• Nenhum resultado encontrado

Characterization and biotechnological application of recombinant xylanases from Aspergillus nidulans

N/A
N/A
Protected

Academic year: 2021

Share "Characterization and biotechnological application of recombinant xylanases from Aspergillus nidulans"

Copied!
8
0
0

Texto

(1)

ContentslistsavailableatScienceDirect

International

Journal

of

Biological

Macromolecules

jo u r n al h om ep age :w w w . e l s e v i e r . c o m / l o c a t e / i j b i o m a c

Characterization

and

biotechnological

application

of

recombinant

xylanases

from

Aspergillus

nidulans

Gabriela

P.

Maitan-Alfenas

a,b,∗

,

Mariana

B.

Oliveira

a,c

,

Ronaldo

A.P.

Nagem

c

,

Ronald

P.

de

Vries

b

,

Valéria

M.

Guimarães

a

aDepartmentofBiochemistryandMolecularBiology,UniversidadeFederaldeVic¸osa,MG,Brazil

bFungalPhysiology,CBS-KNAWFungalBiodiversityCentre&FungalMolecularPhysiology,UtrechtUniversity,Uppsalalaan8,3584CT,Utrecht,The

Netherlands

cDepartmentofBiochemistryandImmunology,UniversidadeFederaldeMinasGerais,BeloHorizonte,MG,Brazil

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received29February2016

Receivedinrevisedform14April2016 Accepted17May2016

Availableonline25May2016 Keywords: Xylanase Aspergillusnidulans Pichiapastoris Saccharification Sugarcanebagasse

a

b

s

t

r

a

c

t

TwoxylanasesfromAspergillusnidulans,XlnBandXlnC,wereexpressedinPichiapastoris,purifiedand characterized.XlnBandXlnCachievedmaximalactivitiesat60◦CandpH7.5andat50CandpH6.0,

respectively.XlnBshowedtobeverythermostablebymaintaining50%ofitsoriginalactivityafter49h incubatedat50◦C.XlnBhaditshighestactivityagainstwheatarabinoxylanwhileXlnChadthebest activityagainstbeechwoodxylan.BothenzymeswerecompletelyinhibitedbySDSandHgCl2.Xylotriose

at1mg/mlalsototallyinibitedXlnBactivity.TLCanalysisshowedthatthemainproductofbeechwood xylanhydrolysisbyXlnBandXlnCwasxylotetraose.AnadditiveeffectwasshownbetweenXlnBand XlnCandthexylanasesoftwotestedcommercialcocktails.Sugarcanebagassesaccharificationresults showedthatthesetwocommercialenzymaticcocktailswereabletoreleasemoreglucoseandxylose aftersupplementationwithXlnBandXlnC.

©2016ElsevierB.V.Allrightsreserved.

1. Introduction

Hemicelluloseisthesecondmostabundantorganicmaterial

intheworldanditpresentsaverycomplexstructurecomposed

of various residues [1,2]. Xylan, the major hemicellulose

poly-mer,ishydrolyzedby␤-1,4-endoxylanase,␤-1,4-xylosidaseand

accessoryenzymes[3–5].␤-1,4-Endoxylanases (E.C.3.2.1.8) are

glycosidehydrolasesthatcatalyzethehydrolysisof␤-1,4-xylosidic

linkagesofthexylanbackbone[6].Theyareproducedbymany

organismsbuttheirmaincommercialsourcesareasmallnumber

offilamentousascomycetefungi[7].

␤-1,4-Endoxylanasesfromfungibelongtotwoglycoside

hydro-lasefamilies:GH10andGH11,andthesetwofamiliesdifferintheir

substratespecificity[7,8].Bothfamiliescatalyzethehydrolysisof

xylanthroughtheretentionoftheanomericconfiguration,andtwo

glutamateresidueshavebeenimplicatedintheircatalytic

mecha-nism[9].However,GH10endoxylanaseshaveabroadersubstrate

specificityandarethereforeveryimportantforcomplete

degra-dationofsubstitutedxylans[8,10].Theyalsodifferwithrespect

∗ Correspondingauthorat:DepartmentofBiochemistryandMolecularBiology, UniversidadeFederaldeVic¸osa,MG,Brazil.

E-mailaddress:gabmaitan@yahoo.com.br(G.P.Maitan-Alfenas).

totheircatalyticdomains,whichinGH10endoxylanasespresent

an␣/␤8TIM-barreltopology, while GH11endoxylanaseshave a

jelly-rollstructure[2,11].

Xylanasescanbeusedforvariousbiotechnologicalapplications

suchasbioconversionoflignocellulose intofermentablesugars,

clarificationofjuices,preparationofanimalfeedandpulp

bleach-ing[12,13].However,forindustrialapplications,xylanasesneedto

havedesirablepropertiessuchasstabilityinawidepHand

tem-peraturerange,highspecificactivitiesandlowproductioncosts

[14,15].Therefore,moleculartechniqueshavebeenusedtoobtain

xylanaseswithidealcharacteristicsforcommercialpurposes[7].

Heterologousexpressioninyeasthasalotofadvantagesamong

whichtheproductionofsolubleandcorrectlyfoldedrecombinant

proteinsthathaveundergonepost-translationalmodifications,the

capacityofgrowthathighcelldensitiesandtheabilitytosecrete

reasonableamountsofprotein[16].Pichiapastorishasbecomea

welldescribedand widelyappliedexpressionhostforxylanase

productionmainlybecausethisyeastgiveshighexpressionunder

its own promoters [17]. Furthermore, there is no secretion of

endogenouslignocelluloliticenzymesinsignificantamountsbyP.

pastorisandtherecombinantproteinsarealmostpureheterologous

enzymepreparations[18].Inaddition,proteinscanbeobtainedby

inexpensivelarge-scalecultivationofP.pastoriswhichreducecosts

oftheprocess[19].

http://dx.doi.org/10.1016/j.ijbiomac.2016.05.065

(2)

TwoxylanasesfromAspergillusnidulanswerepurifiedand

char-acterized[20–22]andthegeneswhich expressthesexylanases,

AN1818(xlnB)andAN3613(xlnC),wereclonedinP.pastoris[23,24].

AlthoughthenativelyproducedenzymesfromA.nidulanswere

previouslystudied,thefunctionalpropertiesoftheseheterologous

xylanasesandtheirpotentialforlignocellulosicbiomasshydrolysis

remainedlargelyunexplored.

Inthiswork,xlnBandxlnCwereproducedbyP.pastorisandthe

correspondingxylanases,XlnB(GH10)andXlnC(GH11),

respec-tively,werepurifiedandbiochemicallycharacterized.Theirability

tosupplementcommercialenzymaticcocktailsforuseinsugarcane

bagassehydrolysiswasevaluated.

2. Materialsandmethods

2.1. Materials

Substrates including p-nitrophenyl-␤-d-glucopyranoside

(pNP␤Glc), p-nitrophenyl-␤-d-xylopyranoside (pNP␤Xyl),

␳-nitrophenyl-␤-d-mannopyranoside (pNP␤Man),

␳-nitro-phenyl-␣-d-mannopyranoside (pNP␣Man), p-nitrophenyl-

␤-d-galactopyranoside (pNP␤Gal), p-nitrophenyl-

␣-d-galactopy-ranoside (pNP␣Gal), p-nitrophenyl-␣-d-arabinofuranoside

(pNP␣Ara), p-nitrophenyl-␤-d-cellobioside (pNP␤Cel),

car-boxymethylcellulose(CMC),Avicel®,xylanfrombirchwood,xylan

frombeechwood,oatspeltxylan,dinitrosalicylicacid(DNS)and

methanol were purchased from Sigma Chemical Co. (St. Louis,

MO,USA).Arabinoxylan(wheatflour,lowviscosity−8cSt)was

obtainedfromMegazyme(Wicklow,Ireland).Yeastextractwas

purchasedfromHimediaLaboratoriesCo.(Mumbai,Maharashtra,

India).ThechemicalreagentsNaOH,H2SO4andpotassiumsodium

tartratewereobtainedfromVetecFineChemical(DuquedeCaxias,

RJ,Brazil).ThecommercialenzymaticmixturesMultifect®CLand

Accellerase® 1500werepurchasedfromGenencorInternational

Inc.(Rochester,NY,USA).Sugarcanebagassewaskindlydonated

by Jatiboca Sugar and Ethanol Plant, Urucânia, MG, Brazil. All

othersreagentsusedinthisstudywereofanalyticalgrade.

2.2. Pichiapastorisstrainsandcultivationconditions

The P. pastoris strains used in this study were previously

described[23,24].Thestrainsweregrownin25mlofbuffered

com-plexglycerolmedium(BMGY)in250mlshakeflasksat28◦Cand

250rpmfor16h.AliquotcellsweredilutedtoanOD1.0(600nm)

with25mlofbufferedcomplexmethanolmedium(BMMY)and

incubatedfor72hwithdailyadditionof150␮lof100%methanol.

Theculturewascentrifugedat5000rpmfor10minaccordingto

thePichiaExpressionKitManual(Invitrogen).

2.3. Proteinanalysis

Proteinconcentrationin theenzymatic extract of P.pastoris

andinthecommercialenzymaticmixtureswasdeterminedbythe

CoomassieBluebindingmethodusingbovineserumalbumin(BSA)

asastandard[25].

2.4. Xylanaseassay

Allenzymaticassayswerecarriedoutin100mMsodiumacetate

buffer,pH5,at50◦C.Theywereperformedintriplicateandthe

meanvalueswerecalculated.Relativestandarddeviationsofthe

measurementswerebelow5%.Xylanaseactivitywasdetermined

usingxylanfrombeechwood(1%w/vatfinalconcentration)as

sub-strate.Theenzymaticreactionswereinitiatedbytheadditionof

100␮loftheappropriatelydilutedenzymesolutionto400␮lof

thepolysaccharidesubstratesolutionpreparedinbuffer.The

reac-tionmixtureswereincubatedfor15minand thetotal reducing

sugarcontentreleasedwasdeterminedat540nmbyDNSmethod

[26]usingxyloseasstandard.Oneenzymeunit(U)wasdefined

astheamountofenzymenecessarytoproduce1␮molofxylose

equivalentperminute.

2.5. Xylanasepurification

ThecrudeextractsfromP.pastoriswerecentrifugedat15,000g

for30minat4◦C.Thehistidinetagswereusedforthe

purifica-tionoftherecombinantproteinsbynickelaffinitychromatography.

The xylanasepurificationwascarried out atroomtemperature

undernativecondition,accordingtoprotocolsdescribed inThe

QIAExpressionistTMMannual(FifthEdition,March2001).

2.6. SDS–PAGEandzymogramanalysisforxylanolyticactivities

SDS–PAGEwasperformedusinga12%(w/v)polyacrylamidegel

witha5%stacking geland theMini-ProteanIIsystem(BioRad)

accordingtothemethodpreviouslydescribed withsome

modi-fications[27].Thesamplepreparationforzymogramanalysiswas

performedbymixing0.5Uofenzymewith5␮lofloadingbuffer

containingSDS2%(w/v).ThemixturewasappliedinaSDS-PAGE

containing1%ofbirchwoodxylanand,afterrunning,thegelwas

dividedintotwoparts.Onepart,containingthemolecularmarker

obtainedfrom BioRad(BioRad Precision PlusProteinUnstained

Standard),wasstainedwithComassieBrilliantBlue.Theotherpart

ofthegelcontainingjustenzymaticsampleswaswashedtwicefor

30minin20%isopropanol(v/v)toremoveSDSandallowrefolding

oftheproteinsinthegel.Thegelwaswashedagainfor30minin

100mMacetatebuffer,pH5,toremove2-propanoland

immedi-atelyincubatedatsamebufferfor15minat50◦Cfordevelopment

of xylanase activity.Afterthat, the gelwas submergedin 0.1%

(w/v)Congoredsolutionfor30minanddestainedwith1MNaCl

untilpale-redhydrolysiszonesappearedagainstaredbackground.

Aceticacidat0.5%concentrationwasaddedtoexposethebands

andthegelturnedtoadarkbluecolor.

2.7. Proteindigestionandidentificationbymassspectrometry

(MS)

Proteinspotswereremovedmanuallyfromthegels,reducedby

DTT(Dithiothreitol)andalkylatedbyiodoacetamide.Thedigestion

wascarriedoutwithtrypsinina50mMammoniumbicarbonate

buffer, pH7.8, containing 20ng/␮l ofsequencing grade trypsin

(Promega)at37◦Covernight.Peptideswereextractedfromthe

spotswith30␮lof50mMammoniumbicarbonatesolution,

fol-lowedbyincubationfor10minwithoccasionalvortexmixing.After

that,thesupernatantwascollectedandtransferredtoa0.5ml

plas-ticmicrocentrifugetube.Thisextractionwasperformedtwomore

times.Thevolumeoftheextractwascompletelydriedby

evap-orationinaspeed-vac.Trypticpeptidesweresolubilizedin30␮l

ofMSgradewater(Sigma-Aldrich)containingtrifluoroaceticacid

0.1%(v/v).

Forproteinidentificationbymassspectrometry,thetryptic

pep-tideswereanalyzedusingaMALDI-TOF/TOFmassspectrometer

modelUltraflexIII(BrukerDaltonics).Thesamplesofthetryptic

peptidesweremixedwith␣-cyano-4-hydroxylcinnamicacidina

proportionof1:1.Themassspectraobtainedwereprocessedusing

FlexAnalysissoftware(BrukerDaltonics)andapeaklist(mgf

for-mat)wasusedforidentificationoftheproteinsbyMSionssearch

using the Mascot software against theNCBI protein databases.

Forthesearch,thefollowingparameterswereconsidered:amass

toleranceof75ppmfortheparentalion,fixedmodificationfor

(3)

foroxidationofthemethionineresidues.Thesequencesobtained

wereconfirmedbydenovosequencingmanuallyandthetrypic

cleavagepartnersoftheproteinswereanalyzedbyinterpretation

ofthespectrausingtheflexAnalysissoftware.

2.8. Enzymaticcharacterization

2.8.1. EffectsofpHandtemperature

TheinfluenceofpHandtemperatureonxylanaseactivitieswas

determinedusingthestandardenzymaticassay,exceptthatthepH

valuesweremodifiedtoarangeof2.0–14.0,usingdifferentbuffer

solutions,andthetemperaturerangedfrom25to70◦C.

ThepHstabilityofxylanaseswasdeterminedbypre-incubating

enzymesolutionsinthepHrangeof2.0–14.0for1h,onice.After

pre-incubation, the mixturewas used for determining residual

activity, according to standard assay, using xylan from

beech-wood as the substrate. Thermal stability was investigated by

pre-incubatingtheenzymaticsolutionsin100mMsodiumacetate

buffer,pH5.0,attemperaturesof50and60◦C,forperiodsas

indi-catedinthetext.Aliquotsoftheenzymeswerecollectedatspecific

timesandsubmittedtothestandardassay,measuringthe

remain-ingactivity.Therelative activitieswerecalculatedinrelationto

xylanaseactivitywithoutpre-incubation,whichwasconsideredto

be100%.Resultsoftheanalysesarepresentedasmean±SD for

threemeasurements.

2.8.2. Substratespecificity

Enzymaticassayswereperformedwithvarioussynthetic,

natu-ralandpolymericsubstrates.FPaseandendoglucanaseactivities

were determined using Whatman No. 1 filter paper (1×6cm,

50mg)and1%CMC/1%Avicel®assubstrates,respectively,

accord-ing topreviously described standard conditions [28].The total

reducingsugarsliberatedduringtheenzymaticassayswere

quan-tifiedbythedinitrosalicylicacid(DNS)method[26]usingglucose

asthestandard. Xylanaseactivityusingxylanfrombeechwood,

oatspeltxylan andwheatarabinoxylan,allat1%(w/v)

concen-tration, was determined as the standard assay. ␤-Glucosidase,

␤-xylosidase,␣-and␤-mannosidase,␣-and␤-galactosidase,

␣-arabinofuranosidase and ␤-cellobiase activities were measured

using␳PN␤Glc,␳NP␤Xyl,␳NP␣/␤Man,␳NP␣/␤Gal,␳NP␣Araand

␳NP␤Celassubstrates,respectively.Thereaction mixtures

con-tained100␮loftheappropriatelydilutedenzymesolution,125␮l

ofthesyntheticsubstratesolution(1mMatfinalconcentration)

and275␮lof100mMsodiumacetatebufferpH5.0.Thereaction

mixturewasincubatedfor30minanditwasstoppedbyaddition

of0.5mlofa 0.5Msodiumcarbonatesolution.Absorbancewas

measuredat410nmand theamountof ␳-nitrophenolreleased

wasestimatedusingastandardcurve.Thedatapresentedforall

enzymeactivitydeterminationsaremeanvalues±SDofthree

mea-surements.

2.8.3. Effectofionsandreducingagents

Theeffectsofionsandreducingagentsonxylanaseactivities

wereassayedbythestandardmethod.Reactionmixturescontained

100␮loftheappropriatelydilutedenzymesolutionwithan

ade-quateamountoftheionorreducingagentforafinalconcentration

of2and10mM(exceptfor␤-mercapthoethanolthatpresenteda

finalconcentrationof1mM)and400␮lofxylanasesolution

pre-paredinbuffer. Thereaction wasincubated for15minat50◦C

andthereducingsugarsweremeasuredat540nm,asdescribed

before.Thedatapresentedforallenzymeactivityassaysaremean

values±SDofmeasurementsperformedintriplicate.

2.8.4. Productseffect

Thexylooligosaccharideseffectonxylanaseactivities(XlnBand

XlnC)wasevaluatedthroughtheadditionofthesecompoundsto

thereactionmixdescribedonSection2.4.Xylotriosewasusedin

theconcentrationsof0.1and1mg/mlandxylotetraosewasused

at0.1mg/ml.

2.8.5. Kineticcharacterization

ThekineticparametersKmandVmaxofthexylanasesXlnBand

XlnCwereestimatedusingSigmaPlot®10.0.Theenzymaticactivity

assayswereperformedasdescribedonSection2.4withincreasing

concentrations of the substrates beechwood xylan, wheat

ara-binoxylanand oatspeltxylan. Thecatalytic constant (kcat)was

calculateddividingVmaxbytheenzymeconcentrationintheassay.

2.8.6. Compositionalanalysisofbeechwoodxylanhydrolysis

products

Thecomposition ofhydrolysis productsfrom1%beechwood

xylanbythexylanasesXlnBandXlnCandthecommercial

cock-tailsAccellerase®1500andMultifectCL® wasanalyzedonsilica

gelplate(Sigma)byThinLayerChromatography(TLC).Thereaction

mixturescontained150␮lofpurifiedenzymesorthecommercial

cocktailsand300␮lof1%beechwoodxylanin0.1Msodiumacetate

bufferpH5.0.Bufferwasusedforthenegativecontrol.Thereaction

wasincubatedby20hat50◦Cand,afterthisperiod,25␮lofthe

mixwasspottedonsilicaplate.Theglassbowl(15×15cm)was

saturatedwiththemixturepropanol:aceticacid:waterintheratio

1:1:0.1(v/v).Afterelution,thehydrolysisproductswere

visual-izedwiththeapplicationofthedevelopingsolution(1%␣-naphthol

and10%phosphoricacidinethanol)andheatingoftheplateat

120◦Cduring10min.Xylose,xylotrioseandxylotetraosesolutions

at5mg/mlconcentrationwereusedasstandards.

2.9. Additiveeffectsofthexylanaseactivities

To investigate the presence of additive effect between the

xylanases XlnB andXlnC and thexylanase activitiespresent in

thecommercialcocktails(Multifect® CLandAccellerase® 1500),

xylanaseassayswereperformedforthefollowingmixtures:10FPU

Multifect®CL+15UXlnB;10FPUMultifect®CL+15UXlnC;10FPU

Multifect® CL+7.5UXlnB+7.5UXun3613; 10 FPU Accellerase®

1500+15UXlnB;10FPUAccellerase®1500+15UXlnCand10FPU

Accellerase®1500+7.5UXlnB+7.5UXlnCandthemeasured

val-ueswereobtained. Thetheoreticalactivitieswerecalculatedby

thesumofthemeasuredactivitiesintheassayscontainingonly

thecommercialcocktailandonlythexylanase(individualor

mix-tureforms).Thetheoreticalvalueswerecomparedtothemeasured

activitiesandtheadditiveeffectwasexpressedasapercentageof

thetheoreticalactivity.

2.10. Sugarcanebagassepretreatment

Sugarcanebagassewaswashedanddriedinanovenat70◦C

untilreachingaconstantmass,afterwhichitwasfurthermilled

(particlesizelessthan1mm)andsubmittedtoalkaline

pretreat-ment prior tobeing employed in saccharification experiments.

Sodiumhydroxide at1.0%(w/v)concentrationwasusedto

pre-treatthemilledsugarcanebagassesamplesatasolidloadingof10%

(w/v).Thepretreatmentwasperformedinanautoclaveat120◦C

for60min.Pretreatedbagassewasseparatedintosolidandliquid

fractionsusingaBuchnerfunnelfittedwithfilterpaper.Thesolid

fractionwaswashedthoroughlywithdistilledwater,sealedina

hermeticvesseltoretainmoistureandstoredat−20◦C.

2.11. Sugarcanebagassesaccharification

Thepurifiedxylanasesandthecommercialcocktailscontaining

cellulases(Multifect® CLandAccellerase® 1500)wereappliedin

(4)

Fig.1. (A)and(B)SDS-PAGEforxylanasesextractsafteraffinitychromatography.(C)Zymogramofxylanases(SDS-PAGE12%containing1%ofbirchwoodxylan).M− molecularmassmarkerstainedwithComassieBrilliantBlue.1−PurifiedextractcontainingXlnB.2−PurifiedextractcontainingXlnC.3−CrudeextractcontainingXlnB.4 −CrudeextractcontainingXlnC.

ofalkali-pretreatedsugarcanebagassewasperformedin125ml

Erlenmeyerflaskswith20mlworkingvolume,ataninitialsolid

concentrationof8%drymatter(w/v)in100mMsodiumacetate

bufferatpH5.0.Thesaccharificationassayscontained:the

indi-vidualcommercialcocktails(10FPaseunits(FPU)/gofbiomass);

ortheindividualcommercialcocktails(10FPU/g biomass)

sup-plementedwithXlnBorXlnC(15U/gbiomass);ortheindividual

commercialcocktails(10FPU/gbiomass)supplementedwithXlnB

andXlnC(7.5U/gbiomassforeachenzyme).Sodiumazide(10mM)

andtetracycline(40␮g/ml)wereaddedtothereactionmixtureto

inhibitmicrobialcontamination.Thereactionswerecarriedoutin

duplicateinanorbitalshakerat250rpmand50◦Cfor72h.

Sam-ples(0.5ml)weretakenfromthereactionmixtureatdifferenttime

intervalsforprocessmonitoring.Thesesampleswereimmediately

heatedto100◦Ctodenaturetheenzymes,cooledandthen

cen-trifugedat15,000gfor5min.

2.12. Analysisofhydrolysisproducts

Productsofthesaccharificationassayswereanalyzedbyhigh

performance liquid chromatography (HPLC) using a Shimadzu

series10Achromatograph.TheHPLCwasequippedwithanAminex

HPX–87P column(300×7.8mm)and refractive indexdetector.

Thecolumnwaselutedwithwaterataflowrateof0.6ml/minand

itoperatedat80◦C.

ThetotalreducingsugarsweremeasuredbytheDNSmethod

[26]usingamixofglucoseandxyloseasstandard.

3. Resultsanddiscussion

3.1. PurificationandbiochemicalcharacterizationofXlnBand

XlnC

After72hcultivationofP.pastoris,xylanaseactivitiesinthe

crudeextractwere80.45U/mland35.64U/mlforXlnBandXlnC,

respectively.Expressedintermsoftheproteincontent,thespecific

activitieswere311.82U/mgofproteinand105.13U/mgofprotein

forXlnBandXlnC,respectively.Afterpurification,thexylanases

exhibitedasinglebandinSDS-PAGE,withmolecularmassvalues

of34kDaforXlnB(Fig.1A)and24kDaforXlnC(Fig.1B).These

val-uesareinagreementwiththemolecularmassexpectedforthese

proteins.ThezymographyshowedthatXlnBandXlnCwereactive

purifiedxylanases(Fig.1C).TheidentityofXlnBandXlnCwere

con-firmedbymassspectrometryanalysis(Fig.2).Denovosequencing

ofionm/z2222.01(Fig.2B)presentinMS1ofXlnBpurifiedextract

(Fig.2A) revealedthe sequence IMHWDVVNEI/LFNEDGTFRthat

correspondtoapeptideproductoftryptichydrolysisofXlnB.Also,

denovosequencingofionm/z2222.01(Fig.2D)presentinMS1of

XlnCpurifiedextract(Fig.2C)revealedthesequences

RVSWFQEF-TATGEI/LandYNAPSI/LEGTAthatcorrespondtopeptidesproduct

oftryptichydrolysisofXlnC.

XlnB exhibited substantialactivity againstbeechwood xylan

withinapHrangeof5.0-9.0andtemperaturerangeof50–60◦C,

whileXlnCshowedthehighestactivitiesinthepHrange5.0-8.0and

thesametemperaturerange.TheoptimalpHandtemperaturewere

7.5and60◦CforXlnB,whileXlnCachievedmaximalactivityatpH

6.0and50◦C(Fig.3A–D).SinceXlnBandXlnCbothretainedmore

than75%oftheiractivitiesatpH5.0,thestandardactivityassay

wasperformedatthispHvalue.Thesedataareinaccordancewith

previousstudieswhichreportedthatrecombinantxylanasesfrom

Aspergillusterreus,Plectosphaerellacucumerina,andAlternariasp.

HB186,alsoexpressedinP.pastoris,showedmaximalactivityat

pH5.0and60◦C[29],pH6.0and40◦C[30]andpH6.0and50◦C,

respectively[31].Inpreviousstudies,A.nidulansxylanasesXlnB

(X34)and(XlnC)(X24),purifiedfromA.nidulanshadoptimalpHand

temperaturevaluesof6.0/56◦Cand5.5/52◦C,respectively[20,21].

ComparisonofoptimapHandtemperaturevaluesforthenative

andheterologousxylanases,showedthatexpressioninP.pastoris

resultedinasignificantincreaseinthepHvaluesatwhichthese

enzymesexhibitedmaximumactivity,especiallyforXlnBwhich

haditsoptimumpHchangedfrom6to7.5.

XlnBandXlnCshowedsignificantstabilityoverawidepHrange

(Fig.3A–B).Afterpre-incubationfor30mininpHvaluesbelow4.0

andabove10.0,XlnBrecoveredover65%and90%ofitsinitial

activ-ity,respectively,whenthisenzymewasreturnedtopH5.0.The

resultsshowthatXlnBwasabletorefoldandretrieveits

activ-ityafterpre-incubationinextremepHranges.Similarresultswere

observedforXlnCthatrecoveredover90%ofitsinitialactivityafter

30minpre-incubationinpHvalueslowerthan4.0andhigherthan

9.0.

Concerningthermalstability(Fig.3E–F),XlnBwasverystable

at50◦Candretainedabout70%ofitsoriginalactivityafter2hof

pre-incubationatthistemperatureandthisresidualactivitywas

maintaineduntil6hofpre-incubation.Thisenzymestillretained,

at50◦C,morethan30%ofitsoriginalactivityafter100hof

(5)

Fig.2.Proteinidentificationbymassspectrometry(MS).MS1spectraoftrypticpeptidesofXlnB(A)andXlnC(C),respectively.Denovosequencingoftheionswithm/z 2222.01(B)and2202.91(D),whichwereobtainedinMS1oftrypticpeptidesofXlnBandXlnC,respectively.

Fig.3.EffectofpHandtemperatureonthexylanasesfromA.nidulans.(A)EffectofpHonactivity(ⵦ)andstability(䊉)ofXlnB.(B)EffectofpHonactivity(ⵦ)andstability (䊉)ofXlnC.(C)EffectoftemperatureonXlnB.RelativeactivitieswerecalculatedinrelationtoactivitiesdeterminedatoptimapHandtemperature.(D)Effectoftemperature onXlnC.RelativeactivitieswerecalculatedinrelationtoactivitiesdeterminedatoptimapHandtemperature.(E)Thermostabilityat50(䊉)and60◦C(ⵦ)forXlnB.(F) Thermostabilityat50(䊉)and60◦C(ⵦ)forXlnC.

at60◦C,XlnBlostactivityafter9hofpre-incubation.XlnCshowed

lowerthermalstabilitycomparedtoXlnB,sincethisenzyme

main-tainedonly28%ofitsinitialactivityafter6hofincubationat50◦C

andtheactivitywaszeroafter30minat60◦C.XlnBandXlnC

pre-sentedhalf-lifevaluesof49h20minand1h10min,respectively,at

50◦C.Thehalf-lifevaluesofXlnBandXlnCat60◦Cweredrastically

reducedto20minand5.8min,respectively.Thehigher

thermosta-bilityat50◦Cand60◦CexhibitedbyXlnB,whichbelongstoGH10,

comparedtoXlnC,a GH11 xylanase,couldbeexplainedbythe

structuraldifferencesbetweenGH10andGH11xylanases.GH10

Xylanasestendtoshowhigher thermalstability sincethe␣/␤8

structureofGH10xylanasesiscomposedbypropellersandsheets

and(␣/␤)istherepetitiveunit[32].FortheGH11xylanases,the

jelly-rollstructureiscomposedofmanysheetsandonlyone

pro-pellerandonesheetistherepetitiveunit.Thepropellerstructures

foldbetterthanthesheetstructures,whichcouldprovidehigher

stabilityoftheGH10enzymes.

TheanalysisofXlnBandXlnCspecificitiesagainstseveral

sub-strates showed that these enzymes didnot hydrolyze the aryl

syntheticsubstratescontainingxyloseordifferent

monosaccha-rides(Suppl.Data,Table1).Ontheotherhand,theywereableto

hydrolyzedifferentxylans.Thisresultconfirmsthattheseenzymes

exhibitendoxylanaseactivity,asexpected,sincetheclonedgenes

correspondtoGH10andGH11xylanases.Inrelationtothenatural

substrates,XlnBshowedhighactivityagainstwheatarabinoxylan,

whichisacomplexstructureofxylan,containingmany

arabino-furanosedecorations[33].Incontrast,XlnChadthebestactivity

(6)

Table1

RelativeactivityofXlnBandXlnCinthepresenceofdifferentionsandreducing agents.Relativeactivitieswerecalculatedinrelationtothexylanaseactivitywithout pre-incubationwhichwasconsideredtobe100%.

XlnB XlnC

Ion/ReducingAgent Concentration (mM) RelativeActivity (%)±DP HgCl2 10 0 0 2 0 0 ZnCl2 10 56.12±0.01 73.65±0.02 2 58.07±0.00 98.24±0.02 NaCl 10 97.88±0.00 93.24±0.02 2 92.76±0.00 114.44±0.04 MgCl2 10 86.79±0.03 129.97±0.02 2 83.65±0.03 113.59±0.01 EDTA 10 57.62±0.01 76.68±0.03 2 64.34±0.01 90.17±0.01 SDS 10 0.00 0.00 2 0.00 0.00 MnCl2 10 93.18±0.10 119.70±0.02 2 101.58±0.04 116.52±0.02 CaCl2 10 90.28±0.06 95.44±0.01 2 90.14±0.03 113.21±0.04 CuSO4 10 0 0 2 0 93.66±0.01 ␤-mercapthoethanol 1 87.64±0.01 122.66±0.01

xylan,containing95%ofxylose[13].Similarresultsweredescribed

forthenativelyproducedenzymessinceinthatstudyXlnBdidnot

showactivityagainstCMC,␳NP␤Xil,␳NP␤Gli,␳NP␣Ara,␳NP␤Gal

and␳NP␣ManandXlnCpresentedhigheractivityagainst

birch-woodxylan,followedbyarabinoxylanandinsolubleoatspeltxylan

[20,21].

Theenzymesshoweddistinctsensitivitiestoionsandreducing

agents(Table1).XlnBandXlnCwerecompletelyinhibitedbySDS

andHgCl2.CuSO4completelyinhibitedXlnBbuttotalinactivation

ofXlnCwasachievedonlyat10mMconcentration.Thedenaturing

actionofSDSprobablyaffectedtheintegrityoftheenzyme

tridi-mensionalstructurewhichisfundamentalforitscatalyticactivity

[34].TheionCu2+isknowntobeastronginhibitorofxylanases

[29,30].XlnCwasactivatedbyMnCl2andMgCl2,butMgCl2reduced

theXlnBactivity.␤-Mercaptoethanol,areducingagent,promoted

theactivationofXlnCwhichcanbeexplainedbythefactthatsome

reducedchemicalligationsintheenzymestructurearefavorable

forthecatalyticactivity[34].Theactivitiesofnativexylanaseswere

differentlyaffectedbythepresenceofions[20].ThenativeXlnB

wascompletelyinhibitedby1mMofHg2+andCu2+,whilethesame

concentrationoftheseionsreducedtheactivityofnativeXlnC.The

activityofthesenativeenzymeswerereducedbyMn2+[20].

When endoxylanases act on xylan, the products are

xylooligosaccharides that can inhibit the enzyme activity by

a retro-inhibition mechanism [7]. The effects of the products

xylotriose and xylotetraose on the activities of XlnB and XlnC

showedthatxylotriosedidnotinibitthesexylanasesat0.1mg/ml,

butat1mg/mlXlnBactivitywasfullyinhibitedandXlnCactivity

was reduced to 66.7% of its original activity. Xylotetraose at

0.1mg/mlconcentrationdidnotaffecttheactivityofXlnBandonly

slightlyreducedtheXlnCactivityto93.3%ofitsoriginalactivity.

ThisresultindicatesthatXlnBismoresensitivetoxylotriose,while

XlnCwasaffectedbyxylotetraose.

ThecalculatedvaluesofKm,kcatandkcat/Kmforthexylanases

XlnBandXlnCagainstthedifferentxylansareshowninTable2.

XlnB and XlnC had similar catalytic efficiency values (kcat/Km)

againstthetestedsubstrates,exceptthatXlnCwasmoreefficient

tocatalyzethehydrolysisofoatspeltxylan,whileXlnBhydrolyzed

wheatarabinoxylanlessefficiently.Thekineticconstantvaluesof

nativeXlnBandXlnCagainstthedifferentxylans[21],were

com-paredtothevaluesobtainedfortheheterologousenzymes.The

nativeXlnBshowedKmvaluesagainstbirchwoodxylan,

arabinoxy-lanandoatspeltsxylanof1.78,1.5and4.15mgml−1,respectively,

whilethesevaluesforXlnCwere4.37,12.14and12.43mgml−1,

respectively.Theseresultssuggestthattheheterologousenzymes

displaysimilarkineticpropertiesasthenativexylanases.

ThehydrolysisproductsofbeechwoodxylanbyXlnBandXlnC

wereanalyzedinTLCandcomparedwiththeproductsobtained

afterbeechwoodxylanhydrolysisusingthecommercialenzymatic

mixtures Accellerase® 1500andMultifectCL® (Suppl.Data, Fig.

1A).ThemainproductofxylanhydrolysisbyXlnBandXlnCwas

xylotetraose,whilexylotrioseappearedinlessconcentration.The

occurrenceofthexylooligossacharidesxylotrioseandxylotetraose

andtheabsenceofxyloseasthefinalproductconfirmsthe

activ-ityendoxylanolyticofXlnBandXlnC.Theproductsobtainedafter

hydrolysisbyAccellerase®1500andMultifectCL®werexylotriose,

xylotetraoseand oligossacharideswitha polymerizationdegree

higherthanfour.Theabsenceofstandardswithhigher

polymeriza-tiondegreethanxylotetraoseanddecoratedstandardsprevented

theidentificationofotherxylanhydrolysisproductsbythetested

commercialcocktails.

3.2. EffectsofXlnBandXlnCincommercialenzymaticmixtures

XlnBandXlnCwereaddedtothecommercialenzymatic

mix-turesMultifectCL® andAccellerase®1500andthefinalxylanase

activitieswerehigherthanthetheoreticalactivities(Suppl.Data,

Fig.1B).Thecommercialcocktailsalreadyhaveseveralenzymes

that are able to hydrolyze xylan, such as endoxylanases,

␣-arabinofuranosidases,␤-xylosidases,andothers[35].Still,XlnBand

XlnChadpositiveeffectontheactionofthexylanasespresentinthe

commercialcocktails.However,thiseffectvarieddependingonthe

commercialmixtureandtheuseofXlnBorXlnC,probablyduethe

mechanismsofactionofXlnB(GH10)andXlnC(GH11)andthe

dif-ferentxylanasespresentinMultifectCL® andAccellerase® 1500.

Thehighestadditiveeffectwasobservedfor MultifectCL®

sup-plementedwithXlnBorwithbothenzymes(XlnB+XlnC),which

were86.53%and86.09%,respectively.However,XlnCwasmore

efficientfor Accellerase® 1500supplementation.These additive

effectsobservedinbeechwoodxylanhydrolysisindicatethatthe

additionofXlnBandXlnCinthecommercialenzymaticmixtures

usedforthehydrolysisofsugarcanebagassecouldimprovethe

overallxylanolyticactivity.

Table2

MichaelisMentenconstant(Km),maximalvelocity(Vmax),catalyticconstant(kcat)andcatalyticefficiency(kcat/Km)forXlnBandXlnC,usingdifferentxylans.

Enzyme Substrate Km(mgml−1) Vmax

(␮mol/minml−1) kcat(min

−1) kcat/Km

(mlmg−1min−1)

XlnB Beechwoodxylan 1.66 193.27 5.56106 3.53106

Wheatarabinoxylan 6.67 626.55 1.90107 2.85106

Oatspeltxylan 7.45 151.50 4.59106 6.16105

XlnC Beechwoodxylan 4.23 435.82 1.69107 3,99106

Wheatarabinoxylan 10.27 934.03 1.108 1.07107

(7)

Fig.4. Saccharificationassaysofalkali-pretreatedsugarcanebagasse.(A)Glucoseand(B)xylosereleaseusingMultifect®CLasthecellulasesource.(C)Glucoseand(D)xylose

releaseusingAccellerase®1500asthecellulasesource.

3.3. Saccharificationexperiments

Alkali-pretreatedsugarcanebagassewashydrolyzedby

com-mercialcocktails(Multifect® CLand Accellerase® 1500)withor

withoutsupplementationbyXlnBand/orXlnC(Fig.4).

Concerningsugarcane bagasse saccharificationbyMultifect®

CL,ahigherreleaseofglucose(6.94g/l)wasachievedwhenthe

commercialcocktailwassupplementedwithbothXlnBandXlnC.

Xylanases are not able to produce glucose directly but these

enzymescouldstimulate cellulose hydrolysis since theyacton

thehemicellulosefractionandfacilitatetheaccessofcellulolytic

enzymestocellulose[36,37].Multifect®CLwithout

supplemen-tation and withboth XlnB and XlnC resulted in similarxylose

release(3.36and 3.37g/l,respectively).Therefore thexylanases

didnotaffectthereleaseofxylosefromoligosaccharidesbythe

␤-xylosidasepresentinthecommercialcocktails,butlikelymainly

affectedthexylandepolymerization.

Whensugarcanebagassesaccharificationwasperformedusing

Accellerase® 1500,thesupplemented mixtures alsoresulted in

higherglucoserelease.Accellerase®1500withoutsupplementation

released6.66g/lofthissugar,whileAccellerase®1500withXlnC

released8.3g/lofglucose.SupplementationwithXlnCalso

pro-motedthebestreleaseofxylose(4.54g/l).Theseresultsshowthat

XlnC(GH11)hasabetterpotentialforsugarcanebagasse

hydroly-siswhenusedasasupplementfortheAccellerase®1500.Indeed,

GH11xylanaseshaveforalongtimebeenusedas

biotechnologi-caltoolsinvariousindustrialapplicationsduetotheirinteresting

properties suchas highsubstrate selectivity and high catalytic

efficiency,smallsize(around20kDa)andvarietyofpHand

tem-perature optimum [11]. The saccharification assays performed

usingAccellerase®1500resultedinhigherreleaseofglucoseand

xylosethanthoseperformedusingMultifect® CL.Thisindicates

thatAccellerase® 1500leadstohighersugarreleasefrom

alkali-pretreatedsugarcanebagasse,withorwithoutsupplementation.

Table3

Totalreducingsugars(theresultsaremeanvalues±SDofthreemeasurements) andpercentageofglucanandxylanconversionsafter72hofsugarcanebagasse saccharificationbythedifferentenzymemixtures.

EnzymaticMixture ReducingSugars±SD SaccharificationYield −Conversion (␮mol/ml) Glucan(%) Xylan(%) MultifectCL 68.90±0.03 14.03 14.45 MultifectCL+XlnB 68.36±0.05 14.38 12.94 MultifectCL+XlnC 71.84±0.08 14.73 12.73 MultifectCL+XlnB+XlnC 72.30±0.12 16.25 14.45 Accellerase 74.93±0.06 15.55 16.82 Accellerase+XlnB 79.19±0.05 17.53 17.25 Accellerase+XlnC 80.33±0.03 19.40 19.63 Accellerase+XlnB+XlnC 69.61±0.01 18.00 17.04

Totalreducingsugarsweremeasuredafter72hof

saccharifi-cationexperiments(Table3).Theseresultsconfirmedthatwhen

Multifect®CLwasusedforsugarcanebagassehydrolysis,thebest

yieldwasachievedbysupplementationwithbothXlnBandXlnC

and that for Accellerase® 1500 the maximal release of sugars

occurredwhenitwassupplementedwithXlnC.

Complementing crude enzyme extracts shows significant

promisesinceitcanresultinsynergisticeffectsthatimprovethe

efficiency of biomass saccharification [38]. The saccharification

yieldsinourexperimentswerelowerthan20%whichcanbe

asso-ciatedwiththehighsolidconcentrationusedfortheexperiments

andalsotothemildconditionofalkalipretreatment.Althoughhigh

solidconcentrationisknowntodecreaseconversionrates,itcan

reducetheamountofwaterintheprocessandgenerateamore

concentratedproduct,whichcanresultinadecreaseinprocess

costs[39].Moreover,themildconditionsareimportanttoreduce

inhibitorformationand environmentalimpacts buttheycanbe

(8)

4. Conclusion

TwoxylanasesfromA.nidulansexpressedinP.pastoris,XlnB

(GH10)andXlnC(GH11),werestudiedandtheirabilitytodegrade

differentxylanswasdemonstrated.Theenzymeswerestablein

a wide pH range and reasonable temperatures and were able

toact synergisticallywithenzymes present in commercial

cel-lulase cocktails. They also demonstrated satisfactory results as

supplementsofcommercialenzymecocktailsforsaccharification

ofalkali-pretreatedsugarcanebagasse.Therefore,XlnBandXlnC

havea great potentialfor biotechnologicalconversions,as

sup-plementsofcommercialcocktailsforbiomasssaccharificationin

secondgenerationethanolproductionprocesses.

Conflictofinterest

Theauthorsdeclarenofinancialorcommercialconflictof

inter-est.

Acknowledgements

WeacknowledgetheBrazilianinstitutionsCAPESforthe

schol-arshipgrantedtothefirstandsecondauthorsandFAPEMIGand

CNPqfortheresourcesprovidedtocompletethisexperiment

AppendixA. Supplementarydata

Supplementarydataassociatedwiththisarticlecanbefound,

intheonlineversion,athttp://dx.doi.org/10.1016/j.ijbiomac.2016.

05.065. References

[1]H.V.Lee,S.B.A.Hamid,S.K.Zain,Conversionoflignocellulosicbiomassto nanocellulose:structureandchemicalprocess,Sci.WorldJ.(2014),http://dx. doi.org/10.1155/2014/631013.

[2]J.vandenBrink,R.P.deVries,Fungalenzymesetsforplantpolysaccharide degradation,Appl.Microbiol.Biotechnol.91(2011)1477–1492.

[3]G.P.Maitan-Alfenas,E.M.Visser,V.M.Guimarães,Enzymatichydrolysisof lignocellulosicbiomass:convertingfoodwasteinvaluableproducts,Curr. Opin.FoodSci.1(2015)44–49.

[4]J.S.VanDyk,B.I.Pletschke,Areviewoflignocellulosebioconversionusing enzymatichydrolysisandsynergisticcooperationbetweenenzymes−factors affectingenzymes,conversionandsynergy,Biotechnol.Adv.30(2012) 1458–1480.

[5]R.P.deVries,J.Visser,Aspergillusenzymesinvolvedindegradationofplant cellwallpolysaccharides,Microbiol.Mol.Biol.Rev.65(4)(2001)497–522.

[6]D.Dodd,I.K.O.Cann,Enzymaticdeconstructionofxylanforbiofuel production,Glob.ChangeBiol.Bioenergy18(2009)2–17.

[7]M.L.Polizeli,A.C.Rizzatti,R.Monti,H.F.Terenzi,etal.,Xylanasesfromfungi: propertiesandindustrialapplications,Appl.Microbiol.Biotechnol67(2005) 577–591.

[8]P.Biely,M.Vrsanska,M.Tenkanen,D.Kluepfel,Endo-beta-1,4-xylanase families:differencesincatalyticproperties,J.Biotechnol.57(1997)151–166.

[9]F.Motta,C.Andrade,M.Santana,Areviewofxylanaseproductionbythe fermentationofxylan:classification,characterizationandapplications,in: A.K.Chandel,S.S.Silva(Eds.),SustainableDegradationofLignocellulosic Biomass−TechniquesApplicationsandCommercialization,InTech,2013,pp. 251–275.

[10]A.Pollet,J.A.Delcour,C.M.Courtin,Structuraldeterminantsofthesubstrate specificitiesofxylanasesfromdifferentglycosidehydrolasefamilies,Crit.Rev. Biotechnol30(2010)176–191.

[11]G.Paes,J.G.Berrin,J.Beaugrand,GH11xylanases:

structure/function/propertiesrelationshipsandapplications,Biotechnol.Adv. 30(2012)564–592.

[12]H.Shi,W.Zhang,X.Li,Y.Huang,etal.,Anovelhighlythermostablexylanase stimulatedbyCa2+fromThermotogathermarum:cloning,expressionand characterization,Biotechnol.Biofuels6(2013)26.

[13]K.Li,P.Azadi,R.Collins,J.Tolan,etal.,Relationshipsbetweenactivitiesof xylanasesandxylanstructures,EnzymeMicrob.Technol.27(2000)89–94.

[14]Z.Taibi,B.Saoudi,M.Boudelaa,H.Trigui,etal.,Purificationandbiochemical characterizationofahighlythermostablexylanasefromActinomadurasp: strainCpt20isolatedfrompoultrycompost,Appl.Biochem.Biotech.166 (2012)663–679.

[15]Z.Qiu,P.Shi,H.Luo,Y.Bai,etal.,AxylanasewithbroadpHandtemperature adaptabilityfromStreptomycesmegasporusDSM41476,anditspotential applicationinbrewingindustry,EnzymeMicrob.Technol.46(2010)506–512.

[16]R.Daly,M.T.Hearn,ExpressionofheterologousproteinsinPichiapastoris:a usefulexperimentaltoolinproteinengineeringandproduction,J.Mol. Recognit.18(2005)119–138.

[17]S.Ahmed,S.Riaz,A.Jamil,Molecularcloningoffungalxylanases:an overview,Appl.Microbiol.Biotechnol.84(2009)19–35.

[18]A.Mellitzer,R.Weis,A.Glieder,K.Flicker,Expressionoflignocellulolytic enzymesinPichiapastoris,Microb.CellFact11(2012)61–71.

[19]B.Tolner,L.Smith,R.H.Begent,K.A.Chester,Productionofrecombinant proteininPichiapastorisbyfermentation,Nat.Protoc.1(2006)1006–1021.

[20]M.T.Fernández-Espinar,F.Pi ˜naga,J.deGraaff,J.Visser,etal.,Constructionof anAspergillusnidulansmulticopytransformantforthexlnBgeneanditsuseto purifytheminorX24xylanase,Appl.Microbiol.Biotechnol.45(1996)

338–341.

[21]M.T.Fernández-Espinar,F.Pi ˜naga,J.deGraaff,J.Visser,etal.,Purification, characterizationandregulationofthesynthesisofanAspergillusnidulans acidicxylanase,Appl.Microbiol.Biotechnol.42(1994)555–562.

[22]M.T.Fernández-Espinar,D.Ramón,F.Pi ˜naga,S.Vallés,Xylanaseproduction byAspergillusnidulans,FEMSMicrobiol.Lett.91(1992)91–96.

[23]S.Bauer,P.Vasu,S.Persson,A.J.Mort,C.R.Somerville,Developmentand applicationofasuiteofpolysaccharide-degradingenzymesforanalyzing plantcellwalls,Proc.Natl.Acad.Sci.U.S.A.103(2006)11417–11422.

[24]S.Bauer,P.Vasu,A.J.Mort,C.R.Somerville,Cloning,expression,and characterizationofanoligoxyloglucanreducingend-specific xyloglucanobiohydrolasefromAspergillusnidulans,Carbohyd.Res.340 (2005)2590–2597.

[25]M.M.Bradford,Rapidandsensitivemethodforquantitationofmicrogram quantitiesofproteinutilizingprincipleofprotein-dyebinding,Anal.Biochem. 72(1976)248–254.

[26]G.L.Miller,Useofdinitrosalicylicacidreagentfordeterminationofreducing sugar,Anal.Chem.31(1959)426–428.

[27]U.K.Laemmli,Cleavageofstructuralproteinsduringassemblyofheadof bacteriophage-T4,Nature227(5259)(1970)680–685.

[28]T.K.Ghose,Measurementofcellulaseactivities,PureAppl.Chem.59(1987) 257–268.

[29]D.Chantasingh,K.Pootanakit,V.Champreda,P.Kanokratana,L.Eurwilaichitr, Cloning,expression,andcharacterizationofaxylanase10fromAspergillus terreus(BCC129)inPichiapastoris,ProteinExpressPurif.46(2006)143–149.

[30]G.M.Zhang,J.Huang,G.R.Huang,L.X.Ma,X.E.Zhang,Molecularcloningand heterologousexpressionofanewxylanasegenefromPlectosphaerella cucumerina,Appl.Microbiol.Biotechnol.74(2007)339–346.

[31]L.Mao,P.Meng,C.Zhou,L.Ma,etal.,Molecularcloningandheterologous expressionofanacidstablexylanasegenefromAlternariasp.HB186,WorldJ. Microbiol.Biotechol.28(2012)777–784.

[32]L.Liu,X.Sun,P.Yan,L.Wang,H.Chen,Non-Structuredamino-acidimpacton GH11differsfromGH10xylanase,PLoSOne7(2012)1–6.

[33]M.A.S.Correia,K.Mazumder,J.L.A.Brás,S.J.Firbank,etal.,Structureand functionofanarabinoxylan-specificxylanase,J.Biol.Chem.286(2011) 22510–22520.

[34]G.P.Maitan-Alfenas,L.G.A.Lage,M.N.deAlmeida,E.M.Visser,etal.,Hydrolysis ofsoybeanisoflavonesbyDebaryomyceshanseniiUFV-1immobilisedcellsand freeb-glucosidase,FoodChem.146(2014)429–436.

[35]R.Gama,J.S.vanDyk,B.I.Pletschke,Optimisationofenzymatichydrolysisof applepomaceforproductionofbiofuelandbiorefinerychemicalsusing commercialenzymes,ThreeBiotech.5(2015)1075–1087.

[36]J.Hu,V.Arantes,J.Saddler,Theenhancementofenzymatichydrolysisof lignocellulosicsubstratesbytheadditionofaccessoryenzymessuchas xylanase:isitanadditiveorsynergisticeffect?Biotechnol.Biofuels4(2011) 36.

[37]A.Várnai,L.Huikko,J.Pere,M.Siika-aho,L.Viikari,Synergisticactionof xylanaseandmannanaseimprovesthetotalhydrolysisofsoftwood, Bioresour.Technol.102(2011)9096–9104.

[38]E.M.Visser,D.L.Falkoski,M.N.deAlmeida,G.P.Maitan-Alfenas,V.M. Guimarães,ProductionandapplicationofanenzymeblendfromChrysoporthe cubensisandPenicilliumpinophilumwithpotentialforhydrolysisofsugarcane bagasse,Bioresour.Technol.144(2013)587–594.

[39]D.B.Hodge,M.N.Karim,D.J.Schell,J.D.McMillan,Solubeandinsolublesolids contribuitionstohigh-solidsenzymatichydrolysisoflignocellulose, Bioresour.Technol.99(2008)8940–8948.

[40]E.C.Bensah,M.Mensah,Chemicalpretreatmentmethodsfortheproduction ofcellulosicethanol:technologiesandinnovations,Int.J.Chem.Eng.(2013) 1–21.

Referências

Documentos relacionados

With the present study, we intended to assess the magnitude of future climate change, according to the available climate change scenarios, focusing on the existing Portuguese

In the present study, an additive effect in the antifeedant activity was recorded in the PONNEEM treatment (combination of neem and pungam oils), which was

After searching the main databases and using filters, the analysis was developed from the information of an article that described the application of the LCA

Precisamos da Arte para encontrar e exprimir o sentido mais profundo da nossa existência, mesmo quando os resultados dessa busca não levam ao sentido mais nobre nem

Characterization of an Aspergillus nidulans mutant with abnormal distribution of nuclei in hyphae, metulae, phialides and conidia. A Pcl-like cyclin of Aspergillus

Neste contexto, novos desafios se colocam às instituições de ensino superior: é a democratização do Conhecimento, cuja única üa de acesso é a educação, com

Relativamente ao grupo C - Ginástica Geriátrica, de acordo com a Tabela 20 que não se verificam resultados significativos ao nível das diferenças entre fase final e

Com este tipo de ferramentas é possível ir até um pouco mais longe do que com as formulações clássicas, pois permitem analisar o efeito do estrangulamento, no