• Nenhum resultado encontrado

Esterification of camphene over heterogeneous heteropoly acid catalysts : synthesis of isobornyl carboxylates.

N/A
N/A
Protected

Academic year: 2021

Share "Esterification of camphene over heterogeneous heteropoly acid catalysts : synthesis of isobornyl carboxylates."

Copied!
5
0
0

Texto

(1)

ContentslistsavailableatSciVerseScienceDirect

Applied

Catalysis

A:

General

j ourna l h o me p a g e :w w w . e l s e v i e r . c o m / l o c a t e / a p c a t a

Esterification

of

camphene

over

heterogeneous

heteropoly

acid

catalysts:

Synthesis

of

isobornyl

carboxylates

Augusto

L.P.

de

Meireles

a

,

Kelly

A.

da

Silva

Rocha

b

,

Ivan

V.

Kozhevnikov

c

,

Elena

V.

Gusevskaya

a,∗

aDepartamentodeQuímica,UniversidadeFederaldeMinasGerais,31270-901BeloHorizonte,MG,Brazil

bDepartamentodeQuímica,UniversidadeFederaldeOuroPreto,35400-000OuroPreto,MG,Brazil

cDepartmentofChemistry,UniversityofLiverpool,LiverpoolL697ZD,UK

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received16August2011

Receivedinrevisedform

21September2011

Accepted25September2011

Available online 1 October 2011 Keywords:

Biomass-basedfeedstock

Esterification Camphene

Heterogeneousacidcatalysis

Heteropolyacid

a

b

s

t

r

a

c

t

SilicasupportedH3PW12O40(PW),thestrongestheteropolyacidintheKegginseries,isanactiveand

environmentallyfriendlysolidacidcatalystforliquid-phaseesterificationofcamphene,arenewable

biomass-basedsubstrate,withC2,C4andC6 short-chainfattyacids.Thereactionprovidesisobornyl

carboxylates, useful asfragrances, in virtually100% selectivity and 80–90% yield. The reaction is

equilibrium-controlledandoccursundermildconditionswithacatalystturnovernumberofupto3000.

TheuseofhydrocarbonsolventpreventsPWfromleachingtoalloweasycatalystrecovery.Thecatalyst

canbereusedseveraltimeswithoutlossofactivityandselectivity.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Terpenes arethe main component ofessential oils of many plantsandflowersandrepresentanimportantrenewable hydro-carbon feedstock for fine chemical industry, in particular, for the synthesis of flavors and fragrances [1,2]. Various terpenic ingredients of fragrance compositions are commercially pro-ducedbyacid-catalyzedtransformationsofabundantmono-and sesquiterpenes.Intheseprocesses,mineralacidsarestillusedas homogeneouscatalysts,whichresultsinserioustechnologicaland environmentalproblems.Thedevelopmentofefficientsolidacid catalystsfortheconversionofterpenescancontributesignificantly tovalorizationofessentialoils.

Heteropolyacids(HPAs)oftheKegginseriesarewellknownas promisingacidcatalystsforthecleansynthesisoffineandspecialty chemicals[3,4].Duetotheirstrongeracidity,HPAsusuallyshow highercatalyticactivitiesthantheconventionalacidcatalysts,such asmineralacids,ion-exchangeresins,mixedoxidesandzeolites. Incontrasttomineralacids,HPAsdonotpromoteundesirableside reactions,suchassulfonationandchlorination,aswellascause lesscorrosionproblems.Inourpreviousstudies,HPAshavebeen

∗ Correspondingauthor.Tel.:+553134095741;fax:+553134095700.

E-mailaddress:elena@ufmg.br(E.V.Gusevskaya).

usedascatalystsforvarioustransformationsofterpenoids,such asisomerization[5–8]andacetoxylation[9–11],includingthe ace-toxylationandhydrationofcamphene[10].Throughacid-catalyzed additionofwaterandcarboxylicacids,camphenecanbeconverted toisoborneolanditsesters,respectively,whichpossessastrong characteristic fragranceandareused insoap formulations, cos-meticperfumesandpharmaceuticalproductsmakingpopularpine andfruit-berryaromasalmostidenticaltothenaturalones[1,12]. Isoborneolisalsousedfortheproductionofsyntheticcamphor[1]. Sincetheequilibriumofcamphenehydrationisshiftedtowards thereagents, onlylow yieldsof isoborneolhave beenobtained inthis reaction[13,14].Ontheotherhand,theacetoxylationof camphene,whichislessstrictlyequilibrium-controlled,canresult inexcellentyieldsofthecommerciallyimportantpine-fragranced isobornylacetate[10,15–17].Anumberofsolidacidcatalysts,such aszeolites[15,18],surface-functionalizedsilica[19]andsulfonated polystyreneresins[16,17],havebeenusedfortheacetoxylationof camphene.Inordertoshifttheequilibriumandobtainisobornyl acetateinhighyields,aceticacidisusuallyusedasasolvent.Such conditions, however,arehardly suitablefor solid HPA catalysts due to highsolubility of HPAs in polar solvents. HPAs, includ-ingH3PW12O40(PW),havebeenusedashomogeneouscatalysts

forthehydration[13,14,20]andacetoxylation[10]ofcamphene, albeitwithacomplicatedcatalystrecovery.Inourpreviouswork, silica-supportedPWhasbeenappliedasaheterogeneouscatalyst forthesolvent-freeacetoxylationofcamphene,witheasycatalyst

0926-860X/$–seefrontmatter © 2011 Elsevier B.V. All rights reserved.

(2)

recovery,butyieldinglessthan30%ofisobornylacetate[10].Thisis becausetheconcentrationofaceticacidshouldbekeptlowenough topreventPWleachingfromthecatalyst.

Hereweattempttodevelopanefficientheterogeneousprocess forcampheneesterificationwithC2,C4 andC6 short-chain

car-boxylicacidsinliquidphase usingasacatalystsilica-supported H3PW12O40(PW),thestrongestHPAintheKegginseries.Thisis

achievedbyperformingthereactioninanon-polarhydrocarbon solventcontainingdissolvedcampheneand carboxylicacidin a molarratioof1:5–1:10.Undersuchconditions,thecatalystisfound tobestableenoughtowardsPWleaching,andreactionequilibrium appearstobeshiftedtowardstheproducttoallowhighyieldsof isobornylesterstobeobtained.Toourknowledge,noattemptto useHPAcatalystsfortheesterificationofcamphenehasbeenmade sofar,exceptforourpreviousworkonthecampheneacetoxylation [10].

2. Experimental

2.1. Chemicals

Allchemicalswere purchasedfrom commercialsources and usedasreceived,unlessotherwisestated.H3PW12O40hydratewas

fromAldrichandAerosil300silicafromDegussa. 2.2. Characterizationtechniques

31PMASNMRspectrawererecordedatroomtemperatureand

4kHzspinningrateonaBrukerAvanceDSX400NMR spectrom-eterusing 85% H3PO4 as a reference. PowderX-ray diffraction

(XRD)ofthecatalystswasperformedonaRigakuGeigerflex-3034 diffractometer with Cu K␣ radiation. The textural characteris-ticsweredeterminedfromnitrogenphysisorptionmeasuredona MicromeriticsASAP2000instrumentat77K.Tungstenand phos-phoruscontent in thecatalysts wasdetermined by inductively coupledplasma(ICPatomicemissionspectroscopy)onaSpectro CirosCCDspectrometer.

2.3. Catalystpreparationandcharacterization

The20wt%H3PW12O40/SiO2catalysts(PW/SiO2)wasprepared

by impregnating Aerosil 300 (SBET, 300m2g−1) with an

aque-ous PW solution followed by calcination at 130◦C/0.2–0.3Torr for 1.5h, as described elsewhere [21]. The PW content deter-minedbyICP was20wt%.Thespecificsurfaceareaofthefresh catalystdeterminedbytheBETmethodwas200m2g−1.The

aver-agepore diameterandthesinglepointtotal porevolumewere 144 ˚Aand 0.53cm3g−1,respectively. Afterreaction the surface

areaslightlyreducedto170–180m2g−1 probablydueto

deposi-tionofoligomers,whereastheporositydidnotchangesignificantly afterreaction.The31PMASNMRspectraoffreshaswellasspent

catalystsdisplayedonlyasinglepeakatca.−15ppm character-isticofPWconfirmingtheintegrityoftheKegginstructure[22]. FromXRD,thecatalystsincludedfinelydispersedPWonthe sil-icasurface,withasmallamountPWcrystallinephasealsopresent. Theacidstrengthofsilica-supportedPWwascharacterized calori-metricallyusingammoniaandpyridineadsorptionanddiscussed previously[23].

2.4. Catalyticreactions

The reactions were carried out in a glass reactor equipped with a magnetic stirrer and a condensor. In a typical run, a mixture(totalvolumeof5.0mL)ofcamphene(0.35–2.25mmol, 0.07–0.45M), carboxylicacid (3.5–22.5mmol, 0.7–4.5M), dode-cane(0.5–1.0mmol,0.10–0.2M,GCinternalstandard)andPW/SiO2

(10–50mg,0.7–3.5␮molofPW)inaspecifiedsolventwasintensely stirredunderairataspecifiedtemperature(40–80◦C).The reac-tionswerefollowedbygaschromatography(GC)usingaShimadzu 17instrumentfittedwithaCarbowax20Mcapillarycolumnanda flameionizationdetector.Atindicatedreactiontimes,stirringwas stoppedandafterquickcatalystsettlingdownaliquotsweretaken andanalyzedbyCG.Themassbalance,productselectivityandyield werecalculatedusingdodecaneasinternalstandard.Any differ-enceinmassbalancewasattributedtotheformationofoligomers, whichwereGCunobservable.

Catalystrecyclingexperimentswereperformedasfollows:after thereaction,thecatalyst wascentrifuged,washed withhexane andreused.Tocontrolcatalystleachingand thepossibility ofa homogeneousreaction,thecatalystwasremovedby centrifuga-tionofthereactionmixtureatthereactiontemperaturetoavoid re-adsorptionofactive componentsontosilica, thenthe super-natantwasaddedwithafreshportionofsubstrate,ifnecessary, andallowedtoreacton.Nofurtherreactionwasobservedinsuch experiments,indicatingabsenceofPWleaching.

Isoborneol acetate (2) was identified by GC/MS (Shimadzu QP2010-PLUSinstrument,70eV)bycomparisonwithanauthentic sample.Theesters3and4wereseparatedbyacolumn chromatog-raphy(silicagel60)usingmixturesofhexaneandCH2Cl2aseluents

andidentifiedbyGC–MS,1H,and13CNMR.The1Hand13CNMR

signalswereassignedusingbidimensionaltechniques.NMR spec-trawererecordedinCDCl3usingaBruker400MHzspectrometer,

withTMSasaninternalstandard.Massspectrawereobtainedon aShimadzuQP2010-PLUSinstrumentoperatingat70eV.

Dataforisobornylacetate2:MS(m/z/rel.int.):154/10;136/47; 121/50;108/25;95/100;93/48. 1HNMR, ı H: 0.83 (s,3H, C8H); 0.84(s,3H,C10H 3);0.98(s,3H,C9H3);1.05–1.15(m,1H,C5HH); 1.10–1.20(m,1H,C6HH ax);1.50–1.60(m,1H,C6HeqH);1.65–1.75 (m,1H,C5HH);1.65–1.75(m,1H,C4H);1.75–1.85(m,2H,C3H 2); 2.08(s,1H,C12H 3);4.67(dd,1H,3J=8.0and3.0Hz,C2H).13CNMR, ıC:11.38(C10),19.87(C9),20.17(C8),21.31(C12),27.02(C5),33.72 (C6),38.75(C3),44.99(C4),46.94(C7),48.63(C1),80.94(C2),170.66 (C11).

Dataforisobornylbutyrate3:MS(m/z/rel.int.):154/22,137/20, 136/89, 121/67, 110/44, 109/40, 108/50, 95/100, 93/55, 71/89, 69/25.1HNMR,ı H:0.84(s,6H,C8H3,C10H3);0.96(t,3H,3J=7.4Hz, C14H 3);0.98(s,3H,C9H3);1.05–1.10(m,1H,C5HH);1.10–1.18(m, 1H,C6HH ax);1.50–1.56(m,1H,C6HeqH);1.58–1.64(m,2H,C13H2); 1.64–1.70(m,1H,C5HH);1.70–1.75(m,2H,C4H,C3HH);1.75–1.85 (m,1H,C3HH);2.26(t,2H,3J=7.4Hz,C12H 2);4.67(dd,1H,3J=8.0 and3.2Hz,C2H).13CNMR,ı C:11.70(C10),13.98(C14),18.82(C13), 20.15(C9),20.39(C8),27.32(C5),34.05(C6),37.04(C12),39.14(C3), 45.34(C4),47.18(C7),48.89(C1),80.99(C2),173.51(C11).

Dataforisobornylcaprylate4:MS(m/z/rel.int.):154/20,137/32, 136/100, 121/92, 110/3, 109/50, 108/60, 107/26, 99/76, 96/95, 95/92, 93/96, 92/25, 81/36, 79/26, 71/60, 67/25. 1H NMR, ı H: 0.77(s,6H,C8H 3,C10H3);0.82(t,3H,3J=6.8Hz,C16H3);0.91(s, 3H,C9H 3);0.96–1.04(m,1H,C13HH);1.06–1.12(m,1H,C6HHax); 1.10–1.26(m,2H,C5H 2);1.22–1.26(m,2H,C15H2);1.42–1.50(m, 1H,C6H eqH);1.50–1.56(m,2H,C14H2);1.58–1.68(m,3H,C13HH, C4H,C3HH);1.68–1.76(m,1H,C3HH);2.20(t,2H,3J=7.4Hz,C12H 2); 4.59(dd,1H,3J=7.6and3.2Hz,C2H).13CNMR,ı C:11.43(C10),13.88 (C16),19.83(C9),20.12(C8),22.31(C15),24.75(C14),27.05(C13), 31.32(C5),33.78(C6),34.80(C12),38.87(C3),45.07(C4),46.92(C7), 48.63(C1),80.75(C2),173.46(C11).

3. Resultsanddiscussion

The results on camphene (1) esterification with acetic acid (5–10foldexcess)inthepresenceofPW/SiO2incyclohexane

(3)

Table1

Esterificationofcamphenewithaceticacidcatalyzedby20wt%PW/SiO2.a

Run Camphene(mmol) HOAc(mmol) Catalyst(mg/␮molofPW) T(◦C) Time(h) Conversion(%) Selectivityto2(%) TONb

1 0.35 3.5 50/3.5 60 1 3 67 70 100 100 70 2 0.75 3.5 50/3.5 60 1 3 68 70 100 100 150 3c 0.75 7.5 50/3.5 60 1 3 78 80 100 100 170 4 1.00 10.0 50/3.5 40 1 3 79 83 100 100 240 5 1.00 10.0 None 60 6 0 6 0.75 7.5 10/0.7 60 2 4 78 81 100 100 870 7 2.25 22.5 10/0.7 60 2 4 80 90 100 100 2892 8d 2.25 22.5 10/0.7 60 0.15 3 24 25 100 100 800 9e 2.25 22.5 10/0.7 60 2 4 83 88 100 100 2828 10e,f 2.25 22.5 10/0.7 60 4 <2% 11e 2.25 22.5 10/0.7 80 0.5 3 75 75 100 100 2410

aReactionswerecarriedoutincyclohexaneasasolvent,withthetotalvolumeofthereactionmixtureof5.0mL.ConversionandselectivityweredeterminedbyGC.

bTONinmolesofsubstrateconvertedpermoleofatotalamountofPWincatalyst.

c Thecatalystwasreusedtwicewithoutsignificantlossofactivityandselectivity.

d After10minthecatalystwasseparatedbycentrifugation,thesupernatantwasallowedtoreactfurther,withnofurtherconversionobservedthereupon.

eInisooctaneassolvent.

f Afterrun9,thecatalystwasremoved,thesolutionwasrechargedwithfreshsubstrate(2.25mmol)andthereactionwasallowedtoproceedfurther,withnofurther

conversionobservedthereupon.

with100%selectivitytoisobornylacetate(2),nootherproducts beingobserved(Scheme1).Thereactionwasnotcomplicatedby oligomerizationandisomerization,asoftenhappenswithterpenic compoundsunderacidicconditions.Itisremarkablethatnotrace ofborneolacetate,theendo-isomerof2,wasobserved,which indi-cateshighreactionstereoselectivity.

At60◦C,nearly70%ofcampheneconvertedtoisobornylacetate in1h.Afterthatthereactionbecamestagnant,indicating equilib-riumcontrol(Table1,run1).Withthesameamountofcatalyst,the reactionwasequallyefficientwithadoublesubstrate concentra-tion,reachingagain70%campheneconversionat100%selectivity to2(Table1,run2).Whenalarger(10fold)excessofaceticacidwas used,reactionequilibriumshiftedtowardstheproduct,allowinga 78%conversionin1h(Table1,run3).Carryingonthereactionfor another2hdidnotchangetheconversion.Afterthatthecatalyst wasseparatedbycentrifugationandreusedtwicewithout signifi-cantlossofactivityandselectivity.Atalowerreactiontemperature of40◦C,ahigheryieldofisobornylacetate(83%)wasobtainedin 3h(Table1,run4).Blankreactions,withoutanycatalystaddedor

withpuresilica,showedvirtuallynoconversionofcamphenein6h (Table1,run5).

Thesuggestionthattheincompleteconversionisdueto equi-librium control rather than catalyst deactivation was further confirmedbyrunningthereactionwithmuchsmalleramountsof catalyst(cf.runs3and6,Table1).Thusinrun6withonefifth of thecatalyst amountusedin run3, thereaction reachedthe sameconversion(78%),albeitmoreslowly(2hratherthan1h),as expectedfortheequilibrium-controlledreaction.Thiscorresponds toaturnovernumber(TON)of870permolofthetotalamount ofPWinthecatalyst.Consideringthatapartofacidsitesmaybe locatedinthebulkofPWphaseandhencenotaccessibletothe sub-strate,therealefficiencyofthesurfaceactivesitescouldbeeven higher.

Attemptingtoimprovetheyieldof2,weincreasedtheinitial concentrationofcampheneata1:10camphene/aceticacidmolar ratio.Thisgaveacampheneconversionof90%at100%selectivity to2(90%isobornylacetateyieldandTONabout3000)(Table1,run 7).

2

1

R

=

12

CH

3

3 R

=

12

CH

213

CH

214

CH

3

4 R

=

12

CH

213

CH

214

CH

215

CH

216

CH

3

20

wt%

H

3

PW

12

O

40

/SiO

2

40-80

o

C

hydrocarbon so

lven

t

5-10

eq.

RCOOH

OC(O)R

1 2 3 4 5 6 7 8 9 10 11

(4)

Table2

Esterificationofcamphenewithcarboxylicacidscatalyzedby20wt%PW/SiO2.a

Run Acid(mmol) Catalyst

(mg/␮molof PW)

Time(h) Conversion(%) Selectivityto2,

3,or4(%) TONb 1 Acetic(22.5) 10/0.7 2 4 83 88 100 100 2828 2 n-Butyric(11.2) 10/0.7 2 7 23 52 100 100 1670 3c n-Butyric(11.2) 25/1.8 2 4 6 69 80 80 100 100 100 1000 4 n-Butyric(11.2) 50/3.5 2 78 100 500 5c n-Hexanoic(11.2) 25/1.8 2 4 33 46 100 100 575 6 n-Hexanoic(11.2) 50/3.5 2 3 6 65 80 80 100 100 100 515

aReactionconditions:2.25mmolcamphene,isooctanesolvent,5.0mLtotalvolumeofthereactionmixture,60C.ConversionandselectivityweredeterminedbyGC.

b TONinmolesofsubstrateconvertedpermoleoftotalamountofPWincatalyst.

c Thecatalystwasreusedtwicewithoutsignificantlossofactivityandselectivity.

AlthoughPWisinsolubleinnon-polarsolventsandpoorly sol-ublein dry carboxylic acids, thepresence of acetic acidin the reactionmixturecouldpromotesomePWleachingfromthe cat-alystandhenceinitiatehomogeneouscatalysisbythedissolved PW.Toexamineanycontributionofhomogeneouscatalysis,the catalystwasremovedafter10minreactiontimebycentrifugation andthesupernatantwasallowedreactingfurther(Table1,run8). Nofurthersubstrateconversionwasobservedinthisexperiment, whichshowsthatthereactionoccursbyheterogeneouscatalysis andhomogeneouscatalysisdoesnotplayanysignificantroleinour system,implyingtheabsenceofsubstantialPWleachingfromsilica underreactionconditionsused.Inourpreviousstudiesofterpene reactionsoverPW/SiO2incyclohexane,ICPanalysisofthe

super-natantdidnotfindanytungstenleachingfromthecatalyst[5].The characterizationoffreshversusspentcatalysts(Section2.3)didnot revealanysignificantchangeinthecatalysttexture,nordiditshow anystructuralalterationofthePW,asmaybeexpectedforthis reactionoccurringundermildconditionsinnon-polarhydrocarbon solvent.

TheacetoxylationofcampheneoverPW/SiO2catalystwasalso

performedinisooctane.Thisyielded88%of2,almostthesameas incyclohexane(Table1,run9vs.run7).Higherboilingpointof isooctane(b.p.99◦C)canbeanadvantageforpracticalapplications ascomparedtocyclohexane(b.p.81◦C).Asexpected,thereaction at80◦Cwasfasterthanat60◦C;however,theequilibrium con-versiondecreasedfrom88to75%(cf.runs9and11,Table1).To controltheleachingofPW,thecatalystafterrun9wasremoved fromthereactionmixturewhichwasthenrechargedwithfresh substrateandallowedreactingfurther(Table1,run10).Practically nocampheneconversionwasobservedafterthecatalystremoval. Thisresultalsosupportstheaboveconclusionregardingthe reac-tionoccurringbyheterogeneouscatalysisandtheabsenceofany significantPWleachinginoursystem.

Thereactioncanbecarriedoutwithothercarboxylicacidsto obtainthecorrespondingisobornylcarboxylatesingoodto excel-lentyields.These estersarealsousefulasfragrancessimilarto

2.Representativeresultsobtainedwiththeuseofn-butyricand n-hexanoic(n-caproic)acidsareshowninTable2.For compari-son,theresultsforaceticacidundersimilarconditionsarealso includedinTable2(run1).Intheexperimentswithn-butyricand n-hexanoicacids,duetotheirhighermolecularweights,smaller acid/camphenemolarratios(upto5:1)wereusedtoavoidPW leachingfromthecatalysttothereactionmixturealthoughitcould resultinlowerproductyields.

Thereactionofcamphenewithn-butyricacidoccurredmuch slowerthanwithaceticacid,reachinganon-equilibriumcamphene

conversionof52%in7hwithaTONof1670(Table2,run2).To acceleratethereaction,weincreasedtheamountofcatalystand attainedanearlyequilibriumconversionof80%in1–2hreaction time(Table2,runs3and4).Afterthatthereactionbecame stag-nant.Thisreactiongaveisobornylbutyrate(3)(Scheme1)inalmost 100%selectivity.Theproductwasisolatedbyacolumn chromatog-raphyandidentifiedbyGC–MSandNMR.TheNOESYspectrumof3 revealsthatinthismoleculethehydrogenH-2givesNOEwiththe hydrogenH-6axshowingtheirspatialproximity.Thisclearly

indi-catestheexo-configurationfor3,in whichthecarboxylicgroup atC-2and thehydrogenH-6ax areattheopposite sidesofthe

six-memberedring,asshowninScheme1.

Theesterificationofcamphenewithn-hexanoicacidisalso fea-siblewiththePW/SiO2catalyst(Table2,runs5and6),although

itwentslowerthanwithn-butyricacid(cf.runs3and5,Table2). Withn-butyricacid,thereactionalmostreachedequilibrium in 4h, whereas withn-hexanoic acidonly46% camphene conver-sionwasobtainedwithinthattimeinterval.Thus,thelongerthe hydrocarbonchainof carboxylicacid,theslowerthecamphene esterification, which can be plausibly explained by steric con-straints.Underoptimizedconditions,isobornylcaprylate(4)was obtainedwith80%yieldin3h(Table2,run6).Thisyieldwasalso limitedbyequilibriumastheselectivityto4wasvirtually100%and continuingthereactionbeyondthe3hintervaldidnotincreasethe conversionanymore.Unconvertedcamphenecouldberecovered duringproductseparation.This,however,wasnotattemptedinthe presentstudy.Thecatalystseparatedafterruns3and5wasreused twiceinthesamereactionsandshowednearlythesameactivity andselectivity.

Stereochemistry of ester 4 wasalso confirmed by a NOESY experiment.Theresultssuggestthatin4thehydrogenatC-2and theaxialhydrogenatC-6areatthesamesideofthecyclohexane ring,asshowninScheme1,becausethereisastrongcorrelation sig-nalbetweenH-2andH-6ax.Thus,theobtainedesterisexo-isomer,

i.e.derivedfromisoborneol.

4. Conclusions

Heteropoly acid H3PW12O40 (PW) supported onsilica is an

efficientandenvironmentallyfriendlysolidacidcatalystforthe liquid-phase esterification of camphene with carboxylic acids under mild reaction conditions. This reaction is an effective route for the synthesis isobornyl carboxylates, potential fra-grancespossessing a strongcharacteristic aroma, starting from a renewable biomass-based substrate. The reaction yield is equilibrium-controlled, with ester selectivity of virtually 100%.

(5)

Under optimized conditions, the esters have been obtained in 80–90%yieldandupto3000PWturnovernumber.Thecatalystcan berecoveredandreusedwithoutlossofactivityandselectivity.

Acknowledgments

FinancialsupportandscholarshipsfromCNPq,CAPES,FAPEMIG, andINCT-Catálise(Brazil)areacknowledged.

References

[1] W.E.Erman,ChemistryofMonoterpenes.AnEncyclopedicHandbook,Marcel

Dekker,NewYork,1985.

[2] C.Sell,in:C.Sell(Ed.),TheChemistryofFragrances:fromPerfumerto

Con-sumer,vol.2,2nded.,RSCPublishing,Dorset,UK,2006,52-88.

[3] I.V.Kozhevnikov,CatalystsforFineChemicals,CatalysisbyPolyoxometalates,

vol.2,Wiley,Chichester,2002.

[4]T.Okuhara,N.Muzuno,M.Misono,Appl.Catal.A222(2001)63–77.

[5] K.A.daSilvaRocha,I.V.Kozhevnikov,E.V.Gusevskaya,Appl.Catal.A294(2005)

106–110.

[6] K.A.daSilvaRocha,P.A.Robles-Dutenhefner,E.M.B.Sousa,E.F.Kozhevnikova,

I.V.Kozhevnikov,E.V.Gusevskaya,Appl.Catal.A317(2007)171–174.

[7]K.A.daSilvaRocha,J.L.Hoehne,E.V.Gusevskaya,Chem.Eur.J. 14(2008)

6166–6172.

[8]K.A.daSilvaRocha,P.A.Robles-Dutenhefner,I.V.Kozhevnikov,E.V.Gusevskaya,

Appl.Catal.A352(2009)188–192.

[9]P.A.Robles-Dutenhefner,K.A.daSilva,M.R.H.Siddiqui,I.V.Kozhevnikov,E.V.

Gusevskaya,J.Mol.Catal.A175(2001)33–42.

[10]K.A.daSilva,I.V.Kozhevnikov,E.V.Gusevskaya,J.Mol.Catal.A192(2003)

129–134.

[11]K.A.daSilvaRocha,N.V.S.Rodrigues,I.V.Kozhevnikov,E.V.Gusevskaya,Appl.

Catal.A374(2010)87–94.

[12]V.L.Fleisher,O.G.Vyglazov,V.A.Chuiko,S.A.Lamotkin,Khim.Rastitel’nogo

Syr’ya4(2007)61–64.

[13]M.A.Schwegler,H.vanBekkum,Bull.Soc.Chim.Belg.99(1990)113–120.

[14] A.B.Radbil’,M.V.Kulikov,T.N.Sokolova,V.R.Kartashov,V.I.Klimanskii,B.A.

Radbil’,B.A.Zolin,Russ.J.Appl.Chem.73(2000)253–256.

[15] H.Liu,D.Jin,Q.Li,Z.Lan,Z.Fu,LinchanHuaxueYuGongye16(1996)15–19.

[16]A.Tao,X.Jiang,ShanghaiHuagong33(2008)14–16.

[17] I.J.Dijs,H.L.F.vanOchten,A.J.M.vanderHeijden,J.W.Geus,L.W.Jenneskens,

Appl.Catal.A241(2003)185–203.

[18] J.E.Castanheiro,I.M.Fonseca,A.M.Ramos,J.Vital,Catal.Commun.9(2008)

2205–2208.

[19] I.J.Dijs,H.L.F.vanOchten,C.A.vanWalree,J.W.Geus,L.W.Jenneskens,J.Mol.

Catal.A188(2002)209–224.

[20]A.B.Radbil’,M.V.Kulikov,T.N.Sokolova,V.R.Kartashov,B.A.Zolin,B.A.Radbil’,

Chem.Nat.Compd.35(1999)524–528.

[21]I.V.Kozhevnikov,A.Sinnema,A.J.A.vanderWeerdt,H.vanBekkum,J.Mol.

Catal.A120(1997)63–70.

[22]I.V.Kozhevnikov,Chem.Rev.98(1998)171–198.

Referências

Documentos relacionados

This association is an excellent tool for the quantitative determination of low molecular carboxylic acids (acetic acid, propionic acid, formic acid, butyric

Since diacetin is not easy to separate and the solketal solubility is not high enough in biofuel and gasoline to be used as a fuel additive, and the reaction of glycerol with

The key reaction was the Knoevenagel condensation of an ortho -hydroxybenzaldehyde with Meldrum’s acid under neutral conditions in water and one-pot acid catalyzed cyclization to

The catalytic performances of these catalysts were examined in the esterification reaction of succinic acid with n-butanol, and the catalytic results showed that modified

a -Pinene is a very reactive substrate, so that a complex mixture of products is formed in the presence of an acid catalyst, with camphene selectivity being strongly dependent on

Both the natural and activated clays promoted the esterification of phenylacetic acid with methanol more efficiently than those of other carboxylic acids. This result may

The complex exhibited high activity and good durability in reaction mixtures, indicating that it was a promising heterogeneous acid catalyst for esterification that including

A maximum reaction yield (86%) was obtained when H-ZSM-5 (with both the Lewis and Brønsted acid catalytic reaction sites) was used as the solid acid catalyst.. However, the