• Nenhum resultado encontrado

Braz. J. Phys. vol.32 número3

N/A
N/A
Protected

Academic year: 2018

Share "Braz. J. Phys. vol.32 número3"

Copied!
6
0
0

Texto

(1)

Boundary Conditions as Mass Generation

Mehanism for Real Salar Fields

Jose Alexandre Nogueiraand Pedro Leite Barbieri

Departamento deFsia,CentrodeCi^eniasExatas,

UniversidadeFederaldoEspiritoSanto,

29.060-900 -Vitoria-ES-Brazil,

E-mail:nogueirae.ufes.br

Reeivedon10Deember,2001. Revisedversionreeivedon7Marh,2002.

We onsider the eets of homogeneous Dirihlet's boundary onditions on two innite parallel

plane surfaesseparatedbysomesmalldistanea. Wendthatalthoughspontaneoussymmetry

breaking doesnot our for thetheory ofa massless, quartially self-interating realsalar eld,

thetheorybeomesatheoryofamassivesalareld.

I Introdution

The originof partile masshas beena puzzlefor

theoretial physiists. In the ontext of the standard

model, the Higgs mehanism is well aepted as the

mass generation mehanism. The underlying idea is

that the universe islled witha eld,the Higgs eld.

Thespin-zeroHiggseldisadoubletintheSU(2)spae

andarriesnon-zerohyperharge,anditisasinglet in

theSU(3)spaeofolor.

Bosoni gauge and fermioni matter elds aquire

mass from their interations with the Higgs eld. It

is of fundamental importane to this mehanism that

exited states (i. e., withone or more Higgs) are not

orthogonal tothe ground state(i. e., vauum). Sine

stateswithoneormoreHiggsarrynon-zeroSU(2)and

U(1)quantum numbersthentheyare non-zeroforthe

vauum as well. As a onsequene of this the SU(2)

and U(1) symmetries are spontaneously broken. The

Lagrangianissymmetriunder SU(2)andU(1)

trans-formationsbut thevauumis not[1℄. Tehniallythis

isahievedintroduingaHiggs potentialof imaginary

massandquartiinteration.

IntheColeman-Weinberg alternativeapproahthe

spontaneous symmetry breaking is indued by 1-loop

radiative orretions and the mass being vanishing in

thetreeapproximation[2℄. Inthemasslesssalar

ele-trodynamis,althoughthevauumexpetationvalueof

thelassialpotentialisunique(lassially<>=0),

initsrenormalizedformtheeetivepotentialin1-loop

beomes degenerate (< > is arbitrary). The mass

renormalization ondition xes a determined vauum

and breaks the symmetry of the theory. The

sponta-partiles to dynamially aquire mass whose value is

proportionaltothevauum expetationvalue. Thisis

only possible beause there aretwoparametersin the

theory: theeletromagneti ouplingonstant, e, and

theouplingonstantofthequartiself-interation,,

whihmustbeofordere 4

.

Inatheoryofmasslessrealsalareldtheexistene

ofjustoneparameterdoesnotallowanon-zerovauum

expetation valueandthetheoryremainsmassless.

Boundaryonditionsdonotaetthelassial

po-tential, but quantum orretions are aeted and the

eetive potential hanges. This may auseeets on

thequantum vauumexpetation value<>.

More-overboundaryonditions introdue anew parameter,

the length of the nite region. With these

onsidera-tionsweinvestigatetheeets ofboundaryonditions

onthevauumexpetationvalueh i=0andthemass

generation. Besidestheintrodutionofanew

parame-ter makesmoreattrativetherealsalareld theory.

Thestudy ofboundaryonditionseets in

Quan-tum Field Theory is not new. The Casimir eet [3℄,

whihisthehangeofthevauumenergydensitydueto

onstraintsonthequantumeld,induedbyboundary

onditions in spae-time was experimentally observed

in 1958 [4℄ and reently [5, 6℄, and a lot of

applia-tionshavebeenaomplished[7-10℄,suhas: gravity

models, blakholes,bag models, nonlinearmeson

the-ories desribing baryons as solitons, the osmologial

onstantproblem,ompatiationoftheextra

dimen-sions in Kaluza-Klein theories, quantum liquids [11℄,

ondensedmatter[12℄.

Inthis work we study the eets of the boundary

(2)

onditionson twoinnite parallelplane surfaes

sepa-rated bysomesmalldistane a. Thestudy ofthe 4

theoryisveryimportantinfaeofitsappliationsinthe

Weinberg-Salam model of weak interations, fermions

massesgeneration,insolidstatephysis[13℄,

ination-ary models[14℄,solitons[15℄andCasimireet[16℄.

The eets of the boundary onditions on a 4

theory wererstly onsidered,untilwhere weare

on-erned,byFord[17℄,FordandYoshimura[18℄andTom

[19℄. Theyfoundthatamasslesssalareldatthetree

level ould develop a mass at the one-loop level as a

onsequene of both the 4

self-interation and the

boundaryonditions. Inthisworkweshowthat ifthe

length of the nite region is small enoughthe theory

will beame one massiveat theorder ~ 0

. That is

be-ause and the lengthof the region nite, a, are

in-dependentparametersandtheseondderivativeofthe

eetivepotentialbeomeoftheorder~ 0

,eventhough

itisaone-loopresult,thenitannotbesubtratedout

by themassountertermof theorder ~. So thereis a

physialmass(measure)andweannotset the

renor-malized massto zero. Hene boundaryonditions are

apossiblemassgenerationmehanismwhenthelength

of nite region is small enough. We understand a is

smallenoughwhenthereisatypiallengthsalewhere

a 2

isoftheorder. Thereforethattypiallengthsale

determinesthemasssaleoftheory.

Itisimportanttostressthatwedonotusethe

imag-inarymasstermoftheHiggspotentialinordertoavoid

thatitinduesspontaneoussymmetrybreaking.

There-forewith thepurpose to evaluate theatual eets of

boundary onditions we onsider the real salar eld,

with aseond parameter introdued by theboundary

onditions.

As will be seen subsequently the boundary

ondi-tions do not indue a degenerate vauum state,

al-thoughthereisatypiallengthsaleoftheniteregion

wherethemasslesssalareld aquiresmass.

Theoutline ofthe paperis asfollows: Setion 2is

abrief review of how to alulate the eetive

poten-tial at 1-loop. In setion 3 we alulate the eetive

potentialformasslessrealsalareld,andevaluatethe

vauum stateand the renormalizedmass. In ontrast

to[19℄,wederivetheeetivepotentialattheone-loop

levelasasumofmodiedBesselfuntions,thenwetake

thelengthofthenite region,a,verysmall toexpand

eah term of thesum in powerof a and nally throw

awayhigher-orderterms. Insetion4wepointoutour

onlusionsandsomespeulations.

II Eetive Potential

In the funtional method approah of quantum

eld theory, the eetive potential is found as a loop

expansion(orequivalentlyin powersof ~), that is, its

lassialamountplusquantumorretions[20-26℄.

Let(x)beasinglerealsalareldinaMinkowski

spae-time,subjetedtothepotentialV(). The

ee-tivepotentialtotherstorderintheloopexpansionis

givenby

V

ef (

)=V

l (

)+

1

2 ~

lndet

Æ 2

S[

Æ( x)Æ( y)

=V

l (

)+V

(1)

ef (

); (1)

d

where thelassialeld

is the vauum expetation

valueinthepreseneofanexternalsoureJ(x) ,taken

as a onstant value

= , therefore, in the limit

J ! 0, S[℄ is the lassialation and is the four

dimensional spae-timevolume.

Performing the analyti ontinuation to the

Eu-lidean spae-time [21 - 23℄, the lassial ation an

bewrittenas

S[℄= Z

d 4

x

1

2

+V

l ()

; (2)

wheretheEulideansummationonventionisassumed

for repeated indexes. From Eq.(2) we get the matrix

m(x;y)ofthequadrativariationoftheationS[℄

m(x;y) Æ

2

S[℄

Æ(x)Æ(y) =Æ

4

(x y)[ Æ

+V

00

l

(3)

DuetotheEulideananalytiontinuationthe

op-eratorm isareal,elliptialandself-adjoint. For

oper-atorswiththesepropertieswedeneageneralizedzeta

funtion[7,8,23and27℄. Iff

i

garetheeigenvaluesof

theoperatorm(x;y),thenthegeneralizedzetafuntion

assoiatedtoM(x;y)(m!M = m

2

)isdened by

M (s)=

X

i

i

2

s

; (4)

where we have introdued an unknown sale

parame-ter , with dimensions of (length) 1

ormass in order

to keepthe zetafuntion dimensionless for alls. The

introdutionofthesaleparameter,anbebest

un-derstood when we observe that a hidden splitting of

thedivergentintegralthereisintheproeedingofzeta

funtion regularization,that is, aseparationof the

di-vergent and nite parts of the V

ef (

) ( on page 208

[23℄andonpage88[24℄). Itiswell-knowntherelation

[21℄

lndetM = d

M (0)

ds

: (5)

Now,theeetivepotentialintheone-loop

approx-imationanbewrittenas

V

ef (

)=V

l (

)

1

2 ~

d

M (0)

ds

: (6)

Due to theregularityof the generalizedzeta

fun-tion at s = 0 [27℄, the evaluation of the eetive

po-tential (Eq.(6)) gives a nite result with no need of

substrationofanypole,oradditionofinnite

ounter-terms. Evidently, the ttingof thetheory parameters

taking into aount the observed results, leads to the

renormalizationonditions

d 2

V

ef

d 2

=hi

=m 2

R

; (7)

d 4

V

ef

d 4

=hi =

R

; (8)

where m

R

is the renormalized mass,

R

is the

renor-malizedoupling onstantand < >istheminimum

of the eetive potential (subtration or

renormaliza-tionpoint)[25℄. Sine

takesonvalue<>in the

groundstate, then<>is alled thevauum

expe-tationvalueof,<>=<0jj0>.

Intheaseoftheoriesofnullmass,thesubtration

point for the renormalization ondition (8) annot be

taken at hi = 0 due to the logarithmi singularity.

Even so in that ase there is no intrinsi mass sale;

therefore allthe renormalizationpoints areequivalent

andtheondition(8)isreplaedby

d 4

V

ef

d 4

=M

=

R

; (9)

where M is a arbitraryoating renormalizationpoint

[23℄.

III Mass Generation

Now,letusonsiderthetheoryofamassless,

quar-tially self-interating real salar eld (x) satisfying

homogeneous Dirihlet's boundary onditions on two

inniteparallelplanesurfaesseparatedbysomesmall

distanea.

TheLagrangiandensityforthistheoryis

L= 1

2

4!

4

: (10)

TheLagrangianaboveisevenin,soitisinvariant

un-derdisreetsymmetry(G-parity)denedbythe

trans-formation! .

Inthisasethezetafuntion,dened by Eq.(4),is

givenby[7,8,24,28-33℄

m ( s)=

1

X

N=1 Z

+1

1

( 2) 3

a d

3

k

k 2

+

2

N 2

a 2

+

2

2

s

:

(11)

Usingtheintegral[28℄

Z

+1

1

k 2

+A 2

s

d m

k=

m

2

s m

2

(s) A

2

m

2 s

;

(12)

andusingtheformula[34℄

1

X

N=1

N 2

+B 2

p

= 1

2 B

2p

+

1

2

2B 2p 1

(p) "

p 1

2

+4 1

X

N=1 K

p 1

2

( 2NB)

(NB) 1

2 p

#

; (13)

whereK

(x) aremodiedBesselfuntions,weget

m (s)=

3

2 s

3

2

(s) (

)

3 2s

(4)

+

16 2

1

( s 1)(s 2) ( ) 4 2s + + 4 2 ( ) 4 2s (s) 1 X N=1 K s 2 (2Na ) (Na ) 2 s ; (14)

where wedene 2

=

2

forthesakeofsimpliity.

Inorder toalulatetheone-loopeetivepotential,weompute

m

( 0)and 0

m

(0)fromEq.(14)andusethem

in Eq.(6) 1 V ef ( )= 2 2 4! 4 + ~ 24a 3 3 + ~ 64 2 4 4 ln 2 2 2 3 2 + ~ 8 2 4 4 1 X N=1 K 2 (2Na ) (Na ) 2 ; (15)

realling that K

(x)=K

(x). Wenotie that,aswehaveto takeabsolutevalue of

in theformula (13),the

seond termontheright-handsideofEq.(15)doesnotyieldsymmetrybreaking.

Letm0beanintegernumber,suhthat,2ma

<1and2(m+1)a

1. Then,thesumin Eq.(15)an

bewriteas

~ 8 2 4 4 1 X N=1 K 2 (2Na )

( Na

) 2 = = ~ 8 2 4 4 m X N=1 K 2 (2Na ) ( Na ) 2 + ~ 8 2 4 4 1 X N=m+1 K 2 (2Na ) (Na ) 2 : (16) Sine 2Na

<1,foranyN m, weexpandthe rsttermontheright-handside ofEq.(16)using therelation

[35 -39℄

x 2 K (x)= 1 2 1 X a=0 ( 1) a x 2 2a ( a)

( a+1) + + 1 X a=0 ( 1) x 2 2+2a

(a+1) (+a+1) h

(a+1)+ (+a+1) 2ln

x

2 i

; (17)

for >0,toget

~ 8 2 4 4 1 X N=1 K 2 ( 2Na ) (Na ) 2 = ~ 16 2 a 4 m X N=1 1 N 4 ~ 16 2 a 2 2 2 m X N=1 1 N 2 + ~ 16 2 4 4 m X N=1

[ln(Na

)+ 3=4℄+ ~ 8 2 4 4 m X N=1

O(Na

) 2 + + ~ 8 2 4 4 1 X N=m+1 K 2 ( 2Na ) (Na ) 2 ; (18)

where istheEulernumber.

Therst sum onthe right-hand side of Eq.(16) exists, provideda( a =a)be of order n

(n 0), sine ( =

)mustbeoforder 0

. Hene,uptohigher-orderterms,theeetivepotentialbeomes

V ef ( )= 2 2 4! 4 + ~ 24a 3 3 ~ 16 2 a 4 m X N=1 1 N 4 + ~ 16 2 a 2 2 2 m X N=1 1 N 2 : (19)

Forlargem,wemayapproximatethetwosumsin Eq.(19)toRiemannzetafuntionsandtoobtain

(5)

Theminimumoursat

=hi ,where

dV

ef

d

=hi

=0: (21)

Dierentiating Eq.(20),wehave

hi

2

3 hi

2

+ ~

3

8a hi+

~ 2

48a 2

=0: (22)

Therewillbenon-trivialsolutionofEq.(22)ifthesum

ofthetermsbetweenbraketsvanishes. Howeverthere

isnota(withrespettotheordersof)whihsatises

Eq.(22). ThereforetheminimumofV

ef

issatisedfor

h i=0: (23)

Eq.(23)showsthat the vauum is non-degenerate,

and therefore spontaneous symmetry breaking annot

our. Atually,theboundaryonditionsallowjustone

onstant vauum solution, hi = 0. If the result had

beenhi=onstant6=0,theeetivepotentialwould

nothave been used anda solutionhi =

0

(x) would

have been expeted beause the boundary onditions

breakthetranslationalinvariane.

AlthoughEq.(20)is nite,that isnotanal result

beausetheouplingonstantin itisanarbitrary

pa-rameter. Thereforewe mustt it to therenormalized

oupling onstant using therenormalization ondition

Eq.(8)to get=

R .

The renormalized mass of the salar eld is given

by

d 2

V

ef

d 2

l

=hi=0 =

~

R

96a 2

=m 2

R

; (24)

thatunlikewhat weexpeteditanbenon-zero.

Eq.(24)showsifa 2

is oforderthenthemasswill

beoforder 0

. Thisresultisinagreementwithour

ini-tialassumption. Ifa 2

isoflowerorderthanthenthe

masswill liefaroutsidetheexpetedrangeof validity

of our approximation. It followsthat there is a

typi-allengthsalegivenbytheparameteraofthetheory.

Withinthislengthsale,themasslesssalareldtheory

withself-interationbeomesmassiveduetoboundary

onditionseets.

Although topologial mass has already been

ob-tained[17 -19℄ toorder foratheory whih is

mass-lessatthetree-graphlevel,westressthefat thatifa

issmall enoughthetheory willbeomeonemassivein

order (~ 0

). This is beause and a are independent

parameters, so the mass term found an be of order

zero-loop,eventhoughitisaone-loopresult(itisfrom

radiativeorretions). OurresultofEq.(24)isin

agree-mentwiththatobtainedbyDavidJ.Toms[19℄.

IV Conlusion

Wehavestudied thetheory of amassless,

quarti-ally self-interating real salar eld satisfying

homo-parallel plane surfaes separated by some small

dis-tanea. Asaresult,weinfer:

i) For small a( a / n

, n> 0) there is notanyorder

ofawith regardto orderofwhih leavestheground

state(vauum) degenerate,i. e., spontaneous

symme-trybreakingdoesnotour. So,theeetivepotential

anbeusedtoevaluatetherenormalizedmassandthe

Casimirenergy.

ii) There is a typial length sale of the nite region

where massless salar eld aquires mass, i. e., if

a/

n

, with n1,the theorybeomesatheoryof a

massive real salar eld. Therefore, when a beomes

small enough the theory undergoes a transition from

one massless to one massive. That typial length of

niteregiondeterminesthemasssaleofthetheory.

iii)Sinespontaneoussymmetrybreakingdoesnot

o-ur, the mass generation is only due to the boundary

ondition.

Finally,wespeulatethatboundaryonditionsmay

be amehanismof mass generation, i. e., that

mass-lesstheories dened in niteregions ofspae-time

be-ome massivetheorieswhenthe lengthof niteregion

issmallenough. Thereforeweonjeturethat

onne-mentmaybeaandidateforanalternativemehanism

forthemassgeneration ofquarks.

It is lear we do not laim that these are atual

boundaryonditions whih produe the masses of the

partiles. Weonlyonsiderboundaryonditionmaybe

analternativemehanismforpartilemassgeneration.

Aknowledgments

J. A. Nogueira is espeially grateful to Professor

OlivierPiguetwhohashelpedto larifymanyobsure

points. We would like to express our thanks to Dr.

Manoelito Martins de Souza and to Dr. Franisode

Assis RibasBoso. It is apleasure to thankDr. Luiz

C. Albuquerquefor helpful omments. This work was

supportedinpartbytheNationalAgenyforResearh

(CAPES)(Brazil).

Referenes

[1℄ G. Kane, Modern Elementary Partiles Physis

(Addison-WesleyPublishingCompany,Massahusetts,

1993)

[2℄ S.ColemanandE. Weinberg,Phys.Rev.D7(6),1888

(1973).

[3℄ H. G.B. Casimir, Pro.K. Ned.Akad. Wet. 51, 793

(1948).

(6)

[6℄ U. Mohideen and A. Roy, Phys. Rev. Lett. 81, 21

(1998).

[7℄ E. Elizalde, Ten physial appliations of spetral zeta

funtion(Springer1995).

[8℄ E. Elizaldeet all, Zeta regularization tehniques with

appliations(WorldSienti1994).

[9℄ A.A.Grib,S.G.MamayevandV.M.Mostepanenko,

VauumQuantumEetsinStrongFields(Friedmann

LaboratoryPublishing,StPetersburg,1994).

[10℄ V. M.MostepanenkoandN. N.Trunov, TheCasimir

Eet andits Appliations (ClarendonPress, Oxford,

1997).

[11℄ G.E.Volovik,Vauuminquantumliquidsandin

gen-eralrelativity, gr-q/0104046.

[12℄ M. Kardarand R. Golestanian, Rev.Mod.Phys.71,

1233 (1999).

[13℄ M. Le Bella, Quantum and Statistial Field Theory

(OxfordSienePubliations,London,1991).

[14℄ A.H.Guth,Phys.Rev.D23,347(1981).

[15℄ R.Rajaraman, SolitonsandInstantons: An

Introdu-tiontoSolitonsandInstantonsinQuantumField

The-ory (NorthHollamd,Holland,Amsterdam,1982).

[16℄ K.Langfeld,F.Smuser,andH.Reinhardt,Phys.Rev.

D51(2),765(1995).

[17℄ L.H.Ford,Pro.R.LondonA368,305(1979).

[18℄ L. H. Ford and T. Yoshimura, Phys. Lett. A70, 89

(1979).

[19℄ D.J.Toms,Phys.Rev.D21(10),2805(1980).

[20℄ L. H.Ryder,Quantum FieldTheory(Cambridge

Uni-versityPress,Cambridge, 1985).

[21℄ P.Ramond,FIELDTHEORYAModernPrimer(The

Benjamin/CummingsPublishingCompany,In.,

Mas-sahusetts,1981).

[22℄ R. J. Rivers, Path Integral Methods in Quantum

FieldTheory(CambridgeUniversityPress,Cambridge,

1987).

[23℄ K.Huang,QuarksLeptons&GaugeFields(Word

Si-entiPublishingCompany,Singapore,1982).

[24℄ J.V. Narlikar and T.Padmanabhan, Gravity, Gauge

TheoriesandQuantumCosmology(D.Reidel

Publish-ingCompany,Dordreht,1986).

[25℄ J.Iliopoulos, C. Itzykson and A. Martin, Rev.Mod.

Phys.47,165(1975).

[26℄ R.Jakiw,Phys.Rev.D9(6),1686(1974).

[27℄ S.W.Hawking,Commun.Math.Phys.55,133(1977).

[28℄ E.Myers,Phys.Rev.Lett.59(2),165(1987).

[29℄ C. Itzykson and J. B. Zuber, Quantum Field

The-ory(MGraw-HillBookCompany,4thprinting,1988),

page138.

[30℄ J.R. Ruggiero, Aplia~ao da Regulariza~ao Analtia

para Foras de Casimir (Disserta~ao de Mestrado

-IFT/UNESP,S~aoPaulo,1977).

[31℄ M. V. Cougo-Pinto, C. Farina and A. Tort, Rev.

BrasileiradeEnsinodeFsia,22(1),122(2000).

[32℄ P.W.Milonni and Mei-liShih,Contemporay Physis

33(5),323(1992).

[33℄ J.A.NogueiraandA.MaiaJr.,Phys.Lett. B358,56

(1995).

[34℄ E.ElizaldeandA.Romeo,J.Math.Phys.B30(5),1133

(1989).

[35℄ R.V.Konoplih,HadroniJournal12,19(1989).

[36℄ J.AmbjornandS.Wolfram,Ann.Phys.147,1(1983).

[37℄ A.Ator,Fortshr.Phys.35(12),793(1987).

[38℄ G.B.ArfkenandH.J.Weber,MathematialMethods

forPhysiists(AademiPress, SanDiego,1995),4th

Ed..

[39℄ W. Magnus, F. Oberhettinger, F. G. Trioni, edited

by A. Erleyi, Higher Transendetal Funtions, (H.

Bateman Manusript Projet, California Institute of

Tehnology)(MGraw-HillBookCompany,NewYork,

Referências

Documentos relacionados

CONCLUSÕES: Antropometricamente a amostra está ajustada aos dados recolhidos na literatura nomeadamente na %MG; os valores da potência máxima aeróbia e VO2MÁX

If banks fail, government’s spending increases directly (bailout) or indirectly (recessionary economic impact). Therefore, the aim of this study is to assess the decomposition of

28 Globalmente, os resultados obtidos neste trabalho, em particular para a linha celular 293 FLEX GFP, demonstram que o silenciamento sucessivo de HIF1, PDK1 e PDK3

Através dos dados recolhidos verifiquei que existe um contraste entre as crianças avaliadas, ou seja, duas crianças apresentam mais dificuldades na contagem e

Penso que a componente médica é obrigatória por lei, a parte da higiene e segurança com idas periódicas aos locais de trabalho, monitorizações, seja de tipo de medição

GPEARI – -DesemDipl_jun08_L1: Gabinete de Planeamento, Estratégia, Avaliação e Relações Internacionais - “A procura de emprego dos diplomados com habilitação superior -

Left ventriculography in right anterior oblique view, showing marked pericardial calcification (arrows). cular pressures, since in this condition there is enhanced