• Nenhum resultado encontrado

Braz. J. Phys. vol.34 número3A

N/A
N/A
Protected

Academic year: 2018

Share "Braz. J. Phys. vol.34 número3A"

Copied!
3
0
0

Texto

(1)

Brazilian Journal of Physics, vol. 34, no. 3A, September, 2004 859

Semiclassical Coulomb Excitation Matrix Elements

B.V. Carlson,

Departamento de F´ısica, Instituto Tecnol´ogico de Aeron´autica – CTA, 12228-900, S˜ao Jos´e dos Campos, SP, Brazil

L.F. Canto,

Instituto de F´ısica da Universidade do Rio de Janeiro, CP 68528, 21945-970, Rio de Janeiro, RJ, Brazil

and M.S. Hussein

Instituto de F´ısica, Universidade de S˜ao Paulo, CP 66318, 05389-970, S˜ao Paulo, SP, Brazil

Received on 3 October, 2003

Coulomb excitation matrix elements are often expressed in terms of the scalar electric potential and the elec-tromagnetic fields. We show that, through an appropriate gauge transformation, the excitation matrix elements can always be expressed in terms of the electromagnetic fields alone. This change in representation becomes important when the widths of the excited states are taken into account.

1

Introduction

In an often cited work on Coulomb excitation[1] and in a more recent analysis of the same topic[2], the Coulomb ex-citation matrix elements are expressed in terms of the scalar electric potential and the electromagnetic fields. This repre-sentation of the interaction is adequate for use in a perturba-tive treatment and also provides a reasonably good estimate of the excitation cross section for states of zero width. In fact, in these two cases, the results are almost identical to those obtained by directly using the electromagnetic fields, or their derivatives, as these would appear in a classical treat-ment of the problem.

However, the mixed potential/field representation of the interaction is not adequate for a nonperturbative treatment of of excited states of finite width. In this case, the mixed rep-resentation yields large, unphysical cross sections due to the absorption of flux after excitation by the long-range poten-tial term. The excitation cross section of a dipole transition, in particular, diverges in this case. This makes a treatment of multiple Coulomb excitation incorporating fluctuations con-tributions, such as those of the Brink-Axel type[3, 4, 5, 6, 7], impossible in the mixed representation, since finite widths are a fundamental component of such models.

In the following, we show that, through an appropriate gauge transformation, the Coulomb excitation matrix ele-ments can always be expressed in terms of the electromag-netic fields alone. Aside from making a satisfying parallel with the classical case, the pure field representation of the interaction matrix elements is found to provide physically reasonable cross sections[7].

2

Expanding the interaction

Hamilto-nian

The electromagnetic interaction Hamiltonian is given by

V(t) =

Z

d3 x

µ

ρ(~x, t)ϕ(~x, t)−1

cJ~(~x, t)·A~(~x, t)

,

whereϕ(~x, t)andA~(~x, t)are the scalar and vector electro-magnetic potentials, for which

~

E(~x, t) =−∇ϕ(~x, t)−1

c

∂ ~A(~x, t)

∂t

and

~

B(~x, t) =∇ ×A~(~x, t),

and we assumeρ(~x, t)andJ~(~x, t)to be the charge and cur-rent density of a nucleus. We assume that the source of the electromagnetic field does not overlap the nucleus.

We want to obtain the first few terms contributing to the energy in the expansion of the electromagnetic fields about the center of the nucleus,~x= 0. Such an expansion is rea-sonable if the electromagnetic fields are slowly varying over the extent of the nucleus[8] We thus take

Z

d3

x ρ(~x, t)ϕ(~x, t) ≈

Z

d3

x ρ(~x, t) (ϕ0(t) +~x· ∇ϕ0(t)

+1

2~x~x· ∇∇ϕ0(t) +· · ·

and

Z

d3

x ~J(~x, t)·A~(~x, t)

Z

d3

x ~J(~x, t)·

³

~

(2)

860 B.V. Carlson, L.F. Canto, and M.S. Hussein

where the subscript0on the fields and their derivatives de-notes the evaluation of these at the point~x= 0.

Evaluation of the scalar potential terms is straightfor-ward. Evaluation of the vector potential terms requires a bit more work. We use the continuity equation,

∇ ·J~+∂ρ

∂t = 0,

to derive two supplementary identities:

Z

d3

x Jk =

Z

d3

x³∇ ·³xkJ~´−xk∇ ·J

=

Z

d3 x xk∂ρ

∂t,

where the integral of the exact divergence is zero due to the finite extent ofJ~, and

Z

d3

x Jkxi =

Z

d3

x³∇ ·³xkJxixkxi∇ ·J

=

Z

d3 x

µ

xkJ~· ∇xi+xkxi∂ρ

∂t

= −

Z

d3

x Jixk+

Z

d3 x xkxi

∂ρ ∂t

which we rewrite as

Z

d3

x(Jkxi+Jixk) =

Z

d3

x xkxi∂ρ

∂t.

Using the first of these, we can write

Z

d3

x ~J(~x, t)·A0~ (t) = X

k

Z

d3

x Jk(~x, t)A0k(t)

= X

k

Z

d3 x∂ρ

∂txkA0k(t)

=

Z

d3 x∂ρ

∂t~x·A~0(t).

Using the second, we find

Z

d3

x J~(~x, t)·(~x· ∇)A0~ (t) =

= X

i,k

Z

d3

x Jk(~x, t)xi∂iA0k(t)

= 1 2

X

i,k

Z

d3

x((Jkxi+Jixk)∂iA0k

+ (Jkxi−Jixk)∂iA0k)

= 1 2

Z

d3 x∂ρ

∂t~x·(~x· ∇)A0~ (t)

+1 2

Z

d3

x ~J ·³(~x· ∇)A0~ − ∇(~x·A0~ )´,

where the operator∇ acts only the vector potentialA0~ in the last term. We can manipulate the integrand of the sec-ond term further,

~

J·³(~x· ∇)A0~ − ∇(~x·A0~ )´ =J~·h~x׳∇ ×A0~ ´i

= ³~x×J~´·³∇ ×A0~ ´,

so that we may finally write for the entire term,

Z

d3

x J~(~x, t)·(~x· ∇)A~0(t) =

= 1 2

Z

d3 x∂ρ

∂t~x·(~x· ∇)A0~ (t)

+1 2

Z

d3

x³~x×J~´·³∇ ×A0~ (t)´.

Putting all the pieces together, we have

V(t) =

Z

d3 x

µ

ρ(~x, t)ϕ(~x, t)−1

cJ~(~x, t)·A~(~x, t)

Z

d3

x ρ(~x, t) (ϕ0(t) +~x· ∇ϕ0(t)

+1

2~x~x· ∇∇ϕ0(t) +· · ·

−1

c

Z

d3 x∂ρ

∂t~x·

µ

~

A0(t) +1

2(~x· ∇)A0~ (t) +· · ·

−1

2c

Z

d3

x³~x×J~´·³∇ ×A~0(t)

´

+· · ·

We can write the second line in this expansion as

−1

c

Z

d3 x∂ρ

∂t~x·

µ

~ A0(t) +

1

2(~x· ∇)A~0(t) +· · ·

=−1

c

Z

d3 x∂ρ

∂t

Z ~x

0 ~

A(~l, t)·d~l.

3

The Gauge Transformation

Let us define a gauge transformationΛ(~x, t)as

Λ(~x, t) =−

Z ~x

0 ~

A(~l, t)·d~l.

This gauge transformation will annul the integral above, since forA~′(~x, t) =A~(~x, t) +Λ(~x, t),

Z ~x

0 ~

A′(~l, t)·d~l=

Z ~x

0 ~

A(~l, t)·d~l+ Λ(~x, t) = 0.

It will not modify the magnetic field, since∇ × ∇Λ(~x, t) =

0.It will modify the scalar potential, however, which now becomes

ϕ′(~x, t) =ϕ(~x, t)−1

c ∂Λ

∂t =ϕ(~x, t) +

1

c ∂ ∂t

Z ~x

0 ~

A(~l, t)·d~l.

Expanding the transformed scalar potential about~x= 0, we find

ϕ′(~x, t) = ϕ(~x, t) +1

c ∂ ∂t

Z ~x

0 ~

A(~l, t)·d~l

ϕ0(t) +~x·

Ã

ϕ0(t) +1

c ∂ ~A0

∂t

!

+1 2~x~x· ∇

Ã

ϕ0(t) +1

c ∂ ~A0

∂t

!

(3)

Brazilian Journal of Physics, vol. 34, no. 3A, September, 2004 861

so that, after the gauge transformation, we have for the in-teraction,

V(t) ≈

Z

d3

x ρ(~x, t)

Ã

ϕ0(t) +~x·

Ã

ϕ0(t) +

1

c ∂ ~A0

∂t

!

+1 2~x~x· ∇

Ã

ϕ0(t) +1

c ∂ ~A0

∂t

!

+· · ·

!

−1

2c

Z

d3

x³~x×J~´·³∇ ×A0~ (t)´+· · ·,

which we can rewrite in terms of the fieldsE0~ andB0~ as

V(t) ≈

Z

d3

x ρ(~x, t)³ϕ0(t)−~x·E0~ (t)

−1

2~x~x· ∇E~0(t) +· · ·

−1

2c

Z

d3

x³~x×J~´·B0~ (t) +· · ·.

We can rewrite

~x~x· ∇E~0=

X

i,j

xixj∂jE0i=

X

i,j

(xixj−~x2δij/3)∂jE0i,

since∇ ·E~0= 0, because of our assumption that the

field-producing charge does not overlap with the nuclear one. We can then write

V(t) =qϕ(t)−~p·E~0(t)−

1 2

X

i,j

Qij∂jE0i(t)−m~·B~0(t)+· · ·,

whereqis the charge,

q=

Z

d3

x ρ(~x, t),

~

pis the eletric dipole operator,

~ p=

Z

d3

x ~x ρ(~x, t),

theQijare the traceless electric quadrupole operators,

Qij =

Z

d3

x(xixj−~x

2

δij/3)ρ(~x, t),

andm~ is the magnetic dipole operator,

~ m= 1

2c

Z

d3

x ~x×J~(~x, t).

4

Conclusions

As an example, we take as the potentials those due to a rela-tivistic nucleus of chargeZpassing on a straight-line trajec-tory with velocityvin thezˆdirection at a distanceb0from

the center of the charge/current distribution of interest. We then have

ϕ(~b, z, t) =γq Ze

(~b−~b0)2+γ2(zvt)2

and

~

A(~b, z, t) = v

cz ϕˆ (~b, z, t).

The electric field that results is

~

E0⊥(t) =−γ~b0

Ze

³

~b2

0+ (γvt) 2´

3/2

and

E0||(t) =−γvt

Ze

³

~b2

0+ (γvt) 2´

3/2,

which, together with the matrix elements of the dipole op-erator~p, are all we need to describe excitations of the giant dipole resonance. Matrix elements for other multipolarities can be calculated similarly.

Bayman and Zardi[9] have noted that the mixed poten-tial representation of the interaction matrix elements of Refs. [1] and [2] also neglects relativistic contributions to the quadrupole and higher multipolarity matrix elements that could become important at high energies. These are also taken into account correctly (and automatically) when the pure field representation is used.

BVC and MSH acknowledge support from FAPESP. The authors acknowledge partial support from the CNPq.

References

[1] C.A. Bertulani, L.F. Canto, M.S. Hussein, and A.F.R. de Toledo Piza, Phys. Rev. C53, 334 (1996).

[2] H. Esbensen and C.A. Bertulani, Phys. Rev. C65, 24605 (2002).

[3] B.V. Carlson, M.S. Hussein, A.F.R. de Toledo Piza, and L.F. Canto, Phys. Rev. C60, 14604 (1999).

[4] B.V. Carlson and M.S. Hussein, Phys. Rev. C59, R2343 (1999).

[5] B.V. Carlson, L.F. Canto, S. Cruz-Barrios, M.S. Hussein, and A.F.R. de Toledo Piza, Ann. Phys. (New York) 276 111 (1999).

[6] L.F. Canto, B.V. Carlson, M.S. Hussein, and A.F.R. de Toledo Piza, Phys. Rev. C60, 64624 (1999).

[7] M.S. Hussein, B.V. Carlson, L.F. Canto, and A.F.R. de Toledo Piza, Phys. Rev. C66 34615 (2002).

[8] J.D. Jackson, Classical Electrodynamics, J. Wiley and Sons, Inc., New York, 1962).

Referências

Documentos relacionados

The fourth generation of sinkholes is connected with the older Đulin ponor-Medvedica cave system and collects the water which appears deeper in the cave as permanent

Os controlos à importação de géneros alimentícios de origem não animal abrangem vários aspetos da legislação em matéria de géneros alimentícios, nomeadamente

Ao Dr Oliver Duenisch pelos contatos feitos e orientação de língua estrangeira Ao Dr Agenor Maccari pela ajuda na viabilização da área do experimento de campo Ao Dr Rudi Arno

Neste trabalho o objetivo central foi a ampliação e adequação do procedimento e programa computacional baseado no programa comercial MSC.PATRAN, para a geração automática de modelos

Ousasse apontar algumas hipóteses para a solução desse problema público a partir do exposto dos autores usados como base para fundamentação teórica, da análise dos dados

Peça de mão de alta rotação pneumática com sistema Push Button (botão para remoção de broca), podendo apresentar passagem dupla de ar e acoplamento para engate rápido

Extinction with social support is blocked by the protein synthesis inhibitors anisomycin and rapamycin and by the inhibitor of gene expression 5,6-dichloro-1- β-

Os princípios constitucionais gerais, embora não integrem o núcleo das decisões políticas que conformam o Estado, são importantes especificações