• Nenhum resultado encontrado

Multi-enzyme complex of white rot fungi in saccharification of lignocellulosic material

N/A
N/A
Protected

Academic year: 2021

Share "Multi-enzyme complex of white rot fungi in saccharification of lignocellulosic material"

Copied!
6
0
0

Texto

(1)

h tt p : / / w w w . b j m i c r o b i o l . c o m . b r /

Short

communication

Multi-enzyme

complex

of

white

rot

fungi

in

saccharification

of

lignocellulosic

material

Wilton

Soares

Cardoso

a,∗

,

Paula

Viana

Queiroz

b

,

Gabriella

Peterlini

Tavares

c

,

Fernando

Almeida

Santos

d

,

Filippe

Elias

de

Freitas

Soares

c

,

Maria

Catarina

Megumi

Kasuya

e

,

José

Humberto

de

Queiroz

c

aInstitutoFederaldoEspíritoSanto,VendaNovadoImigrante,ES,Brazil bUniversidadeFederaldeVic¸osa,DepartamentodeQuímica,Vic¸osa,MG,Brazil cUniversidadeFederaldeVic¸osa,DepartamentodeBioquímica,Vic¸osa,MG,Brazil

dUniversidadeEstadualdoRioGrandedoSul,DepartamentodeBioenergia,PortoAlegre,RS,Brazil eUniversidadeFederaldeVic¸osa,DepartamentodeMicrobiologia,Vic¸osa,MG,Brazil

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received8February2017 Accepted18May2018

Availableonline14August2018 AssociateEditor:SolangeI. Mussatto Keywords: Enzymes Cellulases Fungus Hydrolysis

a

b

s

t

r

a

c

t

The multi-enzymecomplex(crudeextract)ofwhiterotfungiPleurotusostreatus, Pleuro-tuseryngii,Trametesversicolor,PycnosporussanguineusandPhanerochaetechrysosporiumwere characterized,evaluatedinthehydrolysisofpretreatedpulpsofsorghumstrawand com-paredefficiencywithcommercialenzyme.Mostfungicomplexeshadbetterhydrolysisrates comparedwithpurifiedcommercialenzyme.

©2018SociedadeBrasileiradeMicrobiologia.PublishedbyElsevierEditoraLtda.Thisis anopenaccessarticleundertheCCBY-NC-NDlicense(http://creativecommons.org/

licenses/by-nc-nd/4.0/).

Enzymesextractsfromdifferentfungihavebeen astrategy usedinsaccharificationoflignocellulosicbiomass,blending(2 ormoreextractsofdifferentfungi)oronlyextract.Thecrude enzymeextractsofferslowcost,noactivitiesarelostin con-centration/purificationprocesses,awidespectrumofenzyme activitiesismaintainedandsynergyamongenzymes.1–6

Correspondingauthor.

E-mail:wilton.cardoso@ifes.edu.br(W.S.Cardoso).

Thisstudyproduced,bysolid-statefermentation(SSF)of foragesorghumstraw,thecrudeextracts(calledmulti-enzyme complex)of5differentfungi.Thecomplexesobtainedofeach of the fungi were characterized to the apparent activities of cellulases and were evaluated forenzymatic saccharifi-cationofowninnaturasorghumstraw(not pretreated)and

https://doi.org/10.1016/j.bjm.2018.05.006

1517-8382/©2018SociedadeBrasileiradeMicrobiologia.PublishedbyElsevierEditoraLtda.ThisisanopenaccessarticleundertheCC BY-NC-NDlicense(http://creativecommons.org/licenses/by-nc-nd/4.0/).

(2)

sorghumpretreatedstrawpulps,andtheresultscomparedto thehydrolysiscarriedoutbyacommercialcellulasecomplex. Wereevaluatedthepotentialofcrudeenzymaticextracts ofwhite rot fungi: Pleurotus ostreatus PLO06, Pleurotus eryn-giiPLE04,TrametesversicolorTRAM01,Pycnosporussanguineus

PYC02and Phanerochaetechrysosporium PC and,obtainedby SSFonstrawforagesorghum.Fungiarefromthecollectionof theDepartmentofMicrobiology,FederalUniversityofVic¸osa, Vic¸osa,MinasGerais–Brazil.

ToSSFwereusedstrawforagesorghumBRS655(stemand leaveswithoutthepaniclewiththegrain)cultivardeveloped byEMBRAPAMaizeandSorghumandcultivatedinthecityof SeteLagoas.Sorghumwascutwith120daysofplantingand sundried,groundandstoredinadryplaceawayfromlight andmoisture.

Thesorghumstraw wasmoistenedforfinalhumidityof 70%.100gofthepreparedsubstratewereplacedin polypropy-lenefilterbagsandsealedwithadhesivetapeforsubsequent autoclavingat121◦Cfor60min.Aftercooledtoroom temper-ature,eachbagwithsubstratereceivedtwodiscsofmycelia, withadiameterof2inches,ofeach funguspreviously cul-turedinPetridishofBDAfor7daysat30◦C.Thebagswere inoculatedinalaminarflowcabinetandincubatedinaBOD at28◦Cuntilcompletecolonizationofthesubstrate. Monitor-ingofthemycelialgrowthwascarriedoutvisually.Afterthe totalsubstratecolonizationbyfungi,20daysafterinoculation wereobtainedthecrudeextracts(ormulti-enzymecomplex). To obtain the enzymeextract, 5gsamples of substrate wereplacedin250mLErlenmeyerflaskscontaining50mLof sodiumcitratebuffer(50mMpH4.8)andshakenat150rpm for2hat5◦C.Thenfilteredthroughasieveandplacedin2mL Eppendorftubesfollowingcentrifugationat12,000×gat5◦C. ThesupernatantwastransferredtoanotherEppendorftube, andsubsequentlyidentifiedwiththefungusandincubation time,sealedandstoredat−18◦C.

The reagents used in this study were purchased from SigmaChemicalscompaniesorVetecchemistrywith analyti-calgrade.

TotalcellulaseactivityorFilterpaperactivity(FPase)was determinedessentiallyaccordingtotheIUPAC7instructions,

andtheliberatedreducingsugarswereestimatedbytheDNS method.8FPaseactivitycorrespondsto1␮Mofreducing

sug-arsasglucoseequivalentsliberatedperminundertheassay conditions.

Endoglucanase activity (carboxymethylcellulase, EC 3.2.1.4) or carboxymethycellulase (CMCase) activity was estimatedbyadding250␮Loftheenzymecomplexin1mLof 1%solutionofcarboxymethylcellulosein0.05Mcitratebuffer, pH4.8andincubatedat50◦Cfor30min.OneCMCaseunitis theamountofenzymenecessarytoproduce1␮Mreducing sugar as glucose equivalents per min under the standard assayconditions.

Exoglucanaseactivity(EC3.2.1.91)orAVICELaseconsisted of adding 250␮L ofcrude enzymecomplex in 1mL of 1% solutionofmicrocrystallinecellulose(Avicel)in0.05Mcitrate buffer,pH4.8andincubatedat50◦Cfor30min.Periodically, theenzyme-substratesystemwasstirredinordertomaintain thepulpinsuspension.OneAVICELaseunitistheamountof enzymenecessarytoproduce1␮Mreducingsugarasglucose equivalentsperminunderthestandardassayconditions.

Xylanase activity (endo-1,4-␤-xylanase, EC 3.2.1.8) was determined inthemixtureof1mLoftheenzymecomplex, 1mLofxylansolution(1%xylanbirchhood–SIGMA)incitrate buffer0,05M,pH4.8andincubatedat50◦Cfor30min. Peri-odically,theenzyme-substratesystemwasstirredinorderto maintainxylansuspension.OneXylanaseunitistheamount ofenzymenecessarytoproduce1␮Mreducingsugaras glu-coseequivalentsperminunderthestandardassayconditions. The liberated reducing sugars were estimatedby the DNS method.7

The␤-glucosidase(EC3.2.1.21)activitywasdeterminedby incubating1mLofp-nitrophenyl-␤-d-glucopyranoside(PNPG) substrate0.005M,0.05Mcitratebuffer,pH4.8with100␮Lof theenzymecomplex(crudeextract),for15minat50◦C.The reactionwasstoppedbyadding2.0mLof1.0Msodium bicar-bonateandabsorbancewasmeasuredat410nm.Theunitof ␤-glucosidaseactivitywasdefinedastheamountofenzyme capableofreleasing1␮molofp-nitrophenolperminuteunder thetestconditions.

Laccase activity was determined by the oxidation of 2,2-azino-bis (3-ethylbenzthiazoline-6-sulfonic acid) (ABTS; SIGMA, St.Louis,USA)at37◦CaccordingtoBuswell etal.9

Thereactionmixture(1mL)contained600␮Lenzymeextract, 300␮LsodiumacetatebufferpH5.0(0.1M)and100␮LABTS solution(1mM).Oxidationwasfollowedviatheincreasein absorbanceat420nm( 420=36.000M−1cm−1).Oneunitof enzymeactivitywasdefinedastheamountofenzyme oxidiz-ing1␮molofABTSperminute.

QuantificationofproteinusedthemethodofBradford.10

TheapparentactivityofenzymesFPase(TotalCellulase) AVICELase,CMAaseand␤-glucosidasewerecharacterizedas topHandtemperature,aswellasthethermostabilityof max-imal enzyme activity in the temperature through tests to determineactivity ofthose enzymewithvaryingpHofthe bufferorthereactiontemperature.

ThepHrangedfrom3to8.Thebuffersystemsusedwere 50mMcitratebuffer(pH3.0–6.0)and50mMphosphatebuffer (pH6.0–8.0).Theincubationtemperatureforthemeasurement ofenzymeactivityrangedfrom30to80◦C.Toestimatethe thermostability,theenzymaticcomplex(samples)wasstored intheapparentoptimumtemperature(resultsoftemperature characterization) ofeach enzymeinthe extractcrude, and thenmadetomeasuretheresidualactivityoftheenzyme12 in12hfor48h.

The saccharification experiments were conducted in Erlemeyers 125mL in shaker (Tecnal – TE-421) stirred at 120rpmat50◦C.0.5mLsampleswerecollectedevery6hto 24h,andafter1212-hto72h,andeachsamplewasheatedat 100◦Cfor5mintoinactivatetheenzymes,centrifuged and subsequently was determined the concentration of reduc-ing sugars and glucose. Saccharification was performed in naturasorghumstraw(notpre-treated)andpulpsofthe for-agesorghumobtainedpretreatmentsasCardosoetal.11 For

comparisonwiththe commercial enzyme(enzymatic com-plexGenencorMultifectGC)wereconductedsaccharification ofthepulpobtainedpretreatmentacid/delignifiedofthe for-agesorghumasCardosoetal.11

LAP008protocolusedasenzymesaccharificationmethod byNREL,12suggestsanenzymeloadintheorderof25FPUg−1

(3)

Table1–Apparentenzymaticactivities(Ug−1dm)oftheextractsofsorghumstraw,fermentedbywhiterotfungi,after20

days,with70%humidityandincubatedat28C.Uistheamountofenzymerequiredtogenerate␮molproductsper

minute.

Fungi Celullasetotal (FPase)(Ug−1) AVICELase (Ug−1) CMCase (Ug−1) ␤-Glucosidase (Ug−1) Xylanase (Ug−1) Laccase (Ug−1) Proteinmgg−1 colonized substrate P.sanguineusPYC02 0.80±0.05 0.88±0.08 2.03±0.18 0.38±0.03 8.43±0.00 14.33±0.57 1.33±0.13 P.ostreatusPLO06 1.32±0.03 4.12±0.02 2.25±0.07 0.18±0.01 1.33±0.00 5.65±0.42 1.67±0.14 P.eryngiiPLE04 0.65±0.01 3.12±0.02 1.43±0.05 0.23±0.03 1.80±0.10 6.58±0.68 2.30±0.20 P.chrysosporiumPC 1.13±0.04 0.65±0.04 4.03±0.10 1.08±0.04 2.37±0.15 0.70±0.08 1.96±0.10 T.versicolorTRAM01 1.02±0.05 1.43±0.07 2.25±0.10 1.88±0.05 8.03±0.01 9.87±0.53 1.65±0.12

itwasnotutilizedextractspurified,thatismoreconcentrated

inrelationU/mL,therewerechangesinloadenzymestoabout

8FPUg−1biomass(drybasis)foreachfungusandthe

com-mercialenzyme.Theloadofsubstratewas0.3gofmaterial

lignocellulosicfor1%w/w(drybiomass)ineachflask(straw

offoragesorghuminnatura,pulpacid,pulpdelignifiedand

pulpacid/delignified,allthepulpsobtainedbypretreatment

offoragesorghum)11foreachsaccharificationexperiments.

Valuesareexpressedasmeans±S.D.(StandardDeviation). Comparingthepercentagesofenzymaticsaccharificationacid pulp/delignifiedbyenzymeextractsoffungusandthe com-mercialenzymeitwasused.

The apparent total cellulase activities (FPase), CMCase, AVICELaseand ␤-glucosidase, xylanase and laccase in the crudeextractofwhite rotfungi,after20 daysof fermenta-tionofsorghumstrawwith70%humidityatatemperatureof 28◦CareshowninTable1.

Thesolidstatefermentationofsorghumstrawwascapable ofgeneratingcomplexmulticellulases,xylanaseandlaccase, withvariationsofvaluesforeachfungus.

ThecharacterizationoftheapparentCellulaseTotal Activ-ity, CMCase, AVICELase and ␤-glucosidase from white rot fungi,inrelationtopH,temperatureandthermostabilityare showninTable2.

Fig.1showsthepercentageofhydrolysisofthesorghumin naturaandpretreatpulpsbymulti-enzymecomplexes(crude extracts)ofwhiterotfungi,generatedbySSFofthesorghum straw.

Tocomparethemulti-enzymecomplexesofthefungiwith a complex ofcommercial enzymes wasperformed hydrol-ysisofacid/delignifiedpulp(higherpercentageofcellulose, lessthan1%ofligninandhemicellulose).11 Forcommercial

enzyme were kept the same hydrolysis conditions applied to the extracts of fungi, the commercial enzyme (about 273 FPU/mL) was diluted 130-fold to load of enzymes of the 8.66FPUg−1 of cellulosee and 8.40FPUg−1 ofbiomass forpretreatmentacid/delignifiedpulp(alteredprotocol LAP 00812). Fig. 2 shows the results of saccharification of the

acid/delignifiedpulpbymulti-enzymecomplexoffivefungi andcommercialenzyme.

Thepresentstudywasnotcarriedoutanyenrichmentor pretreatment ofthe substrate,only sterilization,controlof theincubationtemperature(28◦C)andhumidity(70%).The low yieldin cellulases may be associatedwith the insolu-ble substrate (straw)and lownitrogenlevels intheculture medium.OtherauthorshavereportedFPasevalueswellabove obtainedin thiswork. Inresearch conductedbyElisashvili andKachlishvili,13thefungusP.ostreatusreachedvaluesnear

Table2–Thecharacterizationoftheapparenttotalcellulaseactivity,CMCase,AVICELaseand␤-glucosidaseofwhiterot

fungiinforagesorghumstrawSSF.aTheapparentthermostabilitywasevaluatedattheapparentoptimumtemperature

ofeachenzyme.

Activitiesofcrudeextracts Apparentoptimalparameter Fungi

PC PYC TRAM01 PLE04 PLO06

Cellulasetotal (FPAse) pH 5.0 5.0 4.0 7.0 7.0 Temperature 60◦C 70◦C 50◦C 50◦C 60◦C Thermostabilitya 40% 35% 35% 20% 10% CMCase pH 4.0 4.0 4.0 7.0 5.0 Temperature 50◦C 50C 50C 50C 60C Thermostabilitya 30% 50% 60% 0% 0% Avicelase pH 6.0 6.0 6.0 6.0 6.0 Temperature 50◦C 50◦C 50◦C 50◦C 50◦C Thermostabilitya 20% 0% 25% 0% 0% ␤-Glucosidase pH 7.0 7.0 5.0 5.0 5.0 Temperature 50◦C 70◦C 60◦C 40◦C 40◦C Thermostabilitya 40% 40% 50% 80% 85%

(4)

0% 10% 20% 30% 40% 50% 60%

"In natura" sorghum straw (not

pre-treated) Acid Pretreatment Pulp Alkali Pretreatment Pulp Acid/delignification Pretreatment Pulp % h y dr ol yz e d bi omass PYC02 PLE04 PLO06 PC TRAM01

Fig.1–Saccharificationofforagesorghumstraw“innatura”(withoutpre-treatment)andofthepulpsobtainedfrom pretreatmentaccordingtoCardosoetal.,11bycrudeextractsoffungi,P.chrysosporiumPC,P.sanguineusPYC02,T.versicolor TRAM01,P.eryngiiPLE04eP.ostreatusPLO06,producedbySSFofforagesorghumstraw.

0% 4% 8% 12% 16% 20% 24% 28% 32% 36% 40%

PYC02 PLE04 PLO06 PC TRAM01 Commercial enzyme % h y dr ol y z e d c e llul os e pu lp pr e tr e a te d

Fig.2–Saccharificationofthepulpobtainedfromstrawforagesorghumpretreatedbyacidanddelignification,byfungusof multi-enzymecomplexes,P.chrysosporiumPC,P.sanguineusPYC02,T.versicolorTRAM01,P.eryngiiPLE04andP.ostreatus PLO06,producedbySSF,andcommercialenzyme(MultifectGC).

12.0Ug−1 forFPase and CMCase activity between6.25 and 325Ug−1, inwheatstrawfermentationenrichedwithyeast extract.

The productionxylanase by solid-state fermentation of sorghumstrawwasthemostsignificantamongthehydrolytic enzymes.

Inapparentactivityoflaccase,thehighlightwasagainthe

P.sanguineusPYC02withthevalueof14.33Ug−1(dm).Thereis anincreasingtrendinemploymentoflaccasein biotechno-logicalprocesses,14,15andP.sanguineushasbeenusedinKraft

bleachingeffluent16 anddegradation differentdyes.17

How-ever,thevalueobtainedbyP.sanguineusPYC02waslowerthan thatreportedbyotherstrainsofP.sanguineus,asinthework ofVikineswaryetal.,18wheretheproductionoflaccaseinSSF

organicresiduesreached48.7Ug−1(dm).

Theextracellularproteinvaluesoffungitestedinthisstudy

(Table1)werelowerthanthosereportedinotherstudies,19,20

possiblyduetolackofenrichmentwithnitrogenandalsothe factthatthebiomassusedislowproteinlevel.

Resultsofthethermostabilityof␤-glucosidases,theone that deserves to be highlighted was of the P. sanguineus

PYC02 with optimum temperature of 70◦C and thermal stability(70◦C)for48hwithresidualactivityabout30%. Ther-mostablecellulasesareconsideredidealforbiotechnological applications.21 Another ␤-glucosidase, of the T. versicolor

TRAM01,incubatedat60◦Cremainedover50%activityafter 48h.

The alkali pulp reachedvalues close to50% of saccha-rified biomass, followed by acid/delignified pulp with the percentage of 36.2% after 72h of saccharification (Fig. 1). Because thesematerialsmore easilydigestible due to pre-treatments, this wasexpected.Itwas alsoexpectedhigher proportionofhydrolysisoftheacid/delignifiedpulpby con-taininglowercontentofligninandhemicelluloseandhigher cellulose.

Siqueira20 reportedthatinuntreatedbagasse hydrolysis bycrudeextractofAspergillusawamoriachievedisabout30% degradationafter24hofincubation,andabout60%after96h, aresultaboveobtainedinthiswork,whichreacheda maxi-mumof20%after72h.

The fungiPleurotus PLE04and PLO06 highlightedby the lower yield inthe saccharificationwithincreasedcellulose contentofthepretreatedmaterials.Suchfactcanbelinked to ␤-glucosidase enzyme load of fungi PLE04 and PLO06

(Table1),whicharesmallercomparedtootherfungi.Thefinal

accumulationofcellobioseorglucosewillinhibitthe cellu-lose hydrolysisreactions,and cellobioseisamoreeffective inhibitorthanglucose.22,23Nohydrolysisofcellobiosedueto

thelowlevelof␤-glucosidasecanreachlowlevelsof sacchar-ification.

(5)

TheenzymaticcomplexoftheP.chrysosporiumPCshowed thehighestresultsinthehydrolysisofthestrawinnaturaand ofthethreepulps.Highlightedforalkalipulpwith50%ofthe biomasshydrolyzed.InMayrink24theextractofTrichoderma

spp.C012wasobtainedinabout50%hydrolysisoftheAVICEL (5FPUg−1)atjustover10hofreaction.Asimilarresulttothe PC,althoughtheloadoftheP.chrysosporiumPCwasslightly higher(8FPUg−1).

AscanbeobservedinFig.2,mostofthefungiobtained significantlybetterresultsthanthecommercialenzymethat onlyreached3%,inrelationacellulosematerial.Itmustbe rememberedthatthiscomplexofcommercialenzymes(only cellulases)wasdiluted130times.Undernormalconditionsthe samecommercialenzymes(load50FPUg−1biomass)achieved 95%yieldinthehydrolysisofacid/delignifiedpulpofsorghum straw11.Falkoskietal.25 comparedtheextractproduced by

fungusChrysoporthecubensiswithacommercialenzyme prod-uctandfoundthattheproducedextractwasmoreefficient forhydrolyzingalkalipretreatedsugarcanebagasseperFPU ofenzymeapplied.

Attheendispossibletoevaluatethattheuseofenzymatic complexesobtainedfromthesefungihavethe potentialto saccharification,andtheconcentrationoftheseextractscan furtherincreaseyields.

Funding

This study was funded with financial aid by Fundac¸ão de AmparoaPesquisadoEstadodeMinasGerais(FAPEMIG)and schorlarshipbyConselhoNacionaldeDesenvolvimento Cien-tíficoeTecnológico(CNPq).

Conflict

of

interest

Authorsdeclarethathavenoconflictofinterest.

Acknowledgments

TheauthorsacknowledgeIFES,FAPEMIGandCNPqfor finan-cialsupport.

r

e

f

e

r

e

n

c

e

s

1.KovacsK,MacrelliS,SzakacsG,ZacchiG.Enzymatic

hydrolysisofsteam-pretreatedlignocellulosicmaterialswith

Trichodermaatrovirideenzymesproducedin-house.

BiotechnolBiofuels.2009;2:14.

2.GottschalkLMF,OliveiraRA,BonEPS.Cellulases,xylanases,

␤-glucosidaseandferulicacidesteraseproducedby

TrichodermaandAspergillusactsynergisticallyinthe

hydrolysisofsugarcanebagasse.BiochemEngJ.2010;51:

72–78.

3.KostylevM,WilsonD.Synergisticinteractionsincellulose

hydrolysis.Biofuels.2011;3:61–70.

4.HuJ,ArantesV,SaddlerJ.Theenhancementofenzymatic

hydrolysisoflignocellulosicsubstratesbytheadditionof

accessoryenzymessuchasxylanase:isitanadditiveor

synergisticeffect?BiotechnolBiofuels.2011;4:36.

5.VisserEM,FalkoskiDL,deAlmeidaMN,Maitan-AlfenasGP,

GuimarãesVM.Productionandapplicationofanenzyme

blendfromChrysoporthecubensisandPenicilliumpinophilum

withpotentialforhydrolysisofsugarcanebagasse.Bioresour

Technol.2013;144:587–594.

6.CardosoWS,SoaresFEF,QueirozPV,etal.Minimumcocktail

ofcellulolyticmulti-enzymecomplexesobtainedfromwhite

rotfungiviasolid-statefermentation.3Biotech.2018;8:46.

7.GhoseTK.Measurementofcellulaseactivities.PureAppl

Chem.1987;59:257–268.

8.MillerGL.Useofdinitrosalicylicacidreagentfor

determinationofreducingsugars.AnalChem.

1959;31:426–428.

9.BuswellJA,CaiYJ,ChangST,PerberdyJF,FuSY,YuHS.

Lignocellulolyticenzymeprofilesofediblemushroomfungi.

WorldJMicrobiolBiotechnol.1996;12:537–542.

10.BradfordMM.Arapidandsensitivemethodforthe

quantitationofmicrogramquantitiesofproteinutilizingthe

principleofproteindyebinding.AnalBiochem.

1976;72:248–254.

11.CardosoWS,TardinFD,TavaresGP,etal.Useofsorghum

straw(Sorghumbicolor)forsecondgenerationethanol

production:pretreatmentandenzymatichydrolysis.Química

Nova.2013;36(5):623–627.

12.NationalRenewableEnergyLaboratory(NREL)SSFExperimental Protocols:LAP-008LignocellulosicBiomassHydrolysisand Fermentation.Golden,CO:NationalRenewableEnergy

Laboratory;2001.

13.ElisashviliV,KachlishviliE.Effectofgrowssubstrate,

methodoffermentationandnitrogensourceon

lignocelluloses-degradingenzymesproductionbywhite-rot

basidiomycetes.JIndMicrobiolBiotechnol.

2008;35(11):1531–1538.

14.EggertC,TempU,DeanJFD,ErikssonKEL.Afungal

metabolitemediatesdegradationofnon-phenoliclignin

structuresandsyntheticligninbylaccasse.FEBSLett.

1996;391:144–148.

15.SudarsonJ,RamalingamS,KishorekumarP,VenkatesanK. Expeditiousquantificationoflignocellulolyticenzymesfrom indigenouswoodrotandlitterdegradingfungifromtropical dryevergreenforestsofTamilNadu.BiotechnolResInt.2014,

http://dx.doi.org/10.1155/2014/127848.

16.DuránN,RosaMA,D’annibaleA,GianfredL.Applicationsof

laccasesandtyrosinases(phenoloxidases)immobilizedon

differentsupports:areview.EnzymeMicrobTechnol.

2002;31(7):907–931.

17.PointingSB,VrijmoedLLP.Decolorizationofazoand

triphenylmethanedyesbyPycnoporussanguineusproducing

laccaseasthesolephenoloxidase.WorldJMicrobiolBiotechnol.

2000;16:317–318.

18.VikineswaryS,AbdullahN,RenuvathaniM,SekaranM,

PandeyA,JonesEBG.Productivityoflaccaseinsolid

substratefermentationofselectedagro-residuesby

Pycnoporussanguineus.BioresTechnol.2006;97:171–177.

19.ReddyGV,RavindraBabuP,KomaraiahP,RoyKRRM,Kothari

IL.Utilizationofbananawastefortheproductionof

lignolyticandcellulolyticenzymesbysolidsubstrate

fermentationusingtwoPleurotusspecies(P.ostreatusandP.

sajor-caju).ProcessBiochem.2003;38:1457–1462.

20.SiqueiraFG,DoctoralthesisResíduosagroindustriaiscom

potencialparaaproduc¸ãodeholocelulasesdeorigemfúngicae aplicac¸õesbiotecnológicasdehidrolases.Brasilia-DF:Instituteof

BiologicalSciencesDepartmentofCellBiology,Universityof

Brasilia;2010:277.

21.SilvaJC,GouveiaER.Algumaspropriedadesde

endoglucanasesproduzidasporStreptomycesspp.emmeioà

basedebagac¸odecana-de-ac¸úcar.RevBrasTecnolAgroind.

(6)

22.DuffSJB,MurrayWD.Bioconversionofforestproducts

industrywastecellulosicstofuelethanol:areview.

BioresourceTechnol.1996;55:1–33.

23.WenZ,LiaoW,ChenS.ProductionofcellulasebyTrichoderma

reeseifromdairymanure.BioresTechnol.2004;96:491–499.

24.MayrinkMICB,DoctoralthesisProduc¸ãodeenzimasfúngicase

avaliac¸ãodopotencialdascelulasesnasacarificac¸ãodacelulose.

Vic¸osa-MG:DepartmentofAgriculturalBiochemistry,Federal

UniversityofVic¸osa;2010:94p.

25.FalkoskiDL,GuimaraesVM,deAlmeidaMN,AlfenasAC,

ColodetteJL,deRezendeST.Chrysoporthecubensis:anew

sourceofcellulasesandhemicellulasestoapplicationin

biomasssaccharificationprocesses.BioresourTechnol.

Referências

Documentos relacionados

The increase in laccase activity by white-rot fungi in response to aromatic and phenolic substances such as ferulic acid, 2,5 xylidine, p-anisidine and veratryl alcohol is

The zymography of enzyme preparations revealed that different carbon sources caused differential expression of multiple isoforms of xylanase in Scytalidium thermophilum, but

Lignin modifying enzymes from selected white rot fungi: production and role in lignin degradation. Purification and characterization of peroxidases from the dye decolorizing

In conclusion, the white rot fungi grown in SSF using an inexpensive substrate to get high ligninase activity and the high level of synthetic dyes decolorization was achieved in

Solid-state wheat bran fermented by white rot fungi can increase the scavenging action of DPPH, the trolox equivalent antioxidant capacity, and the chelating capacity of ferrous

At the best of our knowledge, sufficient conditions to guarantee the multiplicity of solution for second order Ambrosetti-Prodi functional boundary value problems, is still an

The probability of attending school four our group of interest in this region increased by 6.5 percentage points after the expansion of the Bolsa Família program in 2007 and

Among the factors that may influence the mechanical properties of fungal composites it is mentioned fungal species, mycelial density, fungus culture period, moisture present in