• Nenhum resultado encontrado

AMPA receptors mediate passive avoidance deficits induced by sleep deprivation

N/A
N/A
Protected

Academic year: 2021

Share "AMPA receptors mediate passive avoidance deficits induced by sleep deprivation"

Copied!
8
0
0

Texto

(1)

ContentslistsavailableatScienceDirect

Behavioural

Brain

Research

jo u r n al ho me p a g e :w w w . e l s e v i e r . c o m / l o c a t e / b b r

Research

report

AMPA

receptors

mediate

passive

avoidance

deficits

induced

by

sleep

deprivation

Francisco

Paulino

Dubiela

a

,

Claudio

Marcos

Queiroz

b

,

Karin

Di

Monteiro

Moreira

a

,

Jose

N.

Nobrega

c

,

Luciane

Valéria

Sita

d

,

Sergio

Tufik

a

,

Debora

Cristina

Hipolide

a,∗

aDepartamentodePsicobiologia,UniversidadeFederaldeSãoPaulo,SãoPaulo,Brazil

bBrainInstitute,UniversidadeFederaldoRioGrandedoNorte,Natal,Brazil

cNeuroimagingResearchSection,CenterforAddictionandMentalHealth,Toronto,Canada

dDepartamentodeAnatomia,InstitutodeCiênciasBiomédicas,UniversidadedeSãoPaulo,SãoPaulo,Brazil

h

i

g

h

l

i

g

h

t

s

•[3H]AMPAbindingisreducedinthehippocampalformationbysleepdeprivation.

•Sleeprecoveryrestored[3H]AMPAbindingreductioninducedbysleepdeprivation.

•GluR1mRNAlevelsareunaffectedbysleepdeprivation.

•AMPARpotentiatorrevertedsleepdeprivation-inducedimpairmentofmemoryretention.

•AMPARantagonisthadnoeffectonsleepdeprivation-inducedimpairmentofmemoryretention.

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received30July2013

Receivedinrevisedform

18September2013

Accepted21September2013

Available online 28 September 2013 Keywords:

Sleepdeprivation

AMPAreceptor

Passiveavoidancetask

Aniracetam GYKI-52466

a

b

s

t

r

a

c

t

Thepresentstudyaddressedtheeffectsofsleepdeprivation(SD)onAMPAreceptor(AMPAR)binding inbrainregionsassociatedwithlearningandmemory,andinvestigatedwhethertreatmentwithdrugs actingonAMPARcouldpreventpassiveavoidancedeficitsinsleepdeprivedanimals.[3H]AMPA

bind-ingandGluR1insituhybridizationsignalswerequantifiedindifferentbrainregionsofmaleWistar ratseitherimmediatelyafter96hofsleepdeprivationorafter24hofsleeprecoveryfollowing96h ofsleepdeprivation.Anothergroupofanimalsweresleepdeprivedandthentreatedwitheitherthe AMPARpotentiator,aniracetam(25,50and100mg/kg,acuteadministration)ortheAMPARantagonist GYKI-52466(5and10mg/kg,acuteandchronicadministration)beforepassiveavoidancetraining.Task performancewasevaluated2hand24haftertraining.Asignificantreductionin[3H]AMPAbindingwas

foundinthehippocampalformationofSDanimals,whilenoalterationswereobservedinGluR1mRNA levels.Thehighestdoseofaniracetam(100mg/kg)revertedSD-inducedimpairmentofpassive avoid-anceperformanceinbothretentiontests,whereasGYKI-52466treatmenthadnoeffect.Pharmacological enhancementofAMPARfunctionmayreverthippocampal-dependentlearningimpairmentsproduced afterSD.WearguethatsucheffectsmightbeassociatedwithreducedAMPARbindinginthehippocampus ofsleepdeprivedanimals.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Sleeplossisbecominganincreasinglyproblemofmodern

soci-etyresultingindeleteriouseffectsondailyfunctions[1],especially

hinderingcognitiveprocessesinhumans[2].Likewise,animal

stud-ieshavealsorevealedthatsleepdeprivation(SD)resultsinmajor

impairmentsinavarietyofcognitivefunctions,particularlythose

∗ Correspondingauthorat:DepartamentodePsicobiologia,UniversidadeFederal

deSãoPaulo,RuaNapoleãodeBarros,925,SãoPaulo,SP04024-002,Brazil.

Tel.:+551121490155;fax:+551155720754.

E-mailaddress:dchipolide@unifesp.br(D.C.Hipolide).

associatedwithlearningandmemory[3–7].Interestingly,

learn-ingdeficitsobservedafterseveraldaysofsleepdeprivationcanbe

preventedbyashortperiodofsleeprecovery.Thus,previous

stud-ieshaveshownthatdeficitsdisplayedbyratsinpassiveavoidance

(PA)andcontextualfearconditioningtasksafter3–4daysofSDare

preventedifitisfollowedby24hofsleeprecovery[5–7].Despite

theevidencethatunderlyingmnemonicmechanismsalteredby

SDarenormalizedafterashortperiodofsleeprebound,theirexact

identitiesarestillamatterofdebate,asseveralneurotransmitter

systemsareinfluencedbySD[8].

One potential mechanism that may be altered by SD is

thefunctionofglutamatergicalpha

amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPAR). These receptors

0166-4328/$–seefrontmatter © 2013 Elsevier B.V. All rights reserved.

(2)

190 F.P.Dubielaetal./BehaviouralBrainResearch257 (2013) 189–196

mediatethemajorityoffastexcitatorytransmissioninthecentral

nervoussystem,andarecloselyinvolvedinmnemonicprocesses

andhippocampalsynapticplasticity[9–11].AMPARaretetramers

composedoffoursubunits(GluR1–GluR4)[12],andareinfluenced

bychangesinglutamatergictransmissioninducedeither

pharma-cologicallyorbybraininjury(e.g.,cerebralischemia)[13–15].In

thiscontext,sleepdeprivation hasbeenshown toincrease

glu-tamatergictransmissionin thecortex and hippocampusofrats

[16,17],whichmaytriggerAMPARplasticity.Previousstudies

how-everhaveproducedconflictingevidenceregardingSDeffectson

AMPARfunction.Vyazovskiyetal.[18]reportedincreased

expres-sionof the AMPARsubunit GluR1 in corticaland hippocampal

regionsaftertotalsleepdeprivation,whileMcDermottetal.[19]

foundnochanges inAMPAR currentsrecordedin hippocampal

outside-outpatchesfromratsdeprivedofsleepfor72h.Finally,

Ravassardetal.[20]havereporteddecreasedlevelsof

hippocam-palGluR1withinthesameSD period.Althoughmuchattention

hasbeengiventoSDeffectsonAMPARfromthehippocampal

for-mation,thereisascarcityofdataaboutotherlimbicstructures.

Wereasonedthatacomprehensivewide-rangeanalysisofAMPAR

bindingin brain regions associated withlearning and memory

mightcontributetoelucidatethisissue.

AnotherapproachtoexaminetheinvolvementofAMPARinthe

learningdeficitsinducedbySDispharmacologicalmanipulationof

thesereceptors,anapproachwhichhasbeenwidelyusedto

inves-tigatememorymechanisms[10,21].AMPARpotentiators,suchas

aniracetamandampakines,producepositiveallostericeffectson

theirsites [22,23]. Because of these effects, this class of drugs

hasbeenusedtopreventmemorydeficitsinducedbya variety

ofconditions, suchas brainlesions,aging and pharmacological

amnesia[24–26].ConcerningSD-inducedmemorydeficits,ithas

beenshownthattheampakineCX717isabletoameliorate

cog-nitivedeficitsproducedbylackofsleepinmonkeysandhumans

[27,28].AnotherlineofevidenceshowsthatAMPARantagonists,

suchasGYKI52466,amelioratememorydeficitsinanimal

mod-elsofbrainischemia[29,30].Thus,wehypothesizedthatasimilar

treatmentmightreverseSDdeleteriouseffectsonlearning

perfor-mance,asSDandbrainischemiaseemtosharesimilaritieswith

respecttoincreases in glutamatergiclevelsand AMPAR

modu-lation[15,31,32].Moreover,chronictreatmentwithGYKI52466

hasbeenshowntoincreaseAMPARfunctionbyinducingan

up-regulationofAMPARbothincorticalandhippocampalregions[13].

Altogether,thesereportssuggestthatmanipulationofAMPARby

pharmacologicalagentsmaypreventlearningdeficitsinducedby

SD.

Therefore, the objectives of the present work were (1) to

examine AMPAR binding after sleep deprivation and recovery

in brain regions involved in learning and memory processes,

along with an analysis of GluR1 mRNA expression in regions

wherebindingwasaffectedbySD;and(2)toevaluateiflearning

deficitsinducedbySDcouldbepreventedbyAMPARmediation

througheitheraniracetamorGYKI52466treatment.We

hypoth-esizedthat [3H]AMPA bindingwould be reduced afterSD, and

thatpharmacologicaltreatmentsaimedatrestoringAMPAR

func-tionwouldattenuatedeficitsofpassivelearningassociatedwith

SD.

2. Materialsandmethods

2.1. Subjects

MaleWistarrats,aged3months(250–350gofbodyweight),

wereobtainedfromtheCEDEMEanimalfacilityatUNIFESP.

Ani-malswerekeptingroupsof5inwire-meshcagesinaroomunder

controlledtemperature(23±2◦C)and12hlight/darkcycle(lights

onat07:00),withfoodandwateradlibitum.Procedureswere

con-ductedinconformitywiththeguidelinesforthecareanduseof

laboratoryanimalsoftheBrazilian Societyof Neuroscienceand

Behavior,andwereapprovedbythebytheEthicsCommitteeof

UNIFESP(CEP#2075/07).

2.2. Sleepdeprivationprocedure

Ratsweresleepdeprivedusingthemodifiedmultipleplatform

method[33].Sleepdeprivationwasconductedbyplacingratsin

alargewatertank(145cm×44cm×45cm)thatcontained

nar-rowplatforms(6cmindiameter).Thisprocedure,whichrelieson

themuscleatoniathataccompaniesparadoxicalsleep,completely

abolishesthissleepstageandalsodecreasesslow-wavesleepto

someextent[34].Thepresenceofmultipleplatformsmitigatesthe

movementrestrictionandisolationassociatedwithearlier

tech-niques ofsleep deprivation.Sleep-deprived animals(SD group)

weresubjectedtosleepdeprivationfor96h.Animalsinthecage

control(CC)groupremainedintheirhomecagesinthesameroom

wheresleepdeprivationprocedurestookplace.

2.3. [3H]AMPAreceptorbinding

Ratsweresacrificedbydecapitationeitherimmediatelyafter

thesleepdeprivationprocedureoraftersleepdeprivationfollowed

by24hofsleeprecovery(SR).Brainswereimmediatelyremoved,

frozenoverdryiceandstoredat−80◦Cfor[3H]AMPAbindingand

GluR1insituhybridizationessays,followingproceduresofNobrega

etal.[35] andGitaíet al.[36],respectively,withmodifications.

Coronalbrainsections(20␮mthick)wereseriallycutat−20◦C,

mountedonslides,anddried.On thedayofthebindingassays

(N=8/group),sectionswerepreincubatedforremovalof

endoge-nousligandswith50mMTris–acetatebuffer(pH7.2)containing

100mMKSCNfor30minat4◦C.AMPAreceptorswerelabeledwith

10nM [3H]AMPA (Perkin-Elmer LifeSciences) in preincubation

bufferfor45minat4–8◦Cwithorwithout10mMquisqualateas

unlabeledligandforthedeterminationofnon-specificortotal

bind-ing,respectively.Thisprocedurewasfollowedbyfourrinsesinthe

buffer(4seach)at4–8◦C.Finally,thesectionsweredippedtwice

into100mlacetonecontaining2.5mlglutaraldehyde,driedunder

astreamofcoldair,andexposedtoX-rayfilms(KodakBioMax

MR-1,AmershamPharmaciaBiotech)for6weeksalongwithcalibrated

[3H] standards. Afterfilm development, densitometric analyses

wereperformed using an M2MCID system(Imaging Research,

MCID,St.Catharines,Ontario).Calibrationcurvesconstructedfrom

[3H]standardsallowedtheconversionofintegratedopticaldensity

intotissueradioactivityvalues(␮Ci/g).

2.4. InsituhybridizationofGluR1subunit

Mounted sectionsof CC, SD and SR animals (N=6–7/group)

weregradually warmedtoroom temperature,post-fixed in 4%

formaldehyde,pH7.4andrinsedin10mmol/LPBS,pH7.4,after

whichtheyweretreatedfor30minwithproteinaseK(0.5␮g/ml;

LifeTechnologies, Gaithersburg,MD, USA), EDTA(0.05, pH8.0)

andTris–HCl(0.1M,pH8.0)atroomtemperature.Thiswas

fol-lowedby10minofacetylationwithtriethanolamine–HCl(Avocado

Research,Heysham,UK),rinsesin 2×SSCanddehydrationin a

gradedethanolseries.Hybridizationwasperformedusing35S-UTP

labeledriboprobescomplementarytothesequencesofinterest,

generatedbyinvitrotranscription(Promega,Madison,USA).

Dur-ing transcription a cDNA sample was amplified by PCR using

compoundprimersmadeupofconsensuspromotersequencesfor

eitherSP6RNApolymerase(ATTTAGGTGACACTATAGAA)attached

atthe5endoftheleftprimerand/orforT7RNApolymerase

(3)

Fig.1.SchematicrepresentationofdesignusedtoaddressAMPARmediationonpassiveavoidanceaftersleepdeprivation.CC:cagecontrolgroup,SD:sleepdeprivation

group,V:vehicletreatment.

complementarytothetargetgene.Thelabeledriboprobesprepared

forGluR1werecomplementarytoGenbank#NM031608(bases

108–405),andwerediluted(106cpm/ml)inhybridizationsolution.

Thesolutionconsistedof50%formamide,1%sodiumthiosulfate

and2%5Mdithiothreitol.Thehybridizationsolution(120␮l)and

acoverslipwereappliedtoeachslide,andthesectionswere

incu-batedat57◦Covernight.SectionswerethensoakedinRNaseA

(20␮g/ml;USB,Cleveland,OH,USA)for30min,afterwhichthey

werewashedfor30mininRNasebuffer(5Mof10%NaCl,1Mof

4%Tris,pH8.0,and0.5Mof0.2%EDTA,pH8.0,insterilewater).

TheywerethenrinsedindecreasingconcentrationsofSSC,

dehy-dratedandplacedinX-rayfilmcassetteswithBMR-2film(Eastman

Kodak,Rochester,NY,USA)for4days.Subsequently,slideswere

dippedin NTB2photographicemulsion (EastmanKodak), dried

andstoredwithdesiccantinfoil-wrappedslideboxesat4◦Cfor

28 days. Slides were developed withD-19 developer(Eastman

Kodak),counterstainedwithThionin,dehydrated,clearedinxylene

andcoverslippedwithDPX.Controlsectionsincubatedwithsense

probesshowednosignal.GluR1mRNAexpressionwasevaluatedby

integratedopticaldensityperformedonemulsion-coatedsections

underdark-fieldillumination,usingtheImage-ProPlussoftware

(MediaCybernetics,SilverSpring,MD,USA).Thehybridization

sig-nalwasobtainedfromaconstantarea(0.15mm2)ofCA1andCA3

stratumpyramidaleandDGgranulecelllayer,normalizedagainst

anadjacentareathatdoesnotexpressGluR1mRNA.

2.5. AMPARmediationofpassiveavoidance

InordertoexamineAMPARinvolvementinSD-induced

learn-ingdeficits,aseparatesetofanimalswassubjectedto96hsleep

deprivationasdescribedaboveandsubmittedtodifferentprotocols

ofdrugtreatment(N=8–14/group,Fig.1).Animalswereacutely

treatedwitheithervehicle,theAMPARpotentiatoraniracetam(25,

50and100mg/kg;p.o.)ortheAMPARantagonistGYKI52466(5

and10mg/kg;i.p.)1hbeforebeingsubmittedtoastep-through

passiveavoidancetask,appliedimmediatelyafterSDprocedure.

InordertoevaluateAMPARplasticityduringSD, anothergroup

ofanimalsweretreatedwitheithervehicleorGYKI52466(5and

10mg/kg; i.p.), twicea day(1 administrationevery 12h) for 4

days(8injectionsintotal).Inthisexperiment,thePAtaskstarted

immediatelyafterthe96hofSDand19hafterthelast

adminis-trationoftheAMPARantagonist.In allexperimentsaniracetam

(Sigma–Aldrich,Brazil)wassuspendedina0.25%carboxymethyl

cellulosesolutioncontainingafewdropsofTween80.GYKI52466

(Sigma–Aldrich, Brazil) was dissolved in 0.1N HCl and diluted

indistilledwater.Bothdrugswereadministeredinavolumeof

2ml/kg.

2.6. Passiveavoidancetask

Thepassiveavoidanceapparatusconsistedoftwoacrylicboxes,

each measuring21cm×26cm×27.5cm, connectedbya sliding

door.One of theboxes wasthe safecompartment, withwhite

walls,whereastheotherboxwastheaversivecompartment,with

blackwalls.Theflooroftheapparatusconsistedofparallelmetallic

rods,each0.4cmindiameter,1.2cmapart,connectedtoan

elec-tricshockgenerator(AVSProjetosEspeciais,SãoPaulo,Brazil).PA

performancewasevaluatedusingonetrainingsessionandtwo

sub-sequentretentiontestsessions.Inthetrainingsession,eachanimal

wasplacedinthesafecompartmentoftheapparatus,withthe

slid-ingdoorclosed.Tensecondslater,thedoorwasopenedand,as

soonastheanimalcrossedtotheaversivecompartmentthedoor

wasclosed,latencytoenterwasrecorded,andtheanimalreceived

asinglefootshock(0.8mA/1s).Fifteensecondslater,theanimal

wasremovedfromtheapparatusandmovedtoitshomecage.Two

hourslater,thefirstretentiontesttookplace.Eachanimalwasagain

placedinthesafecompartmentoftheapparatus,andthelatency

tocrosstotheaversivecompartmentwasrecordedwithoutany

shockpresentation.Eachanimalwasallowed300stocrossoverto

theaversivecompartment.Asinthetrainingsession,acrossingwas

definedasthepresenceoffourpawsintheaversivecompartment.

Ifitdidnotdoso,theanimalwasremovedfromtheapparatusand

alatencyof300swasassigned.Twenty-fourhoursaftertraining,a

secondretentiontestwasconductedinthesameawayasdescribed

above.

2.7. Statisticalanalyses

[3H]AMPAbindingandGluR1insituhybridizationdatawere

analyzedbyseparateone-wayANOVAsforeachbrainregion.In

thepassiveavoidancetask,latenciestocrosstothedarkchamber

werecomparedusingtwo-wayrepeatedmeasureANOVAs,with

groupasthebetweensubjectfactorandsessionasthewithin

(4)

192 F.P.Dubielaetal./BehaviouralBrainResearch257 (2013) 189–196 Table1

[3H]AMPAbindingaftersleepdeprivationandrecovery.

Controlcage(n=8) Sleepdeprivation(n=8) Sleeprecovery(n=8) Cortex

Frontalassociationcortex 0.663±0.04 0.569±0.03 0.631±0.03

Prelimbiccortex 0.646±0.02 0.713±0.05 0.714±0.03

Cingulatecortex,area1 0.621±0.03 0.603±0.04 0.612±0.06

Cingulatecortex,area2 0.627±0.03 0.586±0.03 0.600±0.06

Infralimbiccortex 0.683±0.02 0.732±0.06 0.743±0.05

Piriformcortex 0.691±0.03 0.677±0.03 0.723±0.03

Entorhinalcortex 0.650±0.03 0.606±0.03 0.622±0.02

Lateralseptalnucleus

Dorsalpart 0.812±0.03 0.757±0.06 0.709±0.04 Intermediatepart 0.416±0.05 0.433±0.04 0.410±0.03 Ventralpart 0.412±0.03 0.391±0.04 0.369±0.02 Caudateputamen Dorsomedial 0.348±0.02 0.380±0.03 0.326±0.03 Dorsolateral 0.361±0.02 0.394±0.04 0.336±0.03 Ventrolateral 0.459±0.04 0.464±0.04 0.448±0.04 Posterior 0.336±0.01 0.340±0.02 0.327±0.02

Accumbensnucleus,core 0.617±0.04 0.623±0.04 0.592±0.05

Accumbensnucleus,shell 0.655±0.04 0.688±0.03 0.621±0.05

Amygdala Basolateralnucleus 0.607±0.05 0.571±0.04 0.615±0.02 Centralnucleus 0.274±0.03 0.263±0.03 0.275±0.02 Medialnucleus 0.411±0.04 0.339±0.03 0.370±0.01 Hippocampalformation CA1 1.115±0.03 0.998±0.03* 1.076±0.03 CA3 0.687±0.04 0.538±0.04* 0.596±0.02 Dentategyrus 1.087±0.05 0.925±0.04* 1.013±0.03

Valuesareexpressedasmean±SEMin␮Ci/goftissue.

* P<0.05vs.controlcageanimals(Duncantest).

Table2

HippocampalGluR1mRNAinsituhybridizationaftersleepdeprivationandrecovery.

Controlcage(n=6) Sleepdeprivation(n=7) Sleeprecovery(n=7)

CA1 28,761±5152 26,315±10,153 54,530±9014

CA3 37,658±7232 40,189±15,621 76,375±14,595

Dentategyrus,dorsalblade 31,977±4126 34,576±7625 43,670±6899

Dentategyrus,ventralblade 29,701±3531 36,048±7531 50,038±4453

Valuesareexpressedasmean±SEMoftheintegratedopticaldensityinarbitraryunits.

analyseswerecarriedoutusingDuncanmultiplerangetest,with

thelevelofsignificancesetatP<0.05.

3. Results

3.1. Effectsofsleepdeprivationandsleepreboundon[3H]AMPA

bindingandhippocampalGluR1expression

Sleepdeprivationproducedsignificantreductionin[3H]AMPA

binding in localized brain regions in comparison to controls

(Table1).Majordifferenceswereobservedinthehippocampus,

e.g.,dentategyrus,CA3andCA1(Fig.2aandb).Ontheotherhand,

otherlimbicstructures(e.g.,amygdala)didnotdifferfromCCand

SRgroups(Fig.2candd).

Interestingly,24-hofsleepreboundwassufficienttopartially

restorehippocampalAMPAbindingtocontrollevels,sinceSRdid

notdifferfrombothCCorSDanimals(P>0.11).

Regarding GluR1 expression, no major differences were

observedinbetweencontrols,SDandSRgroupsinallhippocampal

areas(Table2),althoughanon-significantincreasewasobserved

inSRanimals.

3.2. EffectsofAMPAmediationonpassiveavoidanceaftersleep

deprivation

3.2.1. Acuteaniracetamtreatment

SDanimalsdisplayedsignificantlowerlatenciesinthepassive

avoidancetestthanCCanimals2hand24haftertraining(group

effectF[7,70]=10.16,P<0.05,N=8–10/group;two-way ANOVA;

Fig.3).Thelatencytocrosstotheothercompartmentdidnot

dif-ferinthetrainingsessionforbothgroups(P>0.05;NS;Fig.3,left

panel).Onlythehigherdoseofaniracetam(100mg/kg)increased

the latency in the test performed 2h and 24h after training

(interactionbetweengroupvs.treatmentF[14,140]=6.15,P<0.05;

two-wayANOVA;Fig.3).Aniracetamadministrationdidnotchange

the performance of CC animals (P>0.05; NS), irrespectively of

dose.

3.2.2. AcuteGYKI52466treatment

Results are shown in Fig. 4. Two-way repeated measures

ANOVAindicatedsignificantmaineffectsofgroup(F[5,46]=17.046,

P<0.05, N=8–10/group) and session (F[2,92]=160.63, P<0.05),

and a significant interaction (F[10,92]=8.3627, P<0.05). Post

hocanalysesrevealedthat allanimalsbehaved similarly inthe

training session (P>0.05; NS);while SD animalsdisplayed

sig-nificant lower latencies in the passive avoidance test than CC

animals2hand24haftertraining(P<0.05)irrespectivelyofthe

treatment.

3.2.3. ChronicGYKI52466treatment

Results are shown in Fig. 5. Two-way repeated measures

ANOVAindicatedsignificantmaineffectsofgroup(F[5,54]=11.676,

P<0.05, N=8–14/group)andsession (F[2,108]=114.36,P<0.05),

and a significantinteraction between them (F[10,108]=6.4066,

(5)

Fig.2. Illustrationofdown-regulationofAMPARinthehippocampusofsleepdeprivedrats.(a)[3H]AMPAbindinginhippocampalregions.(b)Columnsshowing[3H]AMPA

bindingofCA1,CA3anddentategyrusinCC,SDandSRgroups.(c)[3H]AMPAbindinginamygdaloidareas.(d)Columnsshowing[3H]AMPAbindingofbasolateral(BLA),

central(CeA)andmedial(MeA)amygdale.Columnsindicatemeans±SEMin␮Ci/g;*P<0.05(Duncantest).

Fig.3.Effectsofacuteaniracetamtreatmentonpassiveavoidanceperformanceinsleepdeprivedanimals.CC:cagecontrolgroup,SD:sleepdeprivationgroup,V:vehicle

treatment.N=8–10/group.Dataaremeans±SEMinseconds;*P<0.05vs.respectivecagecontrolgroup(Duncantest).

similarlyinthetrainingsession(P>0.05;NS);whileSDanimals

displayedsignificantlowerlatenciesinthepassiveavoidancetest

thanCCanimals2hand24haftertraining(P<0.05)irrespectively

oftreatment.

4. Discussion

Sleepdeprivation resultedin impairment of emotional- and

(6)

194 F.P.Dubielaetal./BehaviouralBrainResearch257 (2013) 189–196

Fig.4. EffectsofacuteGYKI52466treatmentonpassiveavoidanceperformanceinsleepdeprivedanimals.CC:cagecontrolgroup,SD:sleepdeprivationgroup,V:vehicle

treatment.N=8–10/group.Dataaremeans±SEMinseconds;*P<0.05vs.respectivecagecontrolgroup(Duncantest).

Fig.5.EffectsofchronicGYKI52466treatmentonpassiveavoidanceperformanceinsleepdeprivedanimals.CC:cagecontrolgroup,SD:sleepdeprivationgroup,V:vehicle

treatment.N=8–14/group.Dataaremeans±SEMinseconds;*P<0.05vs.respectivecagecontrolgroup(Duncantest).

previousreports[3–7].InconsonancewithstudiesfromIzquierdo

etal.(forreview,see[37]),theuseoftworetentiontestsinthePA

taskdidnotinfluencethelongtermretentiontest,asthe

perfor-manceofbothcontrolandsleepdeprivedanimalsdidnotchangein

betweentestsessions.Accordingly,apaststudyusingthePAtask

withshortandlongtermretentiontestsinseparateexperiments

yieldedsimilarresultsinrespecttothelearningdeficitinduced

bySD[7].Thepresentsetofexperimentsshowedthathighdoses

(100mg/kg)ofaniracetam,anAMPARpotentiator,prevents

learn-ingdeficitsofsleepdeprivedanimals.Interestingly,animalsfrom

thecontrolgroupdidnotshowPAperformanceimprovementafter

aniracetam,whichmayhavebeenduetoaceilingeffectduringthe

retentiontests.Infact,aniracetamhasbeenreportedtoenhance

learningonlyincasesofimpairment[24–26].Ontheotherhand,the

AMPARantagonistGYKI52466wasunabletomodifySDinduced

learningdeficitsorimpair learningin animalsfromthecontrol

group,insingleorrepeatedadministrations.Theseobservations

suggestamorecomplexpicturethanonlyup-anddown-regulation

ofreceptortranscriptionandtranslation.Wediscussthefindings

andlimitationsofthepresentstudyinlightofmediationofAMPAR

functioninsleeplossconditions.

Toourknowledge,thepresentworkisthefirstinvestigation

ontheeffects ofsleepdeprivation onAMPARinmultiplebrain

regions,includingseveralthoughttobeinvolvedinlearningand

memory.Ourfindingswith[3H]AMPAbindingrevealedaselective

decreaseinthehippocampalformationafter96hofSD,whileother

limbicregionsassociatedwithaversivememoryremained

unaf-fected,includingtheentorhinalcortexandbasolateralamygdala

[38,39].ThehippocampalbindingofAMPARwasnormalizedafter

24hofsleeprecovery,aphenomenonthatmayrelatetoresults

from previous studies showing an amelioration of SD induced

deficitsinhippocampus-dependentmemorytasks,whenanimals

aregiventheopportunitytosleepbeforelearning[5–7].Asimilar

patternisobtainedregardingsynapticplasticity:while72hSD

pre-ventshippocampallongtermpotentiation,eithershort(150min)

or long (24h) periods of sleep recovery reverses this effect

[5,20].

WedidnotfindsignificantdifferencesinGluR1mRNA

expres-sionamongcontrol,SDandSRanimalsinanyhippocampalregion,

whichisinagreementwiththeobservationsofRavassardetal.[20].

TheseinvestigatorsdescribedreducedGluR1proteinexpression,

butnotGluR1mRNA,inthedorsalhippocampusofratsdeprived

ofsleepfor72h.ItisthuslikelythatdecreasedhippocampalAMPAR

functionafterSDisduetodownstreamtranscriptionmechanisms,

aspreviousreportshaveshownreducedphosphorylationofGluR1

inthehippocampusofsleepdeprivedmiceandrats[20,40].GluR1

phosphorylation,animportantstepforAMPARincorporationinto

synapticmembranes[41]isaugmentedafterPAlearning[11]thus

suggestingthatSDeffectsonGluR1phosphorylationmayhave

(7)

Based on previous studies showing antiamnesic effects of

AMPARantagonistsina rodentmodelofbrainischemia[29,30]

andconsideringsimilareffectsinducedbythismodelandbySDon

theglutamatergicsystem[15,31,32],wesoughttoverifyif

treat-mentwithGYKI52466couldpreventthelearningdeficitsinduced

bysleepdeprivation.Contrarytoourhypothesis,chronicoracute

treatments with this drug didnot improve PA performance in

sleepdeprivedanimals,suggestingthatdifferentmechanismsmay

underliethememorydeficitsinducedbybrainischemiaandsleep

deprivation.Likewise,whilethereisevidencethatchronic

admin-istrationofGYKI52466augmentsAMPARbindingincorticaland

hippocampalregionsinnaïveanimals[13],theunderlying

mech-anismbywhichthisoccursremainselusive;itispossiblethatit

dependsonspecificconditions,i.e.SDanimalsmayberesistant

tothisparticularAMPARupregulationeffect.Furtherstudiesare

requiredtoaddressthisissue.

ThepresentevidenceofdecreasedhippocampalAMPAR

bind-inginsleepdeprivedanimalsseemstoindicatethathighdosesof

AMPARpotentiatorsarerequiredinordertoovercomelow

avail-abilityoftheirsitesandthereforeameliorateSDinducedcognitive

deficits.ThisisinagreementwithrecentevidencefromBoyleetal.

[28],whichshowedthatcognitiveimpairmentdisplayedbysleep

deprivedhumanswereonlycounteractedwiththehighestdose

oftheampakineCX717.Although lowtointermediate dosesof

aniracetamareknowntoproduceimprovementinseveral

mod-elsofmemoryimpairment[24–26],the25 and50mg/kgdoses

used inthe current study didnot blockthe deleterious effects

ofSD.Itisplausiblethatthisinefficacycouldbeduetothelow

availabilityofhippocampalAMPARafter96hSD.Interestingly,a

similarresultwasobservedintheGABA–benzodiazepinesystem,

inwhichthepromnesicactionof␤-CCM(abenzodiazepineinverse

agonist)wasnotobservedinsleepdeprivedanimals,alongwith

evidenceofdown-regulationofitsbindingsitesintheentorhinal

cortex[7].

Concerning the mechanisms by which aniracetam improves

learning deficitsin sleepdeprived animals, besidesits positive

modulationofAMPAR[22,23],aniracetamisalsoknowntoactivate

proteinkinasesincludingPKC[41,42].Theactivityofthis

particu-larenzymeiscrucialtoGluR1phosphorylationandensuingAMPAR

incorporationintohippocampalsynapsesduringlongterm

poten-tiation(LTP)[43],whichsuggestsapotentialtreatmenttoreverse

bothAMPARbindingreductionandimpairedLTPinducedbysleep

deprivation[5,19,20].Furtherstudiesarerequiredtoaddressthis

issue.

Our datacorroborate and expand thenotionthat prolonged

SDinducesAMPARhypofunctionspecificallyinthehippocampal

formation,whileotherregionsassociatedwithmemoryare

unaf-fected.TheseeffectswerenotaccompaniedbychangesinGluR1

mRNAexpression,andwerenormalizedafter24hofsleep

recov-ery.TheAMPARpotentiatoraniracetamwasabletocounteractPA

learningdeficitsinducedbySD,whereastheAMPARantagonist

GYKI52466didnotaffecttheperformanceofSDanimalsinthetask.

Takentogether,ourresultssuggestthatAMPARmediateaversive

memoryimpairmentinducedbysleepdeprivation.

Acknowledgments

This work was supported by Conselho Nacional de

Desen-volvimento Científico e Tecnológico – CNPq; FAPESP (Grants

#1998/1403-3,#2007/53176-8,#2011/09816-8);Coordenac¸ãode

Aperfeic¸oamento de Pessoal de Nível Superior – CAPES and

Associac¸ãoFundodeIncentivoaPesquisa.Theauthorsareindebted

to Joelcimar Martins da Silva, Diva Maria Lima, Danilo Carlos

MachadoandJoséBernardodaCostafortheirinvaluabletechnical

assistance.

References

[1]ColtenHR,AltevogtBM.Sleepdisorderandsleepdeprivation:anunmetpublic healthconcern.Washington,DC:NationalAcademiesPress;2006.

[2]LimJ,DingesDF.Ameta-analysisoftheimpactofshort-termsleepdeprivation oncognitivevariables.PsycholBull2010;136:375–89.

[3]BuenoOF,LoboLL,OliveiraMG,GuglianoEB,PomaricoAC,TufikS.Dissociated paradoxicalsleepdeprivationeffectsoninhibitoryavoidanceandconditioned fear.PhysiolBehav1994;56:775–9.

[4]YoungbloodBD,ZhouJ,SmaginGN,RyanDH,HarrisRB.Sleepdeprivation bytheflowerpottechniqueandspatialreferencememory.PhysiolBehav 1997;61:249–56.

[5]McDermottCM,LaHosteGJ,ChenC,MustoA,BazanNG,MageeJC.Sleep depri-vationcausesbehavioral,synaptic,andmembraneexcitabilityalterationsin hippocampalneurons.JNeurosci2003;23:9687–95.

[6]DubielaFP, OliveiraMG, Moreira KM,NobregaJN,Tufik S,Hipolide DC. Learningdeficitsinducedbysleepdeprivationandrecoveryarenot associ-atedwithaltered[(3)H]muscimoland[(3)H]flunitrazepambinding.BrainRes

2005;1037:157–63.

[7]DubielaFP,OliveiraMG,MoreiraKM,NobregaJN,TufikS,HipolideDC.Inverse benzodiazepineagonistbeta-CCMdoesnotreverselearningdeficitinducedby sleepdeprivation.NeurosciLett2010;469:169–73.

[8]LongordoF,KoppC,LüthiA.Consequencesofsleepdeprivationon neurotrans-mitterreceptorexpressionandfunction.EurJNeurosci2009;29:1810–9.

[9]CammarotaM,IzquierdoI,WolfmanC,LevideSteinM,BernabeuR,Jerusalinsky D,etal.Inhibitoryavoidancetraininginducesrapidandselectivechangesin [3H]AMPAreceptorbindingintherathippocampalformation.NeurobiolLearn

Mem1995;64:257–64.

[10]IzquierdoLA,BarrosDM,ViannaMR,CoitinhoA,deDavideSilvaT,ChoiH, etal.Molecularpharmacologicaldissectionofshort-andlong-termmemory. CellMolNeurobiol2002;22:269–87.

[11]WhitlockJR,HeynenAJ,ShulerMG,BearMF.Learninginduceslong-term poten-tiationinthehippocampus.Science2006;313:1093–7.

[12]MonaghanDT,WentholdRJ,editors.Theionotropicglutamatereceptors.New Jersey:Humana;1997.

[13]SinhaAK,MirzaAH,LiuX,ChiOZ,WeissHR.EffectofupregulationofAMPA glutamatereceptorsoncerebralO(2)consumptionandbloodflowinrat.Brain Res1999;842:230–2.

[14]SinhaAK,AzevedoR,ChiOZ,WeissHR.Down-regulationofAMPA gluta-matereceptorsreducescerebrocorticalmetabolicresponsetostimulation. NeurochemRes2004;29:1425–30.

[15]Dos-Anjos S, Martínez-Villayandre B, Montori S, Regueiro-Purri ˜nos MM, Gonzalo-OrdenJM,Fernández-LópezA.Globalischemia-inducedmodifications intheexpressionofAMPAreceptorsandinflammationinratbrain.BrainRes 2009;1287:20–7.

[16]BettendorffL,Sallanon-MoulinM,TouretM,WinsP,MargineanuI, Schoffe-nielsE.Paradoxicalsleepdeprivationincreasesthecontentofglutamateand glutamineinratcerebralcortex.Sleep1996;19:65–71.

[17]MohammedHS,AboulEzzHS,KhadrawyYA,NoorNA.Neurochemicaland electrophysiologicalchangesinducedbyparadoxicalsleepdeprivationinrats. BehavBrainRes2011;225:39–46.

[18]VyazovskiyVV,CirelliC,Pfister-GenskowM,FaragunaU,TononiG.Molecular andelectrophysiologicalevidencefornetsynapticpotentiationinwakeand depressioninsleep.NatNeurosci2008;11:200–8.

[19]McDermottCM,HardyMN,BazanNG,MageeJC.Sleepdeprivation-induced alterationsinexcitatorysynaptictransmissionintheCA1regionoftherat hippocampus.JPhysiol(London)2006;570:553–65.

[20]RavassardP,PachoudB,ComteJC,Mejia-PerezC,Scoté-BlachonC,GayN, etal.Paradoxical(REM)sleepdeprivationcausesalargeandrapidlyreversible decreaseinlong-termpotentiation,synaptictransmission,glutamate recep-torproteinlevels,andERK/MAPKactivationinthedorsalhippocampus.Sleep 2009;32:227–40.

[21]LynchG.Memoryandthebrain:unexpectedchemistriesandanew pharma-cology.NeurobiolLearnMem1998;70:82–100.

[22]ItoI,TanabeS,KohdaA,SugiyamaH.Allostericpotentiationofquisqualate receptorsbyanootropicdruganiracetam.JPhysiol(London)1990;424:533–43.

[23]JinR, ClarkS,WeeksAM,Dudman JT,GouauxE,PartinKM.Mechanism of positive allosteric modulators acting on AMPA receptors. J Neurosci 2005;25:9027–36.

[24]CuminR,BandleEF,GamzuE,HaefelyWE.Effectsofthenovelcompound aniracetam(Ro13-5057)uponimpairedlearningandmemoryinrodents. Psychopharmacology(Berl)1982;78:104–11.

[25]BartoliniL, CasamentiF, PepeuG.Aniracetamrestoresobjectrecognition impairedbyage,scopolamine,andnucleusbasalislesions.PharmacolBiochem Behav1996;53:277–83.

[26]LuY,WehnerJM.Enhancementofcontextualfear-conditioningbyputative (+/−)-alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptormodulatorsandN-methyl-d-aspartate(NMDA)receptorantagonists inDBA/2Jmice.BrainRes1997;768:197–207.

[27]PorrinoLJ,DaunaisJB,RogersGA,HampsonRE,DeadwylerSA.Facilitation oftaskperformanceandremovaloftheeffectsofsleepdeprivationbyan ampakine(CX717)innonhumanprimates.PLoSBiol2005;3:e299.

[28]BoyleJ,StanleyN,JamesLM,WrightN,JohnsenS,ArbonEL,etal.Acute sleepdeprivation:theeffectsoftheAMPAKINEcompoundCX717onhuman cognitive performance, alertness and recovery sleep. J Psychopharmacol 2012;26:1047–57.

(8)

196 F.P.Dubielaetal./BehaviouralBrainResearch257 (2013) 189–196

[29]BlockF,SchwarzM.Correlationbetweenhippocampalneuronaldamageand spatiallearningdeficitduetoglobalischemia.PharmacolBiochemBehav 1997;56:755–61.

[30]Gyertyan I, Gigler G, Simo A. The neuroprotective and hypothermic effectofGYKI-52466,anoncompetitive alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionicacid-antagonistonhistologicalandbehaviouralvariables inthegerbilglobalischemiamodel.BrainResBull1999;50:179–86.

[31]WesterbergE,MonaghanDT,CotmanCW,WielochT.Excitatoryaminoacid receptorsandischemicbraindamageintherat.NeurosciLett1987;73:119–24.

[32]Sommer C, Fahrner A, Kiessling M. [3H]Muscimol binding to

gamma-aminobutyricacid(A)receptorsisupregulatedinCA1neuronsofthegerbil hippocampusintheischemia-tolerantstate.Stroke2002;33:1698–705.

[33]SucheckiD,TufikS.Socialstabilityattenuatesthestressinthemodified multi-pleplatformmethodforparadoxicalsleepdeprivationintherat.PhysiolBehav 2000;68:309–16.

[34]MachadoRB,HipolideDC,Benedito-SilvaAA,TufikS.Sleepdeprivationinduced bythemodifiedmultipleplatformtechnique:quantificationofsleeplossand recovery.BrainRes2004;1004:45–51.

[35]NobregaJN,RaymondR,BarlowK,HamannM,RichterA.ChangesinAMPA receptorbindinginananimalmodelofinbornparoxysmaldystonia.ExpNeurol 2002;176(2):371–6.

[36]Gitaí DL, Martinelli HN, Valente V, Pereira MG, Oliveira JA, Elias CF, etal.IncreasedexpressionofGluR2-flipinthehippocampusoftheWistar

audiogenic rat strain after acute and kindled seizures. Hippocampus 2010;20(1):125–33.

[37]Izquierdo I, Medina JH, Vianna MR, Izquierdo LA, Barros DM. Separate mechanismsforshort-andlong-termmemory.BehavBrainRes1999;103: 1–11.

[38]UekiA,MiwaC,MiyoshiK.Impairmentintheacquisitionofpassiveandactive avoidancelearningtasksduetobilateralentorhinalcortexlesions.JNeurolSci 1994;125:14–21.

[39]McGaughJ,Intorini-CollisonA,NagaharaA,CahillL.Involvementofthe amyg-daloidcomplexinneuromodulatoryinfluencesonmemorystorage.Neurosci BiobehavRev1990;14:425–31.

[40]HagewoudR,HavekesR,NovatiA,KeijserJN,VanderZeeEA,MeerloP.Sleep deprivationimpairsspatialworkingmemoryandreduceshippocampalAMPA receptorphosphorylation.JSleepRes2010;19:280–8.

[41]BoehmJ,KangMG,JohnsonRC,EstebanJ,HuganirRL,MalinowR.Synaptic incorporationofAMPAreceptorsduringLTPiscontrolledbyaPKC phosphory-lationsiteonGluR1.Neuron2006;51:213–25.

[42]NishizakiT,MatsumuraT.Theaniracetammetabolite2-pyrrolidinoneinduces along-termenhancementinAMPAreceptorresponsesviaaCaMKIIpathway. BrainResMolBrainRes2002;98:130–4.

[43]SmithAM,WehnerJM.Aniracetamimprovescontextualfearconditioningand increaseshippocampalgamma-PKCactivationinDBA/2Jmice.Hippocampus 2002;12:76–85.

Referências

Documentos relacionados

The sleep wake cycle of the students is quite different and characterized by delayed onset, partial sleep deprivation, poor sleep quality, insufficient sleep

The working, spatial, and recognition memory deficits were significantly improved with RA treatment (20 mg/kg). RA reduced infarct size and neurological deficits caused by

normal diet (ND) or HFD, treated orally or not with either FA (10 mg/kg) or sibutramine (10 mg/kg) for 15 weeks and at the end of this period, the body weights of animals, visceral

The capsular tissue around implants from untreated or treated animals with the beta-adrenoceptor antagonist propranolol (10 mg/kg, dissolved in daily water) were analyzed

To investigate the involvement of the opioid system in the acetic acid-induced abdominal constriction and formalin tests animals were pretreated with naloxone (1 mg/kg; i.p.), then

In the induction of chronic dyslipidemia by diet at the end of the fi rst month of treatment, animals that consumed the hyperlipidemic ration and were treated with PCO-C (100 mg/kg)

Acute tryptophan administration impairs cortical spreading depression propagation in REM sleep deprived and non- deprived adult rats.. Euclides Mauricio Trindade-Filho 1

The Groups VI and VII animals were treated with Gracilaria crassa extracts and Groups VIII and Group IX animals Laurencia papillosa extract at a dose level of 100 and 200