• Nenhum resultado encontrado

Deep into the mud : ecological and socio-economic impacts of the dam breach in Mariana, Brazil.

N/A
N/A
Protected

Academic year: 2021

Share "Deep into the mud : ecological and socio-economic impacts of the dam breach in Mariana, Brazil."

Copied!
11
0
0

Texto

(1)

h t tp ://www . n a t u r e z a e c o n s e r v a c a o . c o m . b r

Essays

and

Perspectives

Deep

into

the

mud:

ecological

and

socio-economic

impacts

of

the

dam

breach

in

Mariana,

Brazil

Geraldo

Wilson

Fernandes

a,b,∗

,

Fernando

F.

Goulart

c

,

Bernardo

D.

Ranieri

d

,

Marcel

S.

Coelho

a,e

,

Kirsten

Dales

f

,

Nina

Boesche

g

,

Mercedes

Bustamante

h

,

Felipe

A.

Carvalho

a

,

Daniel

C.

Carvalho

i

,

Rodolfo

Dirzo

b

,

Stephannie

Fernandes

j

,

Pedro

M.

Galetti

Jr.

b,k

,

Virginia

E.

Garcia

Millan

g

,

Christian

Mielke

g

,

Jorge

L.

Ramirez

k

,

Ana

Neves

a

,

Christian

Rogass

g

,

Sérvio

P.

Ribeiro

l

,

Aldicir

Scariot

m

,

Britaldo

Soares-Filho

c

aEvolutionaryEcology&Biodiversity,DepartmentofGeneralBiology,UniversidadeFederaldeMinasGerais(UFMG),BeloHorizonte,

MG,Brazil

bDepartmentofBiology,StanfordUniversity,Stanford,UnitedStates

cMasterinModelingandAnalysisofEnvironmentalSystems,CenterforRemoteSensing,DepartmentofCartography,Universidade

FederaldeMinasGerais(UFMG),BeloHorizonte,MG,Brazil

dNormanB.KeevilInstituteofMiningEngineering,UniversityofBritishColumbia,Vancouver,Canada

eLaboratoryofPhenology,DepartmentofBotany,InstitutodeBiociências(IB),UniversidadeEstadualPaulista(UNESP),RioClaro,SP,

Brazil

fCanadianInternationalResources&DevelopmentInstitute,UniversityofBritishColumbia,Vancouver,Canada

gHelmholtzCentrePotsdam,GFZGermanResearchCentreforGeosciences,GeodesyandRemoteSensingDepartment,Potsdam,Germany hDepartmentofEcology,UniversidadedeBrasília,Brasília,DF,Brazil

iDepartmentofZoology,PontifíciaUniversidadeCatólicadeMinasGerais(PUC-Minas),BeloHorizonte,MG,Brazil jFaculdadedeDireitoMiltonCampos,NovaLima,MG,Brazil

kDepartmentofGeneticsandEvolution,UniversidadeFederaldeSãoCarlos,SãoCarlos,SP,Brazil

lDepartmentofBiodiversity,EvolutionandEnvironment,InstituteofExactandBiologicalSciences,UniversidadeFederaldeOuroPreto,

OuroPreto,MG,Brazil

mEmbrapaRecursosGenéticoseBiotecnologia,ParqueEstac¸ãoBiológica(PqEB),Brasília,DF,Brazil

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received17May2016 Accepted14October2016 Availableonline5November2016

Keywords:

Ecosystemservices

Environmentalcontamination Environmentallegislation

a

b

s

t

r

a

c

t

Wereviewtheecologicalandsocio-economicimpactsofthecatastrophicdamfailurein Mar-iana,Brazil.TailingmanagementpracticesbySamarcominingcompanyultimatelycaused adambreachthatabruptlydischargedbetween55and62millionm3oftailingsintothe DoceRiverwatershed.OnNovember5th,2015,atsunamiofslurryengulfedthesmall dis-trictofBentoRodrigues,loadingtheDoceRiveranditsestuarywithtoxictailingsalonga 663.2kmtrajectory,extendingimpactstotheAtlanticcoast.Acuteecologicalimpactswill adverselyaffectlivelihoodsofmorethan1millionpeoplein41riparianmunicipalitiesby reducinglocalaccesstofisheriesresources,cleanwater,cropproductionsites, hydroelec-tricpowergenerationandrawmaterials.Thethreatstoriverinehumancommunitiesare

Correspondingauthor.

E-mailaddress:gw.fernandes@gmail.com(G.W.Fernandes).

http://dx.doi.org/10.1016/j.ncon.2016.10.003

1679-0073/©2016Associac¸ ˜aoBrasileiradeCi ˆenciaEcol ´ogicaeConservac¸ ˜ao.PublishedbyElsevierEditoraLtda.Thisisanopenaccess articleundertheCCBY-NC-NDlicense(http://creativecommons.org/licenses/by-nc-nd/4.0/).

(2)

Heavymetals Mining Restoration Waterresources

particularlycriticalforthedisadvantagedpopulationsfromremoteareasthatrelyon sub-sistenceagricultureandfisheries,andareuniquelyvulnerabletolong-termheavymetal exposure.Atthelandscapescale,wepredictmultiplenegativeimpacts,rangingfrom alter-ationsofthegeneticdiversityoffishpopulationstolong-termvegetationlossandpoor regenerationincontaminatedareas.Consequently,compromisedsoilstabilityandrunoff controlwillincreasetheriskoffurthergeomorphologicdisturbance,includinglandslides, bank failureandmassmovements.We proposespatiallyexplicitlong-termmonitoring frameworksandprioritymitigationmeasurestocopewithacuteandchronicrisks.Weposit that,fromanationalperspective,disastrousimpactslikethatofDoceRivermaybecome morefrequent,giventherecentregulatorychangesthatunderminebothinstitutional gov-ernancestructuresandenforcementofenvironmentalregulation.

©2016Associac¸ ˜aoBrasileiradeCi ˆenciaEcol ´ogicaeConservac¸ ˜ao.PublishedbyElsevier EditoraLtda.ThisisanopenaccessarticleundertheCCBY-NC-NDlicense(http://

creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

OnNovember5th,2015,Brazilexperienceditsworst ecolog-icaldisaster whenan iron mine dam (Fundão dam)failed inthemunicipalityofMariana,StateofMinasGerais(MG), releasing metal-rich tailings waste in concentrations that endangerhumanandecosystemhealth.Imprudent manage-mentpracticesbytheminingcompanySamarco(co-owned bytheBrazilian ValeandAustralian BHPBilliton)caused a breachthatdischarged55–62millionm3 ofironoretailings

slurrydirectlyintotheDoceRiverwatershed(GFT,2015).The volumeoftailings released bythe FundãoDam represents thelargesttailings damburstinmodernhistory,exceeding magnitudes of the two previously largest incidents in the Philippinesin1982(28millionm3)and1992(32.2millionm3)

(IBAMA,2015a).Theslurrytsunamiengulfed thesmall

dis-trictofBentoRodrigues,destroyingculturalheritagedatingto the1700s,displacing itsentirepopulation(600people)and killingatleast19 people (MB,2016). Themineslurry filled hydrologicnetworksalong663.2kmoftheDoceRiverthrough thestatesofMinasGerais(MG),andEspiritoSanto(ES)before reachingitsestuary,inthecityofLinhares(ES)(INPE,2015). Thedisaster currentlyrepresents thelongest travelled dis-tance bytailings ina dam failure event in SouthAmerica (previousrecordbeingca.300kminBoliviain1996)(IBAMA,

2015a). Due to the action of northward ocean currents in

theAtlantic,finesuspendedsedimentshavespreadthrough marinehabitatsoftheBrazilliancoast(Bianchini,2016). Con-sequencesatbroaderspatialscales,includinginternational watersthroughthetransboundarymovementofsuspended sediments,remainlargelyunknown.

TheFundãotailings dam breachcan beconsidered one of the worst in the last century regarding the volume of tailingsreleased totheenvironment andthe magnitudeof socio-economic and environmental damages. Current cost estimatesforrestorationofthethreatenedBrazilianAtlantic rain forest ecosystems are around 20 billion dollars (GFT, 2015).Theinterwovenecologicalandsocio-economicimpacts haveaffectedhundreds ofthousandsofpeoplein41cities across the Doce River basin (GFT, 2015). The destruction of riparian, freshwater and marine ecosystems eliminated irreplaceablenaturalresourcesandecologicalprocessesthat

supporttraditionallivelihoods,disruptingfisheries, agricul-ture, tourism and provisioning of fresh water. Here, we analyzetheecologicalandsocio-economicimpactsofthe inci-dent, highlight the lessons learnedand proposeintegrated managementandpolicysolutionsformonitoring,mitigation andpreventionoffuturecatastrophictailingsfromdamsin Brazil.

Impacts

to

landscapes

and

habitats

Effects onfloraandaquatichabitatsweresevere andmost likely persistent throughout the entire watershed. A few days following the disaster, analysis of surfacereflectance data in Landsat-8 images allowed measurements of the extent and intensity of the damage by the released tail-ings. Spatial analys developed according to the protocols oftheGeoForschungsZentrum-GFZ-Postdamteam,Germany

(Mielke et al., 2014, 2015), identified significant vegetation

lossanddepositionoftailingswithextremehigh concentra-tion ofironalong theDoceRiver, ataltitudesrangingfrom 0montheriverdelta,inResende(ES),to950minMariana

(MG)(Figs.1and2).Thedevastationimpactedapproximately

1469haofnaturalvegetationand90% ofthe riparian habi-tatsoftheFundão,theNorthGualaxoandtheCarmeloRivers (Fig.3).

The tailing deposits were scattered over the affected regions,reachingwidthsofmorethan1kminareas immedi-atelydownstreamofdischargesinthecityofMariana(Fig.1). Wasteslurry,sedimentsandenormousvolumesofuprooted plantbiomassfilledthemaindownstreamchannels,creating irreversibledamageto663.2kmalongaffectedwatercourses (Fig.4).Thepotentialextent,magnitudeandreversibilityof theimpactsofsedimentdepositionoverpelagichabitats,coral reefs,seaweedbeds,andmangrovesintheaffectedregionsof theBraziliancoastareunknown.Preliminarydatahave indi-catedthatsuspendedsedimentsmayhavespreadforupto 200kmintotheoceanresultinginevenbroader-scaleimpacts on marine systems, resulting from mobility of particulate-associatedcontaminants(Bianchini,2016).

TheDoceRiverBasinhas98%ofitsareainsertedwithin theAtlanticForestbiome(83,400km2),oneoftheworld’s34

(3)

Fig.1–WatershedsectionsimpactedbytheFundãoDambreachinNovember2015,municipalityofMariana,MinasGerais State,Brazil.Yellowpolygonindicatesthelocalityimmediatelyaffectedbyiron-oretailingsdischarge.(AandB)Landsat 8OLIsatelliteimagesbeforeandafterthedisaster(October11thandNovember12th,respectively).Thehighlightedareais equivalenttoca.600haoftropicalrainforests,semi-deciduousseasonalforest,anddevastatedagriculturallands.(C)Extent ofimpactsfromtheheadwatersoftheRioDocebasintothedelta,intheAtlanticOcean.

(4)

Fig.2–ChangedNormalizedIronFeatureDepth(upper2quartiles)ascolouredtruecolourLandsat-8overlayderivedfrom differentialanalysesofLandsat-8scenesfrom11.10.2015and12.11.2015–HelmholtzCentrePotsdam–GFZGerman ResearchCentreforGeosciences,ChristianRogass,2015.

endemismandanthropogenicalteration(Myersetal.,2000). Theregions adjacent tothe Doce Riverdelta are classified as“veryhigh”inbiologicalimportanceformarine conserva-tion,accordingtotheBrazilianMinistryofEnvironment(MMA, 2007).Theflowoftailingsburiedaquaticandriparian nurs-ery habitats,eliminating mostofthe regenerative capacity ofaquaticand terrestrialecosystems. Thelossof “ecologi-calmemory”underneaththethicktailingsdepositlayercan extendrecoverytimeofbiophysicalstructure,ecological func-tionandbiodiversityinaffectedareafromdecadestoclose toacentury(SkaloˇsandKaˇsparová,2012).Duetoprolonged residencetimesofheavymetalsreleasedduringdambursts

(Macklinetal.,1997),naturalfloodplainregenerationmaybe

delayedorimpededentirely,contingentupontheextentand magnitudeofcontamination(Klokeetal.,1984;Bastinetal.,

2002).

Impacts

on

aquatic

fauna

Fishrichness(>100spp.)ishighintheDoceRiver,twicethe numberfoundinGreatBritain(MaitlandandCampbell,1992), withmanyspeciesstillunknowntoscience(Vieira,2009).Six of the known species are considered atrisk of extinction, according tothe Brazilianlist ofthreatenedspecies(MMA, 2014).Theimpactsonichthyofaunaareofparticularconcern asfishcommunitiesare oneofthemainecological compo-nents oftheDoceRiverandrepresentaresourceonwhich asignificantportion ofthelocalcommunitiesrelyfortheir livelihoods(GFT,2015;Nevesetal.,2016).Entirefish popula-tionsdiedimmediatelyafterthedischargeswhentheslurry buriedthemorcloggedtheirgills.Preliminarydataestimates thelossofsignificantbiomassoftheoriginalfishstockinthe

Fig.3–NormalizedDifferentialVegetationIndex(NDVI)(upperquartileinwhite)derivedfromdifferentialanalysis Landsat-8overlay,derivedfromdifferentialanalysesofLandsat-8scenesfrom11.10.2015and12.11.2015–Helmholtz CentrePotsdam–GFZGermanResearchCentreforGeosciences,ChristianRogass,2015.

(5)

Fig.4–A–DImpactofthemudwaveontheDoceRiver.(A)Bottomleftpictureshowstheriverfewdaysafterthedisasterin theCamargosMunicipality(photo:PedroIvo),(B)onthetopleftdeadfishesnearbytheParquedoRioDoce(Photo:Elvira Nascimento),(C)toprightdeadfishesatGovernandorValadares(Photo:LorrainaViana)and(D)bottomrightshowsan aerialphotographoftheDoceRivermouth25daysafterthedamburst(imagesdownloadedatwww.nasa.gov).

DoceRiverandmarineecosystems(GFT,2015).Furthermore, fishspecieslossmaybemuchlargerthanestablished,as cur-rentestimatesdidnotaccountforlong-termeffectsonmarine fishandthecommunitiesthatinhabitestuarineecosystems duringpartoftheirlifecycles(Vieira,2009).

Whilesomestudiesconsiderthatfreshwaterfishspecies inhabiting the Doce River are widespread in the adja-cent basins (e.g. Vieira, 2009), recent molecular evidence unfoldstaxonomicuncertaintiesthatreveal higher dissim-ilarity(Ramirez etal., 2016).Becauseofthehigh frequency ofcrypticspeciesintheDoceRiverbasin,theactualimpact onaquaticdiversityishighlyunknownandmany endemic undescribedspeciescouldhavebecomeextinct.Oneexample ofsuchconcernisthatoftwoimportantsubsistencespecies inhabitingtheDoceRiverbasin:Leporinusconirostrisand Lepor-inuscopelandii.Althoughrecordedinothercoastalbasins,they seemtorepresentcomplexesofcryptic species,asthereis adeepgeneticdifferentiationbetweenspecimensfromDoce RiverbasinandtheadjacentParaibadoSulbasin(Fig.5).

Successfulfishrecolonizationofthemainchanneldepends on the reclamation interventions on the directly affected areas and the size, diversity and conservation status of remnantfish populationsin sourcetributaries (Olds et al., 2012). The primary source of individuals for long-term

recolonizationofDoceRiver’smainchannelbyaquatic biodi-versitywouldbeitslowerordertributaries,suchastheSanto AntonioRiver.However,theresilienceofthewholeDoceRiver watershed has been reduced by historic human influence suchashydroelectricdams,pollution(agriculturalpesticides and sewage),andtheintroduction ofexotic species(Barros et al., 2012).Geneticvariation inremnant fish populations hasbeen reduced bywaterquality, lower integrityof habi-tatsandfoodwebs.Forexample,recentmolecularevidence indicatesthatL.copelandiipopulationsfromtheSanto Anto-nioRivermaybealreadydiminished(Unpublisheddata).Such reducedgeneticdiversitymaybeabarriertorecolonization sinceitreducesflexibilityinsurancetocopewiththe long-termstressesimposed byhabitatdisturbance(Piorskietal.,

2008).

Inanattempttopreservepartoftheichthyofaunalgenetic bankoftheDoceRiver,volunteersimplementedtheso-called Noah’s Arkplan, an exsitu emergency conservationaction tosalvagespecimensbeforethearrivalofthewaveof sedi-ments(Escobar,2015).However,duetotheextremeurgency andlimitedresources,salvageactionsoccurredatjustafew sitesalongthemainchannelandlackedasystematicdesignto assuresafeguardingrepresentativegeneticvariationof multi-plespecies.

(6)

Leporinus conirostris L. conirostris

L286 L291

L288

L. conirostris Doce basin

100 100 100 100 100 100 75 99 0.02

Paraiba do sul basin

Doce basin Paraíba do sul basin Itapemirim basin L292 L. conirostris L820 L. conirostris L210 L. conirostris L. macrocephalus L. steindachneri L. copelandii L289 L. copelandii B043 L. copelandii L805 L. copelandii Leporellus vittatus L211

Fig.5–Neighbour-joining(NJ)treeobtainedbyCOIgeneanalysisusingK2pinMega6.0.Thenumberinnodecorresponds tobootstrapvalue.Leporinusmacrocephalus,L.steindachneriandLeporellusvittatusareoutgroups.

Socioeconomic

impacts

and

human

health

risks

TheBraziliangovernmentpresentedareport withthefirst estimateoftheeconomicdamagescausedbythedamfailure (GFT,2015).Materialandenvironmentallosseswereestimated tobeover20billiondollars.Theinterruptionofthemining activitywillseverelyaffectlocaleconomiesof37villagesand citiesduetoreducedroyaltiesandtaxrevenuesalongthe com-ingyears(GFT,2015).Tragically,someimpactsareirreversible (e.g. human lives, ecosystem integrity and ecological pro-cesses,landscapeaestheticsandculturalvalues,thecolonial heritageofBentoRodriguesvillage, etc.).Hence,consensus surroundingpriorities,institutionalrolesandresponsibilities regardingdamagecompensationstillrequireextensive, long-termdialogueandconsultationsamongallstakeholders(see

alsoNevesetal.,2016).

TheimmediatedischargefromtheFundãoDamdevastated thecolonialdistrictofBentoRodrigues(IBAMA,2015a,b)asthe tailingdepositssubmergedcriticalwaterresourceswithinthe Fundãomicro-basin(Mirandinha,Fraga,andCamargoCreeks;

Fig. 1). Despite directeffects on river channels and terres-trialecosystems,thedisruptionofprovisioningandregulation ecosystemservicesalongtheDoceRiver,posesdirectand indi-rectimpactsonlivelihoods,health,andwell-beingofhuman populations extending to a much wider area of the basin

(Nevesetal.,2016,seealsoTEEB,2010).

Intheshortterm,41downstreammunicipalitiesalongthe margins ofthe DoceRiver lost accessto fishingresources, cleanwater,cropproductionsites,hydroelectricpower gener-ationandrawmaterialsthatsupportlocaleconomies(Table1). Thenumberofaffectedpeopleextendsto1million,ofwhich atleast300thousandhadwatersupplyimmeditelydestroyed

(GFT,2015;IBAMA,2015a;Nevesetal.,2016).Inthemedium

and long terms, the lack of regulating processes such as habitatconnectivity(VillardandMetzger,2014),erosion pre-ventionandsedimentretentionbyforestcoverwillincrease

theriskofbiodiversityloss,floodsandwatercontamination

(Maillard andPinheiroSantos,2008),andwillreduce

nutri-entcycling,microclimateregulation,andcarbonstorage(Pütz etal.,2014).Besidesthenegativeeffectsontangible provision-ingandregulationecosystemservices,theimpactswillcause lossesofintangibleandculturalvalues,suchascultural tra-ditions,spiritualandaestheticvalueoforganisms,processes, andlandscapes(Satterfieldetal.,2013).Affectedcolonialand ethnicheritage,recreationparks,andsubsistenceandsports fishingsites,representedsignificantsourceofincomeandwell being forthe localcommunities(Neveset al.,2016). Severe impactsontourismandtherelationalvalues(sensuChanetal., 2016)willtranscendgenerationsfollowingtheresettlement ofhumanpopulationsandhabitatreclamation(Russelletal.,

2013).

Fishing represents an essential activity for indigenous peoples(i.e.theKrenaktribe)andhassupportedtraditional communitiesintheDoceRiverforcenturies.Duetoreliance onfisheries,localfishpopulationsrepresentthelargestsource ofsubsistenceandincomeforriverinecommunities,aswellas acriticalresourceforlocaltourism(Ecoplan-Lume,2010).The Fundãodamfailurecoincidedwithanecologicallyimportant fish-spawning period(locallycalleddefeso), where manage-mentpracticestypicallybancatchestoensuresustainability ofpopulationsofcommercialspecies.Amonthlyminimum wagegrantedtofishermenbythefederalgovernmentas reg-ular cash transferis a compensationfor the ban between November 1st and March1st.Considering thecatastrophic impactsoftheFundãoDambreachonfishingresourcesand sensitive spawning habitat, the Public Ministry of Labour (MinistérioPúblicodoTrabalho), determinedthe continuityof the defeso compensationpayment by the mining company Samarco. The payment was retroactive from November 5, when the disaster happened,until the re-establishmentof normalfishingactivities.Thesubsidycompensatesriverine communitiesandfishermen,withanadditionof20%foreach dependent, andastaple productsquota(cestabásica).More generally,fishingisatraditionalwayoflivingandsourceof

(7)

Numberofmunicipalities 229

Population ∼3,294,000inhabitants

Maineconomicactivities Mining,siderurgy,silviculture,agronomic Waterprovisioning 109,636,053m3/year

Numberofhydroelectricpowerplantsoperating 9largeand21smallunits

Capacityofenergygeneration 1230.23MW(1.6%ofhydroelectricenergyofBraziland7.2%ofMinasGeraisstate)

revenueforhundredsofthousandsofpeopleacrossthebasin, yettodateonly11,000peoplecurrentlyreceivesthismonthly subsidy(GFT,2015).

The geochemical composition of the mine ore slurry, in association with natural background concentrations in affectedhillsides,willdetermineloadingofheavymetalsto all environmental compartments of the Doce River (Borba

et al., 2000; Gale et al., 2004). Although Samarco and the

DNPM (National Department of Mineral Production) argue that the slurry does notcontainhazardous concentrations of heavy metals, several independent studies coordinated byacademics, NGOs,and stateand federal environmental agenciesprovideevidenceonthecontrary.Astudyonwater chemistryby the MinasGerais StateWater Agency (IGAM) foundhigh levels ofarsenic, cadmium, copper, chromium, nickel and mercury inwatersamples from the Doce River followingtheburst(IGAM,2015).Anotherstudydevelopedin coordinationwiththeBrazilianNavyalsodetectedhigh con-centrationofselenium,lead,arsenicandmanganeseinwaters ofthe DoceRiver estuary(MB,2016).Through joint efforts byseveralacademicinstitutionscoordinatedbytheBrazilian InstituteofEnvironment(IBAMA)andtheChicoMendes Insti-tuteofBiodiversity(ICMBio),alarmingconcentrationsofheavy metalsinwaterand aquaticfaunaofsubsistenceand eco-nomicimportancewereidentifiedintheestuaryoftheDoce River,andcoralandalgalreefslocatedinmarineprotected areasofESandBahia(BA)(Bianchini,2016).Concentrationof lead,cadmium,andarsenicexceededthethresholdguidelines in9–115timesinwater(CONAMAresolution357,releasedin March2005),fishandshrimp(ANVISAresolution42,released inAugust 2013).Therefore, thecontaminationofthe entire DoceRivermayleadtowidespreadheavymetalexposurerisks byriverineandcoastalcommunitiesthatrelyontheecological servicesprovidedbyaquaticecosystemsforsubsistence liveli-hoods(e.g.watersupply,fishing,aquacultureandirrigation)

(Dellingeretal.,2012).

Heavymetalsposeenvironmentalhealthrisksduetoacute toxicity atrelatively low concentration and extended resi-dencetimes(Macklinet al.,2006).Heavymetalsmayenter thehumanbodythroughdirectcontact,inhalationofgases or suspended particles or ingestion (Behling et al., 2014;

Passosetal.,2007).Intakeofheavymetalsbyconsumptionof

foodplantsgrowninmetal-contaminatedsoil(Puschenreiter et al., 2005). Fish and shellfish from contaminated water bodies(Appletonetal.,2006),orlivestockfeedingon contam-inatedpasture(Terán-Mitaetal.,2013)are themainroutes ofexposuretotheseelements(Islametal.,2007). Biomagni-ficationacrosstrophiclevelscanpersistfordecadesdueto

remobilization of sediments accumulated in depositional sinks, or ‘environmental hotspots’ (Dallinger et al., 1987;

Macklinetal.,2006;Dellingeretal.,2012;Lecce&Pavlowsky,

2014). Impacts willpersistas watercurrents dissipate and remobilize sediments, solubilizing toxic heavy metals and enhancingtheirbioavailability(EMBRAPA,2015).Giventhese conditions,levelsofcontaminationoffishandcropscanreach valuesabovethethresholdsafeintakelimits,affecting sev-eralbiologicalfunctionsandevenleadingtodeathinextreme cases(Järup,2003).Disproportionatehealtheffectsmayafflict vulnerablepopulationspronetohigherexposure(e.g.ethnic orlowerincomegroupsthatrelyonlocalfish)ormore sen-sitivetohealthburdens(e.g.themalnourishedandchildren)

(Ackermanetal.,2015;Adger,2006;Bose-O’Reillyetal.,2008;

Ohlanderetal.,2013).

Claimsforrapiddisasterresponsesconflictwiththeneed ofintegratedsoundplanningtopreventunintended conse-quencesthatmayincreaseriskstoecosystemsandhuman health(Speldewindeetal.,2015).Althoughfishingand agricul-tureacrossaffectedareasintheDoceRiverbasinarebanned for an indefinite time, misguided future use and restora-tiondesignsmayincreasehumanexposuretoheavymetals

(Rocioetal.,2013).Theharvestingofgrainsfromedibleexotic

legumes (e.g. Cajanus cajan)planted in revegetated tailings embankmentsmayleadtosimilarserious consequencesto humanhealth.Prohibitionofconsumptionoffishfrom popu-lationsthateventuallyrecolonizethesystemorcropsgrown on tailings,orirrigatedwith contaminatedwaters mustbe stronglyenforcedduetohighrisksofheavymetalexposure

(Zhuangetal.,2014).Thereisanurgentneedforparticipatory

assessmentstoidentifyculturallygenuinealternative liveli-hoodopportunitiesandfoodsourcesforthemostremoteand vulnerablecommunitiesintheaffectedareas(Wrightetal.,

2015).

Modelling

and

monitoring

impacts

and

contaminated

site

risks

Intheaftermathofenvironmentaldisasters,environmental andhealthriskassessmentsarekeytoevaluateandquantify damagesatthewatershedlevel(Balletal.,2013;Gergeletal., 2002).Althoughfederalandstateagenciesarecurrently push-ingforwardanemergencytaskforcetomonitortheDoceRiver basin,thereisnoclearframeworkforasystematicand inte-gratedassessmenttoinformactionsformitigationofpriority impactsandforecastingfuturerisk,neitherasolidproposal forscientificstudies abletofulfil the gapofknowledgeon

(8)

ecologic functioning of remainingpristine locations inthe basin,from whereaplan forlong termresearchshould be builtupfrom.Forinstance,amulti-disciplinaryand geograph-icallyrepresentativemodellingframeworkisurgentlyneeded tocapturethe effectsoftheFundãoDambreachon multi-plespatialandtemporalscalesasecologicalhierarchies(e.g. landscapes,ecosystems, habitats,populations and individ-uals)anddimensions(e.g.ecological,socialandpsychological)

(SquiresandDubé,2013;Harfootetal.,2014).

Atthelandscapescale,mappingandcharacterizing con-taminatedsitesbasedonfieldassessmentsiskeytoidentify the risks and hazards resulting from transport and bioac-cumulationofheavy metals(Freudenburg etal., 2008).The resultsofcomprehensivegeochemicalanalysisofheavymetal concentrationindifferentenvironmentalcompartments(i.e. water,sediments, andtrophiccascades)allowthe quantifi-cation of significant risks of exposure (e.g. target hazard quotients)forwildlifeandhumans(LahrandKooistra,2010). Althoughheavymetalconcentrationsmayindicatethe depo-sitionalhotspots and bioaccumulationin certainbiological endpoints, the bioavailability of the metal species in site-specificphysicochemicalconditionsmustbedetermined to define real riskstoexposed organisms (Meech et al., 1998;

Alegría-Toránetal.,2015).

Biophysicalprocessesthatinfluencethetransportandfate ofsuspendedsedimentsinmine-contaminated riverscapes are key determinants ofdepositional and bioaccumulation hotspots (Rowan et al., 1995; Golovko et al., 2015). Land-scape features and processes such as vegetation cover, floodplaindynamics,runoffanderosiondeterminethe hori-zontalandverticalmigrationofcontaminantsandhencetheir fate across multiple environmental compartments (Miller

and Orbock Miller, 2007). Consequently, the inclusion of

landscape-level structure and processes (e.g. geomorpho-logy,hydrology,topography,geology,andrivertopology)may strengthen analytical protocols for investigating structure-function relationships to delineate predictive models of dynamic contamination hotspots (Squires & Dubé, 2013;

Lorenz et al., 2016). This knowledge is crucial to predict

landscapelegaciesofcontaminanthotspotsacrossmultiple geographicandtemporalscales(LecceandPavlowsky,2014).

Spatially explicit monitoring techniques have emerged in recent decades to identify how sediment-bound con-taminants travel in contaminated rivers (Macklin et al., 2006). The ‘geomorphological–geochemical approach’ is a practical application recommended to assess and monitor the broad-scale and long-term dispersion patterns for the sediment-associatedcontaminantsalongriversimpactedby tailingsdamfailure(Macklinetal.,1997).Mostofthe metal-contaminatedsedimentsreleasedintoriversystems(c.a.90%) aretransportedviaassociationwithparticulates(Miller,1997). Therefore,particulate-associatedcontaminantsfollow simi-larflowpatternsasnaturalsedimentloadsinrivers.Theuse oftimeseries remote sensingand aerial photography,and analysis ofcorrelations between geomorphology classifica-tion,floodregime,flowpattern,vegetationcover,soiltype,and cationexchangecapacitycanhelpidentifyunitsoferosion anddepositioninminingaffectedrivers(Macklinetal.,2003). By inferring source-sink dynamics for contaminant mobil-ityatthereach-level,wecanmodelrisksofco-exposureto

multipleheavymetalsand proposeecologicallyrobustand cost-effectivesite-specificremediationalongtheDoceRiver.

TheBrazilianEnvironmentalAgency(IBAMA)started mon-itoringthefull663.2kmextensionoftheDoceRiveraweek aftertheaccident(13–20 November)throughaerial photog-raphy(IBAMA,2015b).Whileaerialphotographyonlyallows to map land use change and spread ofthe flood, spectral analysis are particularly suitable toquantifyrelative levels of damage to ecosystems such as heavy metal deposition andbioaccumulation(Horleretal.,1980;Cleversetal.,2004;

Kopa ˇcková,2014;Kopa ˇckováet al.,2014).Highspectral

res-olution sensorscan help quantify physiological surrogates asindicators ofplantstress totoxicmineralcontaminants

(Kemper and Sommer, 2003; Choe et al., 2008), including

plant pigments (i.e. chlorophyll,carotenoids, xanthophylls, andanthocyanins)(Blackburn,2007),andleafwatercontent

(SimsandGamon,2002).Radarsensorsareahighlypromising

technologytoestimateandmonitortheextensionofthespill inaquaticandterrestrialecosystems,basedonwaterdensity andsoilmoisture,respectively(Cleversetal.,2004).Moreover, radarsareinsensitivetocloudsandcanacquiredataatnight, expanding thepossibilities ofretrievinginformationofthe area.

An

even

worse

tsunami:

law

relaxation

over

poor

environmental

performance

Inlightoftheexisting730activetailingdamsoperatingonly intheMinasGeraisState(FEAM,2014),theFundãodam fail-ureisahardlessonabouttheextremerisksanduncertainties associatedwithover-relianceoninconsistentimpact assess-mentsandself-auditingbytheminingindustryinBrazil.This unprecedented tragedyin the country’shistory could have been avoided if basic engineering precautionary measures were fully adopted(Morgerstern etal., 2016).However,law relaxation and environmental licensing that enables lower oversightandlowerliabilitybyminingcompaniesisthe cur-rentnorminrecentBrazilianlegislation(Ferreiraetal.,2014). Despitethereputationasagloballeaderinconservation ofbiodiversity(mainly intheAmazon region),forthe past eight years the Braziliangovernment has takenpoor deci-sions in environmental policy that jeopardize biodiversity, ecosystems,traditionalwaysoflivingandecosystemservices onthegroundsofeconomicdevelopment.Blatantexamples ofthistendency arecommoninBrazilianrecentlegislative activity.TheNewForestCodegaveamnestytolandowners thatdeforestedanddecreasedthemandatoryprivatereserves

(Soares-Filhoetal.,2014).Recently,anewframeworkfor

min-ingwasproposedtotheBrazilianSenate,aimingatboosting mining activity by exempting large infrastructure projects ofstrategicinterestfromconductingEnvironmentalImpact Assessments(EIA)(Meiraetal.,2016).Allthesefallback regu-lationchangesillustratehowthecountry’sregulatorseasily bend to economic and political interests and allow nearly unlimiteddevelopment.

Undermining consolidatedenvironmentalregulationsby intensifying anthropogenicdevelopmentsoverareasof bio-logical concern and hazard prevention can have profound effects on the likelihood ofoccurrence of disasters or the

(9)

MinasGeraisestablishedanewlawthat excludesthe Min-istérioPúblicoFederalofanyactivityreferringtoenvironmental licensing.Claimingforalessbureaucraticandfasterlicensing, thelawaltersbill2.946/2015,empoweringsomegovernmental andprivateinstitutionsandgreatlyreducingpublic participa-tioninlicensingprocess.

Thelooseenforcementofnationalandstate environmen-talregulationsoftheminingsectorinBrazil,coupledwiththe peripheralapproachtowards managementofTailings Stor-ageFacilities(TSF)byminingcompanieshavecreatedalarge liabilityportfoliointhestateofMinasGerais,homeofmost ofthecountry’sminingactivity(Labonne,2016).The invest-mentonmaintenanceandsurveillanceofTSFhashistorically beenalowerpriorityforminingcompanies,asthisrepresents fixedoperationalcostsofthebusiness(i.e.donotgenerate revenues)(Davies,2002).Severaltechnicalflawsinthe licens-ing andmonitoring frameworksleadtounder-appreciation ofriskspresentedbytailings dams,increasingrisksof cat-astrophicecologicalandsocioeconomicimpactsacrosswhole watersheds,as observedin the Fundãoevent (Bowkerand

Chambers,2015).

The vast majority of the environmental assessments understatesecologicalandsocioeconomicimpactsoftailing damsanddonotaccountfordownstreameffectsincaseofa failure.Thehighfrequencyoftailingdamfailuresthroughout MinasGeraisevidences thepooroversightand lower rigid-ityinenvironmentalassessment.Inthelastthreedecades, sevendamscollapsedcausinghumanfatalitiesintheState. A2014reportbytheenvironmentalagencyofMinasGerais, the Fundac¸ão Estadual do MeioAmbiente (FEAM) highlighted therisksassociatedwiththeoperatingtailingdamsscattered overtheState.AccordingtoFEAM’sreport,nearlyhalfof735 damsinthestateareofpotentiallyhighrisktodownstream humansettlementsandecologicalintegrityconsideringtheir volumesandlandscapecontexts.FEAMclassifiedfivedams asunsafe,and13werenotassessedduetoinsufficient tech-nicaldata.Still,accordingtothe FEAMreport,thesafetyof FundãoDamwas“guaranteedbytheauditor”albeitan assess-mentbyInstitutoPristinofortheAgencyforLawEnforcement andProsecutionofCrimes(MinistérioPúblicoFederal)warnedof ahigh-riskfailureduetobasicinfrastructureflaws(Escobar,

2015).

Conclusions

Historical environmentaldisasters such asthe recent dam breachesmakeit clearthatthe environmentallicensingin Brazilshouldbemovingintheoppositedirection,i.e. strength-eninglegislationthroughbettergovernancepracticessuchas enforcement,theruleoflaw,corruptioncontrol,thirdparty scrutinyofprojects,andenhancementofmonitoring.Stronger governance,enforcementandreliablemonitoringframeworks suchasproposedherewouldreinforceliabilityofproponents

society should not be guided bythe principles of ecologi-calmodernizationinordertoequalizethedifferentinterests around Brazilian natural heritage, postponing solutions in favour of just one strategy, but an instrument to foster trans-disciplinary models that not only question current developmentproposals,butalsocreatenewones,immersed invaluesdifferentfromthoseofthecreatorsoftragicrealities

(Coelhoetal.,2013a,b;CoelhoandFernandes,2015).Building

institutionalcapacityforbetterenvironmentalperformance through strong regulatory regimes and enforcement, inte-grated environmental impact assessments and preventive riskmonitoringisanimmediatepriority.Bydoingso, cata-strophicandirreversibleimpactsresultingfromtragedieslike theoneseeninMinasGeraiscouldbepreventedorminimized securingecologicalconservation,economicdevelopmentand humanwell-beingforpresentandfuturegenerations.

Conflicts

of

interest

Theauthorsdeclarenoconflictsofinterest.

Acknowledgements

WethankCNPq,CAPES,andFapemigfordifferentgrantsto co-authorsandtwoanonymousreviewersofearlierversions of the manuscript. F.F.Goulart received a post-doc CAPES-PNPD/MAMSA;B.D.RanierireceivedaSciencewithoutBorders PhDfellowshipfromCAPES.

r

e

f

e

r

e

n

c

e

s

Ackerman,J.T.,Hartman,C.A.,Eagles-Smith,C.A.,etal.,2015.

Estimatingmercuryexposureofpiscivorousbirdsandsport

fishusingpreyfishmonitoring.Environ.Sci.Technol.49,

13596–13604.

Adger,W.N.,2006.Vulnerability.Glob.Environ.Change16, 268–281.

Alegría-Torán,A.,Barberá-Sáez,R.,Cilla-Tatay,A.,2015.

Bioavailabilityofmineralsinfoods.Handb.Miner.Elem.Food,

41–67.

Appleton,J.D.,Weeks,J.M.,Calvez,J.P.S.,Beinhoff,C.,2006.

Impactsofmercurycontaminatedminingwasteonsoil

quality,crops,bivalves,andfishintheNabocRiverarea,

Mindanao,Philippines.Sci.TotalEnviron.354,198–211.

Ball,M.,Somers,G.,Wilson,J.E.,etal.,2013.Scale,assessment

components,andreferenceconditions:issuesforcumulative

effectsassessmentinCanadianwatersheds.Integr.Environ.

Assess.Manag.9,370–379.

Barros,L.C.,Santos,U.,Zanuncio,J.C.,etal.,2012.Plagioscion squamosissimus(Sciaenidae)andParachromismanaguensis

(Cichlidae):athreattonativefishesoftheDoceRiverinMinas

Gerais,Brazil.PLoSONE7,e39138.

Bastin,G.N.,Ludwig,J.A.,Eager,R.W.,etal.,2002.Indicatorsof

landscapefunction:comparingpatchinessmetricsusing

(10)

Behling,R.,Roessner,S.,Kaufmann,H.,etal.,2014.Automated

spatiotemporallandslidemappingoverlargeareasusing

rapideyetimeseriesdata.RemoteSens.6,8026–

8055.

Bianchini,A.,2016.Relatório:avaliac¸ãodoimpactoda

lama/plumaSamarcosobreosambientescosteirose

marinhos(ESeBA)comênfasenasunidadesdeconservac¸ão

1aexpedic¸ãodonaviodepesquisaSoloncyMourado

CEPSUL/ICMBio,Brasilia.

Blackburn,G.A.,2007.Hyperspectralremotesensingofplant

pigments.J.Exp.Bot.58,855–867.

Borba,R.P.,Figueiredo,B.R.,Barry,R.,Matschullat,J.,2000.Arsenic

inwaterandsedimentintheIronQuadrangle,MinasGerais

state.Brazil.Rev.Bras.Geociências30,554–557.

Bose-O’Reilly,S.,Lettmeier,B.,Roider,G.,etal.,2008.Mercuryin

breastmilk–ahealthhazardforinfantsingoldminingareas?

Int.J.Hyg.Environ.Health211,615–623.

Bowker,L.N.,Chambers,D.M.,2015.TheRisk,PublicLiability,and EconomicsofTailingsStorageFacilityFailures,Availableat:

https://www.earthworksaction.org/files/pubs-others/Bowker

Chambers-RiskPublicLiabilityEconomicsOfTailingsStorage

FacilityFailures-23Jul15.pdf.

Chan,K.M.,Balvanera,P.,Benessaiah,K.,etal.,2016.Opinion:

whyprotectnature?Rethinkingvaluesandtheenvironment.

Proc.Natl.Acad.Sci.113,1462–1465.

Choe,E.,vanderMeer,F.,vanRuitenbeek,F.,etal.,2008.Mapping

ofheavymetalpollutioninstreamsedimentsusingcombined

geochemistry,fieldspectroscopy,andhyperspectralremote

sensing:acasestudyoftheRodalquilarminingarea,SE

Spain.RemoteSens.Environ.112,3222–3233.

Clevers,J.G.P.W.,Kooistra,L.,Salas,E.A.L.,2004.Studyofheavy

metalcontaminationinriverfloodplainsusingthered-edge

positioninspectroscopicdata.Int.J.RemoteSens.25,

3883–3895.

Coelho,M.S.,Fernandes,G.W.,2015.Conservationimplications

foranupsidedownworld.Oecol.Aust.18,46–47.

Coelho,M.S.,Resende,F.M.,Almada,E.D.,etal.,2013a.

Crescimentoeconômicoeamodernacriseambiental:uma

análisecrítica.Neotrop.Biol.Conserv.8,53–62.

Coelho,M.S.,Resende,F.M.,Fernandes,G.W.,2013b.Chinese

economicgrowth:implicationsforBrazilianconservation

policies.Nat.Conserv.11,88–91.

Dallinger,R.,Prosi,F.,Segner,H.,etal.,1987.Contaminatedfood

anduptakeofheavymetalsbyfish:areviewandaproposal

forfurtherresearch.Oecologia73,91–98.

Davies,M.P.,2002.Tailingsimpoundmentfailures:are

geotechnicalengineerslistening?Geotech.News,31–36.

Dellinger,J.,Dellinger,M.,Yauck,J.S.,2012.Mercuryexposurein

vulnerablepopulations:guidelinesforfishconsumption.

MercuryEnviron.PatternProcess86,289–300.

Ecoplan-Lume,2010.Planointegradoderecursoshídricosda

baciahidrográficadoDoceRiver.IGAM,BeloHorizonte.

EMBRAPA,2015.TragédiaemMariana:produc¸ãoagropecuáriaem áreasatingidasestácomprometida,Availableat:http://www.

bbc.com/portuguese/noticias/2015/12/151204samarco

pecadoresrsrm.

Escobar,H.,2015.MudtsunamiwreaksecologicalhavocinBrazil.

Science350,1138–1139.

FEAM,2014.InventáriodebarragemdoestadodeMinasGerais.

GovernodoEstadodeMinasGerais.SistemaEstadualdeMeio

AmbienteeRecursosHídricos.BeloHorizonte:Fundac¸ão

EstadualdeMeioAmbiente.

Ferreira,J.,Aragão,L.E.,Barlow,J.,etal.,2014.Brazil’s

environmentalleadershipatrisk.Science346,706–707.

Freudenburg,W.R.,Barbara,S.,Erikson,K.T.,2008.Organizing

hazards,engineeringdisasters?Improvingtherecognitionof

political-economicfactorsinthecreationofdisasters.Soc.

Forces87,1015–1038.

Gale,N.L.,Adams,C.D.,Wixson,B.G.,etal.,2004.Lead,zinc,

copper,andcadmiuminfishandsedimentsfromtheBig

RiverandFlatRiverCreekofMissouri’sOldLeadBelt.Environ.

Geochem.Health26,37–49.

Gergel,S.E.,Turner,M.G.,Miller,J.R.,etal.,2002.Landscape

indicatorsofhumanimpactstoriverinesystems.Aquat.Sci.

64,118–128.

GFT,2015.Avaliac¸ãodosefeitosedesdobramentosdo rompimentodaBarragemdeFundãoemMariana-MG, Availableat:http://www.agenciaminas.mg.gov.br/ckeditor

assets/attachments/770/relatoriofinalft0302201615h5min.

pdf.

Golovko,D.,Roessner,S.,Behling,R.,etal.,2015.Developmentof

multi-temporallandslideinventoryinformationsystemfor

SouthernKyrgyzstanUsingGISandsatelliteremotesensing.

PFG2,157–172.

Harfoot,M.,Tittensor,D.P.,Newbold,T.,etal.,2014.Integrated

assessmentmodelsforecologists:thepresentandthefuture.

Glob.Ecol.Biogeogr.23,124–143.

Horler,D.N.H.,Barber,J.,Barringer,A.R.,1980.Effectsofheavy

metalsontheabsorbanceandreflectancespectraofplants.

Int.J.RemoteSens.1,121–136.

IBAMA,2015a.Laudotécnicopreliminar.Impactossociais decorrentsdodesastreenvolvendoorompimentoda barragemdeFundão,emMariana,MinasGerais,Availableat:

http://www.ibama.gov.br/phocadownload/noticiasambientais/

laudo tecnicopreliminar.pdf.

IBAMA,2015b.Sistemadecompartilhamentodeinformac¸ões, Availableat:http://siscom.ibama.gov.br/mariana/.

IGAM,2015.Monitoramentodaqualidadedaságuassuperficiais doRioDocenoEstadodeMinasGerais,Availableat:

http://www.igam.mg.gov.br/component/content/article/16/ 1632-monitoramento-da-qualidade-das-aguas-superficiais-do

-rio-doce-no-estado-de-minas-gerais.

INPE,2015.SatélitesmostramtrajetóriadesedimentosnoRio Doce,Availableat:http://www.inpe.br/noticias/noticia.php?

CodNoticia=4067.

Islam,E.U.,Yang,X.,He,Z.,Mahmood,Q.,2007.Assessing

potentialdietarytoxicityofheavymetalsinselected

vegetablesandfoodcrops.J.ZhejiangUniv.Sci.B8,1–13.

Järup,L.,2003.Hazardsofheavymetalcontamination.Br.Med.

Bull.68,167–182.

Kemper,T.,Sommer,S.,2003.MappingandMonitoringof ResidualHeavyMetalContaminationandAcidificationRisk AftertheAznalcóllarMiningAccident(Andalusia,Spain) UsingFieldandAirborneHyperspectralData,Availableat:

http://www.earsel.org/workshops/imaging-spectroscopy2003/

papers/geologyandmining/kemper.pdf.

Kloke,A.,Sauerbeck,D.R.,Vetter,H.,1984.Thecontaminationof

plantsandsoilswithheavymetalsandthetransportofmetals

interrestrialfoodchains.In:Nriagu,J.O.(Ed.),ChangingMetal

CyclesandHumanHealth.Springer,Berlin,pp.113–141.

Kopa ˇcková,V.,2014.Usingmultiplespectralfeatureanalysisfor

quantitativepHmappinginaminingenvironment.Int.J.

Appl.Earth.Obs.Geoinf.28,28–42.

Kopa ˇcková,V.,Miˇsurec,J.,Lhotáková,Z.,etal.,2014.Using

multi-datehighspectralresolutiondatatoassessthe

physiologicalstatusofmacroscopicallyundamagedfoliageon

aregionalscale.Int.J.Appl.Earth.Obs.Geoinf.27,169–186.

Labonne,B.,2016.Miningdamfailure:businessasusual?Extr.

Ind.Soc.3,651–652.

Lahr,J.,Kooistra,L.,2010.Environmentalriskmappingof

pollutants:stateoftheartandcommunicationaspects.Sci.

Tot.Environ.408,3899–3907.

Lecce,S.A.,Pavlowsky,R.T.,2014.Floodplainstorageofsediment

contaminatedbymercuryandcopperfromhistoricgold

miningatGoldHill,NorthCarolina,USA.Geomorphology206,

(11)

metalsreleasedbytheJanuaryandMarch2000mining

tailingsdamfailuresinMaramureCounty,upperTisaBasin,

Romania.Appl.Geochem.18,241–257.

Macklin,M.G.,Brewer,P.A.,Hudson-Edwards,K.A.,etal.,2006.A

geomorphologicalapproachtothemanagementofrivers

contaminatedbymetalmining.Geomorphology79,423–447.

Macklin,M.G.,Hudson-Edwards,K.A.,Dawson,E.J.,1997.The

significanceofpollutionfromhistoricmetalmininginthe

Pennineorefieldsonriversedimentcontaminantfluxestothe

NorthSea.Sci.Tot.Environ.194–195,391–397.

Maillard,P.,PinheiroSantos,N.A.,2008.Aspatial-statistical

approachformodelingtheeffectofnon-pointsource

pollutionondifferentwaterqualityparametersintheVelhas

riverwatershed–Brazil.J.Environ.Manag.86,158–170.

Maitland,P.S.,Campbell,R.N.,1992.FreshwaterFishesofthe

BritishIsles.HarperCollins,NewYork.

MB,2016.Relatóriodelevantamentohidroceanográficoda MarinhadoBrasil,Naviodepesquisahidroceanográfico“Vital deOliveita”,Availableat:http://agenciabrasil.ebc.com.br/

sites/agenciabrasil2013/files/files/LevantamentoAmbiental

Marinha.pdf.

Meech,J.A.,Veiga,M.M.,Tromans,D.,1998.Reactivityofmercury

fromgoldminingactivitiesindarkwaterecosystems.Ambio

27,92–98.

Meira,R.M.,Peixoto,A.L.,Coelho,M.A.,etal.,2016.Brazil’s

miningcodeunderattack:giantminingcompaniesimpose

unprecedentedrisktobiodiversity.Biodivers.Conserv.25,

407–409.

Mielke,C.,Boesche,N.K.,Rogass,C.,etal.,2014.Spaceborne

minewastemineralogymonitoringinSouthAfrica,

applicationsformodernpush-broommissions:Hyperion/OLI

andEnMAP/Sentinel-2.RemoteSens.6,6790–6816.

Mielke,C.,Boesche,N.K.,Rogass,C.,etal.,2015.Newgeometric

hullcontinuumremovalalgorithmforautomaticabsorption

banddetectionfromspectroscopicdata.RemoteSens.Lett.6,

97–105.

Miller,J.R.,OrbockMiller,S.M.,2007.ContaminatedRivers:A

Geomorphological–GeochemicalApproachtoSiteAssessment

andRemediation.Springer,TheNetherlands.

Miller,R.,1997.Theroleoffluvialgeomorphicprocessesinthe

dispersalofheavymetalsfromminesites.J.Geochem.Explor.

58,101–118.

MMA(MinistériodoMeioAmbiente),2007.PriorityAreasforthe

Conservation,SustainableUseandBenefitSharingof

BrazilianBiologicalDiversity.MMA,Brasília.

MMA(MinistériodoMeioAmbiente),2014.Listanacionaloficial deespéciesdafaunaameac¸adasdeextinc¸ão—peixese invertebradosaquáticos,Availableat:http://pesquisa.in.gov. br/imprensa/jsp/visualiza/index.jsp?data=18/12/2014&jornal=

1&pagina=126&totalArquivos=144(Ordinanceno.445of

17.12.14).

Morgerstern,N.R.,Vick,S.G.,Watts,B.D.,2016.FundãoTailings DamReviewPanelReportontheImmediateCausesofthe FailureoftheFundãoDam,Availableat:http://

fundaoinvestigation.com/wp-content/uploads/general/PR/en/

FinalReport.pdf.

Myers,N.,Mittermeier,R.A.,Mittermeier,C.G.,etal.,2000.

Biodiversityhotspotsforconservationpriorities.Nature403,

853–858.

Neves,A.C.O.,Nunes,F.P.,Carvalho,F.A.,etal.,2016.Neglectof

ecosystemsservicesbymining,andtheworstenvironmental

disasterinBrazil.Nat.Conserv.14,24–27.

Passos,C.J.S.,Mergler,D.,Lemire,M.,Fillion,M.,Guimarães,J.R.D., 2007.Fishconsumptionandbioindicatorsofinorganic

mercuryexposure.Sci.TotalEnviron.373,68–76.

Piorski,N.,Sanches,A.,Carvalho-Costa,L.F.,etal.,2008.

Contributionofconservationgeneticstoassessthe

Neotropicalfreshwaterfishbiodiversity.Braz.J.Biol.68,

1039–1050.

Puschenreiter,M.,Horak,O.,Friesl,W.,Hartl,W.,2005.Low-cost

agriculturalmeasurestoreduceheavymetaltransferintothe

foodchain-Areview.Plant,SoilEnviron.51,1–11.

Pütz,S.,Groeneveld,J.,Henle,K.,etal.,2014.Long-termcarbon

lossinfragmentedNeotropicalforests.Nat.Commun.5,

5037.

Ramirez,J.L.,CarvalhoCosta,L.F.,Venere,P.C.,etal.,2016.Testing

monophylyofthefreshwaterfishLeporinus(Characiformes,

Anostomidae)throughmolecularanalysis.J.FishBiol.88, 1204–1214.

Rocio,M.,Elvira,E.,Pilar,Z.,etal.,2013.Couldanabandoned

mercurymineareabecropped?Environ.Res.125,150–159.

Rowan,J.S.,Barnes,S.J.A.,Hetherington,S.L.,etal.,1995.

Geomorphologyandpollution:theenvironmentalimpactsof

leadmining,Leadhills.Scotl.J.Geochem.Explor.52,57–65.

Russell,R.,Guerry,A.D.,Balvanera,P.,etal.,2013.Humansand

nature:howknowingandexperiencingnatureaffect

well-being.Annu.Rev.Environ.Resour.38,473–502.

Satterfield,T.,Gregory,R.,Klain,S.,2013.Culture,intangiblesand

metricsinenvironmentalmanagement.J.Environ.Manag.

117,103–114.

Sims,D.A.,Gamon,J.A.,2002.Relationshipsbetweenleafpigment

contentandspectralreflectanceacrossawiderangeof

species,leafstructures,anddevelopmentalstages.Remote

Sens.Environ.81,337–354.

Skaloˇs,J.,Kaˇsparová,I.,2012.Landscapememoryandlandscape

changeinrelationtomining.Ecol.Eng.43,60–69.

Soares-Filho,B.,Rajão,R.,Macedo,M.,etal.,2014.Cracking

Brazilsforestcode.Science344,363–364.

Speldewinde,P.C.,Slaney,D.,Weinstein,P.,2015.Isrestoringan

ecosystemgoodforyourhealth?Sci.Tot.Environ.502,

276–279.

Squires,A.J.,Dubé,M.G.,2013.Developmentofaneffects-based

approachforwatershedscaleaquaticcumulativeeffects

assessment.Integr.Environ.Assess.Manag.9,380–391.

TEEB,2010.TheEconomicsofEcosystemsandBiodiversity:

MainstreamingtheEconomicsofNature:ASynthesisofthe

Approach,ConclusionsandRecommendationsofTEEB.

Banson,Cambridge.

Terán-Mita,T.A.,Faz,A.,Salvador,F.,etal.,2013.Highaltitude

artisanalsmall-scalegoldminesarehotspotsforMercuryin

soilsandplants.Environ.Pollut.173,103–109.

Vieira,F.,2009.Distribuic¸ão,impactosambientaiseconservac¸ão

dafaunadepeixesdabaciadoRioDoce.MGBiota2,5–22.

Villard,M.-A.,Metzger,J.P.,2014.Review:beyondthe

fragmentationdebate:aconceptualmodeltopredictwhen

habitatconfigurationreallymatters.J.Appl.Ecol.51,309–318.

Wright,J.H.,Hill,N.A.O.,Roe,D.,etal.,2015.Reframingthe

conceptofalternativelivelihoods.Conserv.Biol.30,7–13.

Zhuang,P.,Lu,H.,Li,Z.,etal.,2014.Multipleexposureandeffects

assessmentofheavymetalsinthepopulationnearmining

Referências

Documentos relacionados

i) A condutividade da matriz vítrea diminui com o aumento do tempo de tratamento térmico (Fig.. 241 pequena quantidade de cristais existentes na amostra já provoca um efeito

descumprimento do pactuado nesta ata de registro de preço (art. 5º, inciso X, do Decreto nº 7.892/2013), exceto nas hipóteses em que o descumprimento disser respeito às

Despercebido: não visto, não notado, não observado, ignorado.. Não me passou despercebido

Caso utilizado em neonato (recém-nascido), deverá ser utilizado para reconstituição do produto apenas água para injeção e o frasco do diluente não deve ser

É nesta mudança, abruptamente solicitada e muitas das vezes legislada, que nos vão impondo, neste contexto de sociedades sem emprego; a ordem para a flexibilização como

The fourth generation of sinkholes is connected with the older Đulin ponor-Medvedica cave system and collects the water which appears deeper in the cave as permanent

In the hinterland (Lika region) they are partly permeable but on higher positions at Velebit Mt. calcareous breccias are highly permeable. The best prove for the mentioned is

Extinction with social support is blocked by the protein synthesis inhibitors anisomycin and rapamycin and by the inhibitor of gene expression 5,6-dichloro-1- β-