbuild.2005.02.005.

[16]S. Karatasou, M. Santamouris, V. Geros, Modeling and predicting building’s energy use with artificial neural networks: meth-ods and results, Energy and Buildings 38 (8) (2006) 949–958, http://dx.doi.org/10.1016/j.enbuild.2005.11.005.

[17]A.H. Neto, F.A.S. Fiorelli, Comparison between detailed model simu-lation and artificial neural network for forecasting building energy consumption, Energy and Buildings 40 (12) (2008) 2169–2176, http://dx.doi.org/10.1016/j.enbuild.2008.06.013.

[18]K. Li, H. Su, Forecasting building energy consumption with hybrid genetic algorithm-hierarchical adaptive network-based fuzzy infer-ence system, Energy and Buildings 42 (11) (2010) 2070–2076, http://dx.doi.org/10.1016/j.enbuild.2010.06.016.

[19] G.Escrivá-Escrivá,C.Álvarez-Bel,C.Roldán-Blay,M.Alcázar-Ortega,New arti-ficialneuralnetworkpredictionmethodforelectricalconsumptionforecasting basedonbuildingend-uses,EnergyandBuildings43(11)(2011)3112–3119, http://dx.doi.org/10.1016/j.enbuild.2011.08.008.

[20]K. Li, H. Su, J. Chu, Forecasting building energy consumption using neural networks and hybrid neuro-fuzzy system: a com-parative study, Energy and Buildings 43 (10) (2011) 2893–2899, http://dx.doi.org/10.1016/j.enbuild.2011.07.010.

[21]A.Ruano,E.Crispim,E.Conceic¸ao,M.Lúcio,Predictionofbuilding’s tem-peratureusingneuralnetworksmodels,EnergyandBuildings38(6)(2006) 682–694,http://dx.doi.org/10.1016/j.enbuild.2005.09.007.

[22] A.Ruano,E.Crispim,P.Fraza,MOGAdesignofneuralnetworkpredictorsof insidetemperatureinpublicbuildings,in:V.Balas,J.Fodor,A.Várkonyi-Kóczy (Eds.),SoftComputingBasedModelinginIntelligentSystems,vol.196of Stud-iesinComputationalIntelligence,Springer,Berlin/Heidelberg,2009,pp.35–61, http://dx.doi.org/10.1007/978-3-642-00448-3 3.

[23]Y. Tachwali, H. Refai, J. Fagan, Minimizing HVAC energy consumption using awirelesssensor network,in:Industrial ElectronicsSociety, 2007. IECON 2007. 33rd Annual Conference of the IEEE, 2007, pp. 439–444, http://dx.doi.org/10.1109/IECON.2007.4460329.

[24]D.-M. Han,J.-H. Lim, Design andimplementation ofsmarthome energy management systems basedon zigbee, IEEE Transactions on Consumer Electronics 56 (3) (2010) 1417–1425, http://dx.doi.org/10.1109/TCE.2010. 5606278.

[25] T.Bedford,C.Warner,Theglobethermometerinstudiesofheatingand venti-lation,JournalofHygiene34(4)(1934)458–473.

[26]M.S.Owen(Ed.),2009ASHRAEHandbook–Fundamentals,SIedition,ASHRAE, 2009.

[27]TinyOs,TinyOsOperatingSystem,1999,http://www.tinyos.net/

[28]MitsubishiElectric,AirConditionerInterface.ModelLMAP02.Installation Man-ual,2001,http://www.tinyos.net/

[29]S.Atthajariyakul,T.Leephakpreeda,Neuralcomputingthermalcomfortindex forHVACsystems,EnergyConversionandManagement46(15–16)(2005) 2553–2565,http://dx.doi.org/10.1016/j.enconman.2004.12.007.

[30]M.Kumar,I.Kar,Non-linearHVACcomputationsusingleastsquaresupport vectormachines,EnergyConversionandManagement50(2009)1411–1418, http://dx.doi.org/10.1016/j.enconman.2009.03.009.

[31]Y. Jian, X. Jin, Research on the BPNN in the prediction of PMV, Applied Mechanics and Materials 29–32 (2010) 2804–2808, http://dx.doi.org/10.4028/www.scientific.net/AMM.29-32.2804.

[32]ANSI,ASHRAE,ThermalEnvironmentalConditions forHumanOccupancy, 2004.

[33]P.O.Fanger,ThermalComfort:AnalysisandApplicationsinEnvironmental Engineering,McGraw-Hill,NewYork,1972.

[34]J. Kang, Y. Kim, H. Kim, J. Jeong, S. Park, Comfort sensing system for indoorenvironment,in:InternationalConferenceonSolidStateSensorsand Actuators,vol.1,1997,pp.311–314,http://dx.doi.org/10.1109/SENSOR.1997. 613646.

[35] I.O.forStandardization(ISO),ISO7730:ModerateThermalEnvironments– DeterminationofthePMVandPPDIndicesandSpecificationoftheConditions forThermalComfort,1994.

[36] K.Cena,J.Clark(Eds.),Bioengineering,ThermalPhysiologyandComfort,vol. 10ofStudiesinEnvironmentalScience,ElsevierB.V.,1981.

[37]K.Levenberg,Amethodforthesolutionofcertainnon-linearproblemsinleast squares,TheQuarterlyofAppliedMathematics(2)(1944)164–168. [38] D.W.Marquardt,Analgorithmforleast-squaresestimationofnonlinear

param-eters,JournaloftheSocietyforIndustrialandAppliedMathematics11(2) (1963)431–441.

[39]A. Ruano, D. Jones, P. Fleming, A new formulation of the learning problem of a neural network controller, in: Proceedings of the 30th IEEE Conference on Decision and Control, vol. 1, 1991, pp. 865–866, http://dx.doi.org/10.1109/CDC.1991.261439.

[40]P.M.Ferreira,A.E.Ruano,Exploitingtheseparabilityoflinearandnon-linear parametersinradialbasisfunctionneuralnetworks,in:IEEESymposium2000: AdaptiveSystemsforSignalProcessing,Communications,andControl,Canada, 2000,pp.321–326,http://dx.doi.org/10.1109/ASSPCC.2000.882493. [41]S.Haykin,NeuralNetworks:AComprehensiveFoundation,2nded.,Prentice

Hall,Inc.,1999.

[42]P.M. Ferreira, E. Faria, A.E. Ruano, Neural network models in green-houseairtemperatureprediction,Neurocomputing43(1–4)(2002)51–75, http://dx.doi.org/10.1016/S0925-2312(01)00620-8.

[43]A.E.Ruano,P.M.Ferreira,C.Fonseca,Anoverviewofnon-linearidentification andcontrolwithneuralnetworks,in:A.E.Ruano(Ed.),IntelligentControlUsing Soft-ComputingMethodologies,vol.70ofControlSeries,IEEPublishing,2005, pp.37–87.

[44]P.M.Ferreira,A.E.Ruano,Evolutionarymultiobjectiveneuralnetwork mod-els identification: evolving task-optimised models,in: New Advances in Intelligent Signal Processing, vol. 372/2011 of Studies in Computational Intelligence,Springer,2011,pp.21–53, http://dx.doi.org/10.1007/978-3-642-11739-82.

[45] J.Sjöberg,L.Ljung,Overtraining,regularization,andsearchingforminimum withapplicationtoneuralnetworks,in:PreprintIFACSymposiumonAdaptive SystemsinControlandSignalProcessing,1994,pp.669–674.

[46]S.Amari,N.Murata,K.-R.Müller,M.Finke,H.Yang,Asymptoticstatistical the-oryofovertrainingandcross-validation,IEEETransactionsonNeuralNetworks 8(5)(1997)985–996,http://dx.doi.org/10.1109/72.623200.

[47]P.M. Ferreira, A.E. Ruano, C. Fonseca, Genetic assisted selection of RBF modelstructuresforgreenhouseinsideairtemperatureprediction,in:IEEE ConferenceonControl Applications,Istanbul, Turkey,2003, pp. 576–581, http://dx.doi.org/10.1109/CCA.2003.1223500.

(14)

[48]P.M.Ferreira,A.E.Ruano,C.Fonseca,Evolutionarymulti-objectivedesignof radial basisfunction networksfor greenhouseenvironmentalcontrol, in: The16thIFACWorldCongressonAutomaticControl,vol.16,Prague,Czech Republic,2005,http://dx.doi.org/10.3182/20050703-6-CZ-1902.00871. [49]P.M.Ferreira,A.E.Ruano,Applicationofcomputationalintelligence

meth-odstogreenhouseenvironmentalmodelling,in:(WCCI2008)IJCNN2008 (IEEEWorldCongress onComputationalIntelligence).2008IEEE Interna-tional Joint ConferenceonNeuralNetworks,2008, 2008, pp.3582–3589, http://dx.doi.org/10.1109/IJCNN.2008.4634310.

[50]P.M.Ferreira,Applicationofcomputationalintelligencemethodstogreenhouse environmentalcontrol,Ph.D.Thesis,FacultyofSciencesandTechnology, Uni-versityofAlgarve,Faro,Portugal,2008,January.

[51]J.M.Sousa,R.Babuˇska, H.B.Verbruggen,Fuzzy predictivecontrolapplied toanair-conditioning system,ControlEngineeringPractice5(10)(1997) 1395–1406.

[52]MitsubishiElectric,HowtoCalculatetheElectricEnergyConsumptionRatioof CityMultibyBMSviaLMAP02,2001.

Imagem

Fig. 1. Overview of the experimental set up used.
Fig. 2. Using a set of PMV models in an HVAC control system.
Fig. 3. Input–output variables distribution within the ranges of values considered.
Fig. 5. PMV index fitting on validation data set, obtained with a 5 neuron RBF model.
+6

Referências

Documentos relacionados

Nevertheless, both Britain and Portugal hoped that their overseas territories might help to leverage their bargaining power in the setting-up of a free trade area in the context

Desse modo, as abordagens de avaliação de ativos intangíveis mais citadas na literatura foram: (i) Skandia Navigator; (ii) Balanced Scorecard (BSC); (iii)

v^ (e^) onde argmax denota a maximização de um conjunto de diversos máximos possíveis. Uma das vantagens desta estratégia é a de que existe independência entre a escolha do

Neste estudo, foi retirado 1(um) internó do colmo do bambu Dentrocalamus Asper para fabricação dos padrões (in natura) e submetido ao ensaio Charpy (ASTM-E23) com o objetivo

Rubin, Fractional integrals and weakly singular integral equations of the first kind in the n-dimensional ball.. Rubin, Fractional Integrals

Consequently, the solution here described comes as an approach to the transmission of data between the different parties involved, providing a prototypical approach to the

Originally written in traditional Chinese, and published in serialised form from 20 May 1959 to 5 July 1961 in the Hong Kong newspaper Ming Pao (also owned by Jin Yong – but we

Cryptococcus neoformans, Coccidioides immitis, Histoplasma capsulatum e o gênero Paracoccidioides sp.) e ausentes no genoma humano. enzima importante para a