• Nenhum resultado encontrado

Gröbner Bases and Minimum Distane of Ane Varieties Codes C

N/A
N/A
Protected

Academic year: 2023

Share "Gröbner Bases and Minimum Distane of Ane Varieties Codes C"

Copied!
7
0
0

Texto

(1)

Uma Publiação daSoiedade BrasileiradeMatemátiaApliadaeComputaional.

Gröbner Bases and Minimum Distane of Ane

Varieties Codes

C. CARVALHO 1

, Fauldade de Matemátia, Universidade Federal de Uberlândia,

Av.J.N. Ávila2121,38.408-902Uberlândia,MG,Brazil.

Abstrat. Wepresent amethodtoestimatetheminimumdistaneofanevari-

etiesodes. Ourtehniqueusespropertiesofthefootprintofanidealobtainedby

enlargingthedeningidealofthevariety,andmaybeappliedalsotoodeswhih

donotomefromtheso-alledweightdomains.

Keywords. Anevarietiesodes, Gröbnerbases,footprint ofanideal,minimum

distane.

AMS Classiation. 13P10,13F20,94B27

1. Introdution

Sine the appearane of thegeometri Goppa odes in theeighties,many papers

havedealt with improvementson thelowerbound fortheminimum distane of a

ode. One of themost suessful methods for this improvementwasobtainedby

Feng and Rao (see [6℄ and [7℄). Manyrelated bounds appeared after their work,

oneofthembeingabound derivedbyAndersenandGeilin[1℄. Inthatpaperthe

authorsrstderiveageneralapproahtoobtainaboundfortheminimumdistane

(atually, for the generalized Hamming weights) of a linear ode, and then show

howtoapplytheirmethodtoodesdenedfromweightdomains. Aweightdomain

isan

F

-algebra,where

F

isaeld,whihadmitsafuntionto

N 0 ∪ {−∞}

satisfying

ertainproperties, whih makesthedomainsuitabletobeusedfordening odes,

when

F

isaniteeld. Theywereintroduedin[12℄byT.Høholdt,J.H.vanLint

andR.PellikaaninordertopresentanalternativeonstrutionforgeometriGoppa

odeswith simple toolsfrom ommutativealgebra. In the present work weshow

howtoapplyAndersenandGeil'sgeneralapproahtoanevarietyodes. Similarly

to odesobtainedfrom weightdomains, these areevaluation odes obtainedfrom

theringofregularfuntionsofananevarietybutweightfuntionsplaynorolein

thistheory. Sine thealgebraswhih appearin theweightfuntion theoryarethe

ringofregularfuntions ofertaintypeofvariety(see[11℄)ourresultappliesto a

moreomprehensivelassofrings(seeExample 3.2). Thus, distintlyfrom reent

works (see e.g.[9℄ and [10℄) wedo notneedonepts likewell-behavingbasis or

one-way well behaving basis. An important set of data to obtain a bound for

1

ieroufu.br. The author was supported in part by CNPq grants 302280/2011-1 and

470416/2011-4,andalsobyFAPEMIGpro. CEX-PPM-00127-12.

(2)

theminimumdistaneisthesetofindexeswhere thereisadimensionjump in a

sequeneofnestedvetorspaes. Whilein [1℄there areseveralresultsonsuh set

for theaseof odes from weightdomains, and in partiular, one-pointgeometri

Goppaodes,hereweshowthatthissetmaybereaddiretlyfromthefootprintof

anidealobtainedbyenlargingthedening idealoftheurve.

Inthenextsetion we reallAndersen andGeil's approah to obtainabound

for the minimum distane of a linear ode, we introdue the ane variety odes

and reallthedenition and someproperties of thefootprintof anideal, thenwe

proveourmainresult. Followingthat, wepresentsomeexamplesto illustrateour

method, inludingodesobtainedfrom analgebrawhih doesnotadmit aweight

funtion.

2. Main result

Let

F q

beaniteeldwith

q

elements,

n

apositiveintegerandfor

a := (a 1 , . . . , a n )

,

b := (b 1 , . . . , b n ) ∈ F n q

dene

a ∗ b := (a 1 b 1 , . . . , a n b n )

. Let

C

beavetorsubspae

of

F n q

. Theideaof Andersenand Geilfornding alowerbound fortheminimum

distaneof

C

stemsfromthefatthatif

c ∈ C

and

{ b 1 , . . . , b n } =: B

isabasisfor

F n q

thenthesubspae

c ∗ B

generatedby

{ c ∗ b 1 , . . . , c ∗ b n }

hasdimensionequal

totheweightof

c

. Thuswehavethefollowingresult,whihisnotexpliitlystated in[1℄but isusedthere.

Lemma2.1. Theminimumdistane

d(C)

isequalto

min{dim c ∗ B ; c ∈ C \ {0}}

.

Wewill usethisresulttoestimatetheminimumdistaneoftheso-alledane

variety odes, whih were introdued by J. Fitzgerald and R. F. Lax in [8℄. Let

I ⊂ F q [X 1 , . . . , X m ]

beanideal,let

V F q (I) = {P 1 , . . . , P n }

betheassoiatedvariety

of

F q

-rational points and set

R := F q [X 1 , . . . , X m ]/I

. Consider the evaluation

morphism

ϕ : R → F n q

given by

f + I 7→ (f (P 1 ), . . . , f(P n ))

and let

L

be an

F q

-vetorsubspaeof

R

.

Denition2.1. The anevarietyode

C(L)

isthe image

ϕ(L)

.

We observe that as an

F q

-vetor spae

R

may not have nite dimension. A

usefulwayofndingabasisfor

R

is bymeansoftheso-alledfootprintanideal.

Denition 2.2. Assume that

F q [X 1 , . . . , X m ]

is endowed with a monomial order

4

. Thefootprintof

I

(withrespetto

4

),denotedby

∆(I)

,isthesetofmonomials

whih are notleadingmonomials ofany polynomialin

I

.

Let

α = (α 1 , . . . , α m ) ∈ N m 0

(where

N 0

is the set of nonnegative integers), we will denote by

M α

the monomial

X 1 α 1 . · · · .X m α m

. Thenthe map

M α 7→ α

gives a

bijetionbetweenthesetofmonomialsof

F q [X 1 , . . . , X m ]

and

N m 0

. Denoteby

Λ

the

subsetof

N m 0

orrespondingtothemonomialswhihare notleadingmonomialsof anypolynomialin

I

withrespetto amonomialorder

4

. Then

∆(I) = {M λ | λ ∈ Λ}

is thefootprint of

I

(with respet to

4

). Oneof the main propertiesof

∆(I)

isthat

{M λ + I | λ ∈ Λ}

is abasisfor

R

asan

F q

-vetorspae(see e.g. [5,Prop.

4,

§

3, Ch. 5℄), and we observethat itis abasis whih alreadyarries an order.

(3)

Thus, for eah

λ ∈ Λ

weonsider the

F q

-subspae

L λ ⊂ R

whih isgenerated by

allmonomialsin

∆(I)

whiharelessorequalthan

M λ

. Clearly,if

M σ 4 M λ

then

L σ ⊆ L λ

,sothat

C(L σ ) ⊆ C(L λ )

. Thenextresultshowsforwhihvaluesof

λ

we

get

C(L σ ) $ C(L λ )

.

Theorem 2.1. Let

I q := I + (X 1 q − X 1 , . . . , X m q − X m )

. Then

dim C(L λ ) >

dim C(L σ )

(with

M λ ≻ M σ

)if andonlyif

M λ ∈ ∆(I q )

.

Proof. Observe initially that sine

I ⊂ I q

then

∆(I q ) ⊂ ∆(I)

, so that the laim

makessense. Denote by

F q

an algebrailosure of

F q

, learly wehave

V F q (I) = V F q (I q )

anddenotingby

V F q (I q ) ⊂ F q

m

thevarietyof

I q

asanidealof

F q [X 1 , . . . , X m ]

wealsoget

V F q (I q ) = V F

q (I q )

(onsideringthenaturalinlusion

F q m ⊂ F q m

). From

Seidenberg's Lemma 92 (see [16℄ or[2, Lemma 8.13℄) weget that

I q

is a radial

ideal, sofrom [2, Thm. 8.32℄weget that

R/I q

isan

F q

-vetor spaeof nite di-

mension

#V F

q (I q )

, and sine the lasses of the monomials in

∆(I q )

form a basis

for

R/I q

we get

#∆(I q ) = n

, where

n = #(V F q (I))

. We will prove now that if

M λ ∈ ∆(I q )

then

dim C(L λ ) > dim C(L σ )

for any

M σ ≺ M λ

. Assume that it

is not the ase, sothere exists

σ

with

M σ ≺ M λ

suh that

C(L λ ) = C(L σ )

. In

partiular,there existsanonzeronitelinearombination

P

M σ ′ 4M σ a σ ′ M σ ′ ∈ L σ

suh that

( P

M σ ′ 4M σ a σ ′ M σ ′ )(P i ) = M λ (P i )

for all

i = 1, . . . , n

. From Hilbert's

Nullstellensatz (see e.g. [5, Thm. 2,

§1

,Ch. 4℄) weget that thepolynomial

M λ − P

M σ 4M σ a σ M σ

isin

p

I q = I q

andafortiori

M λ ∈ / ∆(I q )

,aontradition. This ompletes the proof of the if assertion, for the only if part observe that the

dimensionofthespaes

dim C(L λ )

mayjumpfrom1to

n

atmost

n − 1

times,but

wejust provedthatitwilljump

n − 1

times,soeveryjumpmustorrespondtoan

elementof

∆(I q )

.

Fromthe(proofofthe) abovetheoremwegetthefollowingresult.

Corollary 2.1.1. Let

∆(I q ) := {M λ 1 , . . . , M λ n }

,then

{ϕ(M λ 1 ), . . . , ϕ(M λ n )}

isa

basis for

F n q

,where

n = #(V F q (I))

.

For simpliity we will denote by

M 1 , . . . , M n

the elements of

∆(I q )

and we

assumethat

M 1 < · · · < M n

. Wenowshowhow to usethe aboveresultsto nd

a lowerbound for the minimum distane of an ane variety ode

C ⊂ F n q

. Let

{ c 1 , . . . , c }

beabasisfor

C

, anddenoteby

B := { b 1 , . . . , b n }

the(ordered)basis

for

F n q

where

b i = ϕ(M i + I)

,

i = 1, . . . , n

. Forall

t ∈ {1, . . . , ℓ}

and

i ∈ {1, . . . , n}

write

c t ∗ b i

as alinear ombinationof theelementsin

B

. Oneway to dothis is towrite

c t = ϕ(f + I)

forsome

f ∈ F q [X 1 , . . . , X m ]

,sothat

c t ∗ b i = ϕ(f M i + I)

.

Nowobservethatif

R ti

istheremainderinthedivisionof

c t ∗ b i

byaGröbnerbasis of

I q

(withrespetto

)then

R ti

isalinearombinationof theelementsin

∆(I q )

and the evaluation of

f M i

at the points of

V F q (I) = V F q (I q )

oinides with the

evaluation of

R ti

at these points, whih produes thedesired linear ombination.

Let

Γ ti ⊂ ∆(I q )

denote the set of monomials

M j

suh that the oeient of

b j

in that linear ombination is not zero. Let

M ti

be the greatest element in

Γ ti

.

Wewantto ndalowerbound for theweightofwordsof thetype

c = P t i =1 a i c i

with

a 1 , . . . , a t ∈ F q

and

a t 6= 0

. Forthis wedene

D t := {M t1 }

andthen forall

(4)

i = 2, . . . , n

we add

M ti

to the set

D t

if

M si ≺ M ti

for all

1 ≤ s < t

. We laim

thattheweightof

c

satises

w( c ) ≥ #(D t )

. Infat,let

v = #(D t )

,thenthe

v × n

matrix

A

whoselines are the oordinates of thevetors

c ∗ b i

1 , . . . , c ∗ b i

v

in the

base

B

hasa

v × v

invertibleminor. Toseethis, let

M ti 1 , . . . , M ti v

bethedistint

elementsof

D t

,thenforeah

j ∈ {1, . . . , v}

wehave

M ti j = M λ j ∈ ∆(I q )

,andfrom

theonstrutionof

D t

weget thatin the

j

-thline of

A

the

λ j

-th entryisnonzero

and all entries after it are equalto zero. This provesthat

w( c ) ≥ #(D t )

, so the

minimumdistaneof

C

islowerboundedby

min{#(D t ) | t = 1, . . . , dim(C)}

.

Theabovemethod appliesto any anevarietyode in

F n q

but tosimplify the

alulationsin thefollowingexamples we useodeswhih are generated by some

vetorsofthebase

B

induedby

∆(I q )

. Theseexamplesalsoshowthatthemethod

an yield sharp bounds, and may be applied to odes whih do not ome from

evaluationorderdomains.

3. Examples

Example 3.1. For the rst example we take the hermitian urve given by

Y 3 + Y − X 4 = 0

, dened over

F 9

. Codes over this urve has been studied extensively, and the minimum distane of one point geometri Goppa odes has been deter-

minedbyStihtenoth([17 ℄)andYangandKumar([18 ℄). Buildingontheexperiene

of those who have dealt with these odeswe hoose a weighted lexiographi order

for

F 9 [X, Y ]

by stating that

X a Y b 4 X a Y b

if and only if

3a + 4b ≤ 3a + 4b

,

and if equality holds then

X a Y b < lex X a Y b

(with

Y < lex X

). These weights

ome from the pole orders of the rational funtions

x = X/Z

and

y = Y /Z

at

the point at innity

P ∞ := (0 : 1 : 0)

, whih is their only pole. Using CoCoA

([4 ℄) or Maaulay2 ([13 ℄) we may alulate a Gröbner basis for the ideal

I 9 :=

(Y 3 + Y − X 4 , Y 9 − Y, X 9 − X )

with respet to

4

,whih is

{Y 3 + Y − X 4 , Y 9 − Y, XY 6 − XY 4 + XY 2 − X }

and from that we get that the footprint of

I 9

(w.r.t.

4

) is

∆(I 9 ) = {X a Y b | 0 ≤ a ≤ 3, 0 ≤ b ≤ 5} ∪ {Y 6 , Y 7 , Y 8 }

. The urve has

27 rational points (in the ane plane), whih isthe same number of elements in

the footprint, asexpetedfrom theproof oftheorem2.1. Whenweorderthe mono-

mials in

∆(I 9 )

we get

{1, X, Y, X 2 , XY, Y 2 , X 3 , X 2 Y, XY 2 , Y 3 , X 3 Y, X 2 Y 2 , XY 3 , Y 4 , X 3 Y 2 , X 2 Y 3 , XY 4 , Y 5 , X 3 Y 3 , X 2 Y 4 , XY 5 , Y 6 , X 3 Y 4 , X 2 Y 5 , Y 7 , X 3 Y 5 , Y 8 }

so

denoting by

M i

the

i

-th monomial in

∆(I q )

we get that

{ b i := ϕ(M i + I) | i = 1, . . . , 27}

isabasis for

F 27 9

. Let

C

be the ode generatedbythe evaluation of(the

lass of) the rst 5 elements of the basis, namely,

C = h b 1 , . . . , b 5 i

. We start

by nding a lower bound for the weight of odewords of the type

c = P 5

i =1 a i b i

, where

a 1 , . . . , a 5 ∈ F 9

and

a 5 6= 0

. Following the proedure (and the notation) de-

sribedatthe endof thelastsetion,sine

b 1 = ϕ(1 + I)

wemustset

D 5 = {XY }

to start. Then, from

c 5 ∗ b 2 = ϕ(XY + I) ∗ ϕ(X + I) = ϕ(X 2 Y + I) = b 8

,

c 4 ∗ b 2 = ϕ(X 3 + I) = b 7

,

c 3 ∗ b 2 = b 5

,

c 2 ∗ b 2 = b 4

and

c 1 ∗ b 2 = b 2

we must add

X 2 Y

to

D 5

obtaining

D 5 = {XY, X 2 Y }

. Atually, sine for any

N ∈ {1, X, Y, X 2 , XY }

and

M ∈ M := {X a Y b | 0 ≤ a ≤ 1, 0 ≤ b ≤ 4}

we have

N M ∈ ∆(I q )

and also

M ≺ XM ≺ Y M ≺ X 2 M ≺ XY M

, then we must add

XY M

to

D 5

for all

M ∈ M

, so that (so far)

#(D 5 ) = 10

. We get ten other

(5)

elements tobeaddedto

D 5

fromthe tables below

Remainder inthe division of

c i ∗ b j

bythe Gröbnerbasisof

I q

b 4 = X 2 b 7 = X 3 b 8 = X 2 Y b 11 = X 3 Y b 12 = X 2 Y 2 XY X 3 Y Y 4 + Y 2 X 3 Y 2 Y 5 + Y 3 X 3 Y 3

X 2 Y 3 + Y XY 3 + XY Y 4 + Y 2 XY 4 + XY 2 Y 5 + Y 3

Y X 2 Y X 3 Y X 2 Y 2 X 3 Y 2 X 2 Y 3

X X 3 Y 3 + Y X 3 Y Y 4 + Y 2 X 3 Y 2

1 X 2 X 3 X 2 Y X 3 Y X 2 Y 2

Remainderin the divisionof

c i ∗ b j

bythe Gröbner basis of

I q

b 15 = X 3 Y 2 b 16 = X 2 Y 3 b 19 = X 3 Y 3 b 20 = X 2 Y 4 b 23 = X 3 Y 4

XY Y 6 + Y 4 X 3 Y 4 Y 7 + Y 5 X 3 Y 5 Y 8 + Y 6

X 2 XY 5 + XY 3 Y 6 + Y 4 −XY 4 − XY 2 + X Y 7 + Y 5 −XY 5 − XY 3 + XY

Y X 3 Y 3 X 2 Y 4 X 3 Y 4 X 2 Y 4 X 3 Y 4

X Y 5 + Y 3 X 3 Y 3 Y 6 + Y 4 X 3 Y 4 Y 7 + Y 5

1 X 3 Y 2 X 2 Y 3 X 3 Y 3 X 2 Y 4 X 3 Y 4

whihare

{X 3 Y, Y 4 , X 3 Y 2 , Y 5 , X 3 Y 3 , Y 6 , X 3 Y 4 , Y 7 , X 3 Y 5 , Y 8 }

,sothatnow

#(D 5 ) = 20

. The produt of the elements in the basis of

C

with

b 18 , b 21 , b 22 , b 24 , b 25 , b 26

and

b 27

willnotyieldanymonomialtobeaddedto

D 5

;forexample,theremainders

in the divisionof

c 1 ∗ b 25

,

c 2 ∗ b 25

,

c 3 ∗ b 25

,

c 4 ∗ b 25

and

c 5 ∗ b 25

by the Gröbner basis of

I 9

are respetively

Y 7 , XY 5 − XY 3 + XY, Y 8 , X 2 Y 5 − X 2 Y 3 + X 2 Y

and

X

,sowe annotadd

X

to

D 5

(beause,for instane,

X ≺ Y 8

). Likewise, weom-

pute

#(D 4 )

,

#(D 3 )

,

#(D 2 )

and

#(D 1 )

obtaining respetively 21, 22, 24 and 27.

Thus our bound for the minimum distane is 20 butthis is the atual value of the

minimum distane, whih we may hek by observing that the ode orrespondsto

the geometri Goppaode generatedbyabasis of

L(7P )

,see[17 ℄.

Example 3.2. In this example we deal with the ane urve dened over

F 9

by

the equation

X 6 Y 4 + X 8 + 1 = 0

. Observe that the losureof the urve in

P 2 ( F 9 )

has two nonsingular points, namely,

P 1 := (0 : 1 : 0)

and

P 2 := (1 : 0 : 0)

so

R = F 9 [X, Y ]/(X 6 Y 4 + X 8 + 1)

isnot aweight domain (see [14 ℄, see also [3℄for

results on odes dened by means of near weight domains, whih inlude the ring

R

). The poledivisor ofthe funtions

x

and

y

in thefuntion eldof the urveare

respetively,

div (x) = 2P 1 + 2P 2

and

div (y) = 5P 1 + 5P 2

(alulationsdonewith KASH/KANT - [15 ℄) so wehoosea weightedlexiographi order for

F 9 [X, Y ]

by

statingthat

X a Y b 4 X a Y b

ifandonlyif

2a + 5b ≤ 2a + 5b

,andifequalityholds

then

X a Y b < lex X a Y b

(with

Y < lex X

). Using CoCoA ([4 ℄) orMaaulay2 ([13 ℄)

wemayalulateaGröbnerbasisfor

I 9 = (X 6 Y 4 +X 8 +1, Y 9 −Y, X 9 −X)

obtaining

{X 4 − 1, Y 4 − X 6 }

sothatthe footprint is

∆(I 9 ) = {X a Y b | 0 ≤ a ≤ 3, 0 ≤ b ≤ 3}

,

andwe onlude thatthere are16 rational pointsinthe ane urve. Let

C

be the

odegeneratedbyevaluatingthelasses

{1 +I, X +I, X 2 +I, Y +I, X 3 +I, XY +I}

at the rational points in the ane plane (hene, from the above theorem we know

(6)

that this ode has dimension 6). Observe that this is the geometri Goppa ode

generated bya baseof

L(7P 1 + 7P 2 )

,or inother words, the geometri Goppa ode

assoiatedwiththedivisors

G = 7P 1 +7P 2

and

D

,where

D

isthesumofallrational

points. Let

f = a 1 + a 2 X + a 3 X 2 + a 4 Y + a 5 X 3 + a 6 XY

,with

a 1 , . . . , a 6 ∈ F 9

and

let

j ∈ {1, . . . , 6}

be greatest index for whih

a j 6= 0

. Denoting by

B

the (ordered) basis

{ϕ(X a Y b + I) | 0 ≤ a ≤ 3, 0 ≤ b ≤ 3}

of

F 16 9

andproeeding asintheexample

above wesee that

ϕ(f + I) ∗ B

hasdimension atleast 9(respetively, 4,12, 8,12,

16) if

j = 6

(respetively, 5,4, 3, 2,1), soour boundfor the minimum distaneis 4, andone may hek that thisis the atual bound. Wealso see that ifwe disard

X 3

and onsider the ode generated by evaluating the lasses

{1 + I, X + I, X 2 + I, Y + I, XY + I}

attherational points,then thebound forthe minimum distane

isnow8, andagainone mayhekthat thisisthe atualbound.

Aknowledment. Theauthorwouldliketoexpresshiswarmthankstothereferees

fortheirarefulreadingandmanysuggestionswhihhaveimprovedverymuhthe

readabilityofthistext.

Resumo. Nesse trabalhoapresentamos ummétodoparaestimar adistâniamí-

nimadeódigosdevariedadesans.Nossaténiausapropriedadesdapegadade

umidealobtidoatravésdoaumentodoidealdedeniçãodavariedadeemquestão,

e tambémpode ser apliada a ódigos de que não são produzidos utilizando-se

domínios-pesos.

Palavras-have. Códigos de variedade am, bases de Gröbner, pegada de um

ideal,distâniamínima.

Referenes

[1℄ H.E. Andersen, O. Geil, Evaluation odes from order domain theory, Finite

FieldsAppl.,14,(1)(2008),92-123.

[2℄ T. Beker, V. Weispfenning, Gröbner Bases- A omputational approah to

ommutativealgebra,SpringerVerlag,Berlin,1993.

[3℄ C.Carvalho,E. Silva,On algebrasadmitting aomplete set of near weights,

evaluation odes, and Goppa odes, Des.Codes Cryptography 53(2) (2009),

99-110.

[4℄ CoCoA Team - CoCoA: a system for doing Computations in Commutative

Algebra.Available athttp://ooa.dima.unige.it.

[5℄ D. Cox, J. Little, D. O'Shea, Ideals, Varieties, and Algorithms, Third ed.,

Springer,NewYork,2007.

[6℄ G.-L. Feng, T.R.N. Rao, A simple approah for onstrution of algebrai-

geometri odes from ane plane urves, IEEE Trans. In-form. Theory, 40

(1994),1003-1012.

(7)

[7℄ G.-L.Feng,T.R.N.Rao,ImprovedgeometriGoppaodes,PartI:Basitheory,

IEEETrans.Inform. Theory, 41),(1995),1678-1693.

[8℄ J. Fitzgerald, R.F. Lax, Deoding ane variety odes using Göbner bases,

Designs,CodesandCryptography, 13,(2)(1998),147-158.

[9℄ O. Geil, "Algebrai geometry odes from order domains, in Gröbner Bases,

Coding, andCryptography,Springer",2009,Eds.: Sala,Mora,Perret,Sakata,

Traverso,121-141

[10℄ O. Geil, Evaluation Codes from an Ane Variety Code Perspetive, in Ad-

vanesinalgebraigeometryodes,Ser.CodingTheoryCryptol.,5,WorldSi.

Publ.,Hakensak,NJ,2008,Eds.: E.Martinez-Moro,C.Munuera,D.Ruano,

153-180

[11℄ O.Geil,R.Pellikaan,OntheStrutureofOrderDomains,FiniteFieldsAppl.,

8(2002),369-396.

[12℄ T.Høholdt,J.H.vanLint,R.Pellikaan,Algebraigeometriodes,in:V.Pless,

W. C.Human (Eds.), Handbook ofCoding Theory,Elsevier, 1998,pp. 871-

961.

[13℄ D. Grayson,M. Stillman, Maaulay2,a softwaresystem forresearh in alge-

braigeometry,availableat http://www.math.uiu.edu/Maaulay2/.

[14℄ R.Matsumoto,Miuras'sgeneralizationofone-pointAGodesisequivalentto

Høholdt,vanLintandPellikaan'sgeneralization,IEICETrans.Fundamentals,

E82-A(1999),665-670.

[15℄ M.E.Pohst,et al.,TheComputerAlgebraSystemKASH/KANT,availableat

http://www.math.tu-berlin.de/

kant.

[16℄ A.Seidenberg,Construtionsin algebra,Transations of the AmerianMath-

ematial Soiety,197(1974),273-313.

[17℄ H.Stihtenoth,AnoteonHermitianodesover

GF (q 2 )

,IEEETrans.Inform.

Theory,34(1988),1345-1348.

[18℄ K. Yang, P.V. Kumar, On the true minimum distane of Hermitian odes,

LeturesNotesinMath.,1518(1992),99-107.

Referências

Documentos relacionados

Objective: Stigma toward individuals with mental disorders has been studied extensively. In the case of Latin America and the Caribbean, the past decade has been marked by a

Generally, the forest companies use the total one year planting area as a minimum stratum of the total population and, consequently, the forest inventory processing has been

Os trabalhos realizados pela Inspetoria tiveram por base os dados relativos à execução orçamentária e financeira enviados por meio magnético, através do

Being one of the pioneers in the use and storage of diagnostic images, ophthalmology has a particular responsibility in this scenario, and over the past few years, it has been

Tendo em vista a influência das experiências de injustiça na croni- ficação da dor musculoesquelética, e a ausência de um instrumento capaz de avaliar a experiência de injustiça

Considering the influence of the experiences of injustice in the chronification of musculoskeletal pain, and the absence of an instrument to evaluate the experience of injustice

Focal primary hyperhidrosis at common sites (hands, armpits, feet and face) has been extensively studied, and different methods of treatment have been described (21), including

3 A realização do presente relatório surge no âmbito das unidades curriculares de Prática Educativa I e II, que estão inseridas no plano de estudos do