• Nenhum resultado encontrado

The variant selection in the from austenite to martensite in samples of maraging350 steel art hfgabreu

N/A
N/A
Protected

Academic year: 2018

Share "The variant selection in the from austenite to martensite in samples of maraging350 steel art hfgabreu"

Copied!
5
0
0

Texto

(1)

Availableonlineatwww.sciencedirect.com

w w w . j m r t . c o m . b r

Original

Article

The

variant

selection

in

the

transformation

from

austenite

to

martensite

in

samples

of

maraging-350

steel

Neuman

Fontenele

Viana

,

Cristiana

dos

Santos

Nunes,

Hamilton

Ferreira

Gomes

de

Abreu

UniversidadeFederaldoCeará,Fortaleza,CE,Brazil

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received19February2013 Accepted25March2013 Availableonline17October2013

Keywords:

Maragingsteel

Martensitetransformation Variantselection

a

b

s

t

r

a

c

t

Experimentshave been conducted to study the variant selection phenomenon in the transformationfromaustenitetomartensiteinmaraging-350steel.Thetransformationof austenitetomartensiteinmaragingsteelsoccursattemperaturesbelow300◦Cdepending onthealloychemicalcomposition.Thetransformationtomartensiteinthesesteelsoccurs regardlessofthecoolingrate.Inthesesteels,therevertedaustenitepresentsthesame crys-tallographictextureofthemotheraustenite.Samplesofmaraging-350wereaustenitizedat 860◦Cinsideafurnaceattachedtoatensiontestmachineandthencooledinthefurnace untilthetemperatureof600◦Cand400C.Atthesetemperaturessamplesweredeformedby compressionwith10%reductioninheight.Afterdeformationtheappliedforcewasremoved andsampleswerecooledtoroomtemperatureinair.Asecondgroupofsampleswas sub-jectedtothesameaustenitizationandcooleduntil300◦Cwhenitwasappliedacompressive stresswithmagnitudebelowtheyieldstrength.Withtheforceapplied,thesampleswere aircooledtoroomtemperature.EBSDanalysiswasperformedincross-sectionofsamples todeterminetheinfluenceofplasticdeformationbeforethetransformationandalsothe influenceofastressintheelasticregimeintheselectionofvariantsofmartensite.Measured polefigureswerecomparedwithcalculatedonesusingthephenomenologicalmartensite transformationconceptassociatedwithPatel–Cohenmodel.

©2013BrazilianMetallurgical,MaterialsandMiningAssociation.PublishedbyElsevier EditoraLtda.

1.

Introduction

Maragingsteelsbelongtoafamilyofcarbonfreeiron–nickel alloyswithadditions ofcobalt, molybdenum,titanium and aluminum.Thetermmaragingisderivedfromthe strengthen-ingmechanism.Marfrommartensite+agingmeansthatthe

Correspondingauthor.

E-mail:neumanfv@gmail.com(N.F.Viana).

alloytransformstomartensitewithsubsequentage harden-ing.Thisfamilyofsteelsfindsimportantapplicationswhere ultra-highstrengthisrequired,alongwithgooddimensional stabilityduringheattreatment[1].

Thetransformationofaustenitetomartensitein marag-ing steelsoccurs regardlessofthecoolingrate. TheAs, Af,

MsandMftemperaturesweremeasuredfortheMAR350cold

2238-7854 ©2013BrazilianMetallurgical,MaterialsandMiningAssociation.PublishedbyElsevierEditoraLtda.

http://dx.doi.org/10.1016/j.jmrt.2013.03.017

Este é um artigo Open Access sob a licença de CC BY-NC-ND

(2)

(111) Cube texture

ϕ1

φ

40 50 60 70 80 90 100 2θ (º)

110 650˚C

600˚C

500˚C

480˚C

450˚C

α

α γ α γ

Fig.1–(a)ϕ2=45◦odfsections;(b)X-raydiffractogramsforthemartensitephaseofsamplesagedat450◦C,480◦C,500◦C

and650◦C.

deformed80%usingthermo-magneticanalysis.The temper-atures were found to be 690◦C, 800C, 175C and 130C,

respectively[1].

Nakadaetal.havestudiedthe reversionofaustenite in a martensitic stainless steel and concluded that most of revertedaustenitehadthesame orientationastheoriginal austenitematrixbeforemartensitictransformation.Theyalso suggestedthatrevertedausteniteretainedaKurdjmov–Sachs relationshiptomartensite[2].

Thetheoryconcernedwithmartensitetransformationis wellestablished.Thecrystallographyofeachplateof martens-itecanbedescribedintermsofamathematicallyconnected setconsistingofthehabitplane,orientationrelationshipwith theaustenite,andtheshapedeformation[3–7].

ThePatelandCohenmodelforpredictingthevariant selec-tion phenomenon isbased in the energyof appliedstress duringtransformation.Theinteractionenergythatprovides themechanicaldrivingforce fortransformationisgivenby Eq.(1)[8]:

U=N+s (1)

whereNisthestresscomponentnormaltothehabitplane, istheshearstressresolvedonthehabitplaneinthedirection ofshearan,andsarerespectivelynormalandshearstrains associatedwithtransformation[3].Thetotalfreeenergy avail-ablefortransformationisthesumofchemicalandmechanical components,accordingtoEq.(2);thelatteronebeingzeroin theabsenceofanappliedstressduringtransformation[4]:

G=GCHEM+GMECH (2)

whereGMECHU. It would bereasonable to assume that thereisstrongvariantselectionwhentheratioofGMECH/G

islarge[4].

Inthiswork,samplesofmaraging350wereaustenitized at860◦Cinsideafurnaceattachedtoatensiontestmachine

andthencooledinthefurnaceuntilthetemperatureof600◦C

and400◦C.Atthistemperaturethesamplesweredeformed

bycompression withreductionsinheightbelow10%.After deformationtheforcewasremovedandsampleswerecooled toroomtemperature.Asecond groupofsampleswas sub-jectedtothesameaustenitizationandcooledto300◦Cwhen

it was appliedacompressive stress withmagnitudebelow theyieldstrength.Withtheforceapplied,thesampleswere air cooled to room temperature. Pole figures obtained by EBSDwerecomparedwithcalculatedpolefigures basedon thephenomenologicalmartensitetransformation crystallog-raphy(PMTC)associatedtothePatel–Cohenmodel.

2.

Experimental

SamplesofforgedMAR350steelwiththecomposition19.77 Ni,10.74 Co, 4.70 Mo,1.4 Ti,0.10 Al, 0.0073C and balance ofFewereaustenitizedat860◦Cfor1handcooledinsidea

furnaceassembledtoaUniversaltestingmachine.Whenthe temperaturereached600◦Cand400Csampleswerepressed

resultingina10%ofplasticdeformation.Anothersamplewas cooledto300◦Cwhenacompressivestressof200MPabelow

theyieldingofMar350atthistemperature–wasappliedand keptuntiltheendoftransformation.Tofindtheorientation ofthepreviousaustenite,sampleswereagedat550◦Cfor1h

toprecipitaterevertedaustenite.

The EBSD study was performed in an Oxford Channel 5-EBSDsystemattachedtoaSEMPhilipsXL-30.Sample prepa-rationsequencewasapre-grindto600SiCandpolishto3-␮m diamond.Thefinalpolishingwasdoneusingacolloidalsilica suspensionofparticlesizeof0.05␮mduringlongperiodsof time.X-raydiffractionwasperformedinaPhilips diffractome-termodelX’PertProusingCoK␣radiationwithanattached monochromator.

To reproduce the phenomenological theory of mar-tensite transformation crystallography the software crys-talhabitpoly.f.Detailsofuseofthissoftwareareavailablein Ref.[9].

3.

Results

Thefirst taskofthis work wastoassure that thereverted andtheparentaustenitepresentedthesamecrystallographic texture. Fig. 1a shows ϕ2=45◦ odf (orientation distribution functions)sectionsforthemartensitephaseofsamplesaged at450◦C,480C,500C and650C.Comparing odf’s,it can

(3)

conditionsareacubecomponent(001)[100]and the(111) fibermoreintensein{111}112.Samplesagedat500◦Cand

650◦Cshowspeaksofrevertedausteniteonthediffractogram

presentedinFig. 1band no changein the crystallographic textureofthemartensitephase.

Fig.2showsEBSDmapsformartensiteandaustenitefor asampleofmaragingagedfor1hat550◦Candcooledinair

withoutstressorpriordeformationbeforemartensite trans-formation.Thecolorofeachpointisassociatedtothelocal orientation,asshownintheorientationstandardtriangle.The selectedgrainforstudyistheoneinblueinthecentralpart ofFig.2b.

Theorientationofausteniteintheselectedgrainwas deter-minedbytheEBSDChannel5softwareandisrepresentedby the setofEuler angles– ϕ1=334.3◦, =47.9◦ and ϕ2=60.3◦. Toperformthecalculationoforientationofthemartensite resulting from the transformation, a complete set of crys-tallographicdataisnecessary. Unfortunately,such datafor maragingsteelisnotavailable.Adata thatcorresponds to thetraditionaltwinned{259}␥transformationfoundinhigh

carbonsteels,Fe–NiandFe–Ni–Cwillbeused[10–12]. The choice of lattice invariant shear (LIS) was the (112)[111]␣ twinning system inthe bcc phase, that

corre-spondsto(111)[101]␥inthefccphase.

Thefollowingdatawasobtained: MagnitudeofLIS‘g’=0.272602.

Magnitudeoftheshapestrain‘m’=0.219957.

Habitplane:

(−0.4167810.5886170.694388)␣

or

(0.1850640.594242−0.782705)␥

Shapestraindirection:

[0.628457−0.4784560.613288]␣

or

[0.2095360.6728230.709509]␥

Orientationrelationship:

[100]␥=[0.7239850.6777400.128506]␣

[010]␥=[−0.018574−0.1670690.985770]␣

[001]␥=[0.689565−0.716070−0.108367]␣

Fig. 3a shows (100) calculated pole figure for martens-ite using the phenomenological martensite transformation crystallographytheoryandassumingthatall24variantsare present,i.e.,novariantselectionisacting.Itwascompared withmeasured(100)bccpolefigureforthesameregionand ispresentedinFig.3b.Thereisaverygoodmatchbetween cal-culatedandmeasuredpolefigures.Theseresultpointstothe factthatrevertedandparentaustenitehavethesame crys-tallographictexture.Itisalsoevidentthatthereisnovariant selectioninthistransformation.

Fig.4showsthecontrastmapofacross-sectionalareaof thespecimendeformed10%atitsheightinacompressiontest performedat400◦C.Thecirclemarkedinthefigureindicates

theaustenitegrainusedtostudythecrystallographyofthe transformation.

Fig.5compares(100)calculatedpolefigurein(a)and(b) withonemeasuredbyEBSDinonegrainthatbelongs toa sampledeformed10% inits heightbythe application ofa compressiveforceat400◦C,i.e.,beforemartensite

transfor-mation.InFig.5aitwasassumedthattherewasnovariant selection. In Fig. 5b, it was assumed that some vestige of

= 100 µm,: Map4,: Step = 2µm,: Grid 256x192

a

b

= 100 µm

111

101 01

c

Fig.2–(a)EBSDmapformartensite;(b)EBSDmapfor austenite;(c)standardtriangle.(Forinterpretationofcolor inthetext,thereaderisreferredtothewebversionofthe article.)

(4)

{100} Y0 {100} Y0

X0 X0

a

b

Fig.3–Calculated(a)andmeasured(b)(100)polefigures forbccphaseinareashowninFig.2c.

comparison with the pole figure calculated assuming the modelofPatel–Cohenonerealizesthatvariantsnotpredicted bythemodelappearedaswellasvariantspredictedbythe modelarenotpresent.Theprobablereasonforthedivergence isthatafterwithdrawing theforcethatmadeplastic defor-mation inthe sample,it was placedinairfor coolingand duringcoolingthermalstressesaroseinfluencingthevariant selectionprocess.

Forthesampledeformedat600◦Cthesamephenomenon

happened. All variants predicted by the PMTC assuming 24variantsarepresentinFig.6c.Somevariantswithpositive mechanicalenergypredictedbythePatel–Cohenmodelare presentandsomenot.Therearealsovariantsnotpredicted bythemodelthatprecipitated.

= 5 µm: Map4: Step = 0,2 µm: Grid = 5 µm: BC+GB: Step = 0,2 µm: Grid 126x77

Fig.4–Contrastmapofthesampledeformedat400◦Candat600C.

{100} Y0 {100} Y0 {100} Y0

XC XC X0

Fig.5–(100)polefiguresforasampledeformedat400◦Cbeforetransformation:(a)calculated24variants;(b)calculated 9variants;(c)measured.

{100} Y0 {100} {100}

XC XC XC

Y0

Y0

(5)

{100} Y0 {100} {100}

X0 XC X0

Y0 Y0

Fig.7–(100)polefiguresforasamplewithelasticappliedstressduringtransformation:(a)calculated24variants; (b)calculated12variants;(c)measured.

Finallythelastsamplewasnotplasticallydeformedbefore martensitictransformationisshown inFig.7. Thissample showedaverygoodmatchbetweencalculatedpolefigureand measuredpolefigure.ThePatelandCohenmodelwas devel-opedtoanalyzetheinfluenceofstressduringtransformation. Thissamplewasnotsubjecttoanyplasticdeformationbefore martensitictransformationonlyelasticcompressivestressat thetransformationtemperature.

4.

Summary

Thephenomenologicaltheoryofmartensitecrystallography (PMTC)showedtobeveryaccuratetosimulatetransformation textureinmaraging-350steel.ThePatelandCohencriterion was very precise for predicting variant selection in sam-pleswheretransformationtookplaceundertheactionofan externalstress.Samplesplasticallydeformedintemperatures aboveMspresentedavariantselectiondifferentthanthe pre-dictedbythemodel.

Conflicts

of

interest

Theauthorsdeclarenoconflictsofinterest.

Acknowledgements

The authors are grateful to the support from CNPq (National CouncilforScientific and Technological Develop-ment)projects304503/2011-8and475825/2011-0.

r

e

f

e

r

e

n

c

e

s

[1]TavaresSSM,AbreuHFG,NetoJM,daSilvaMR,PopaI.A thermomagneticstudyofthemartensite–austenitephase transitioninthemaraging350steel.JAlloysCompd 2003;358:152–6.

[2]NakadaN,TsuchiyamaT,TakakiS,HashizumeS.Variant selectionofreversedausteniteinlathmartensite.ISIJInt 2007;47:1527–32.

[3]KunduS,BhadeshiaHKDK.Crystallographictextureand interveningtransformations.ScrMater2007;57: 869–72.

[4]KunduS,BhadeshiaHKDK.Transformationtexturein deformedstainlesssteel.ScrMater2006;55:

779–81.

[5]BowlesJS,MacKenzieJK.Thecrystallographyofmartensite transformations.ActaMetall1954;2:129–37.

[6]MacKenzieJK,BowlesJS.Thecrystallographyofmartensite transformationsII.ActaMetall1954;2:138–47.

[7]BhadeshiaHKDH.Geometryofcrystals.2nded.London: InstituteofMaterials;2001.

[8]PatelJR,CohenM.Criterionfortheactionofappliedstressin themartensitictransformation.ActaMater1953;1:

531–8.

[9]KunduS.UniversityofCambridge;2007.Availablefrom: www.msm.cam.ac.uk/phasetrans/[PhDthesis].

[10]BowdenHG,KellyPM.Thecrystallographyofthepressure inducedphasetransformationsinironalloys.ActaMetall 1967;15:1489–500.

[11]KellyPM.ISISpecialRep1964;86:146. [12]KellyPM.Themartensitetransformationin

Imagem

Fig. 1 – (a) ϕ2 = 45 ◦ odf sections; (b) X-ray diffractograms for the martensite phase of samples aged at 450 ◦ C, 480 ◦ C, 500 ◦ C and 650 ◦ C.
Fig. 2 shows EBSD maps for martensite and austenite for a sample of maraging aged for 1 h at 550 ◦ C and cooled in air without stress or prior deformation before martensite  trans-formation
Fig. 4 – Contrast map of the sample deformed at 400 ◦ C and at 600 ◦ C.
Fig. 7 – (1 0 0) pole figures for a sample with elastic applied stress during transformation: (a) calculated 24 variants;

Referências

Documentos relacionados

Desta forma, pôde-se concluir que a avaliação do uso aplicativo ‘FISIOSPITAL’ por profissionais da APS do município de Tauá nas categorias avaliadas deste estudo que

O paciente evoluiu no pós-operatório imediato com progressão de doença em topografia do tumor primário (figura1), sendo encaminhado ao Oncobeda em janeiro de 2017

Samples without SiC shows a regular arrangement of bainite + martensite, however SIC containing samples exhibit larger and coarser bainite grains growing from the ferritic

Neste trabalho o objetivo central foi a ampliação e adequação do procedimento e programa computacional baseado no programa comercial MSC.PATRAN, para a geração automática de modelos

Ousasse apontar algumas hipóteses para a solução desse problema público a partir do exposto dos autores usados como base para fundamentação teórica, da análise dos dados

Aprovado, e que talvez se repita, seja dessa forma ou com outra roupagem em algum recanto desse país, o que será apresentado e relatado no artigo são as ações que foram

The results reveal the presence of shear bands in the deformed samples, an orientation of the orthorhombic martensite phase in relation to the rolling direction, and variations

Therefore, both the additive variance and the deviations of dominance contribute to the estimated gains via selection indexes and for the gains expressed by the progenies