• Nenhum resultado encontrado

Rev. bras. ortop. vol.52 número1

N/A
N/A
Protected

Academic year: 2018

Share "Rev. bras. ortop. vol.52 número1"

Copied!
9
0
0

Texto

(1)

SOCIEDADE BRASILEIRA DE ORTOPEDIA E TRAUMATOLOGIA

w w w . r b o . o r g . b r

Update

Article

Regenerative

potential

of

the

cartilaginous

tissue

in

mesenchymal

stem

cells:

update,

limitations,

and

challenges

Ivana

Beatrice

Mânica

da

Cruz

a,b

,

Antônio

Lourenc¸o

Severo

c

,

Verônica

Farina

Azzolin

b

,

Luiz

Filipe

Machado

Garcia

b

,

André

Kuhn

c

,

Osvandré

Lech

c,∗

aUniversidadeFederaldeSantaMaria(UFSM),CentrodeCiênciasdaSaúde,SantaMaria,RS,Brazil

bUniversidadeFederaldeSantaMaria(UFSM),LaboratóriodeBiogenômica,SantaMaria,RS,Brazil

cUniversidadeFederaldaFronteiraSul(UFFS),HospitalSãoVicentedePaulo,InstitutodeOrtopediaeTraumatologia,PassoFundo,

RS,Brazil

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received12February2016

Accepted15February2016

Availableonline6December2016

Keywords:

Stemcells

Cartilaginoustissue

Regenerativepotential

a

b

s

t

r

a

c

t

Advancesinthe studieswithadultmesenchymalstemcells(MSCs)haveturnedtissue

regenerativetherapyintoapromisingtoolinmanyareasofmedicine.Inorthopedics,oneof

themainchallengeshasbeentheregenerationofcartilagetissue,mainlyindiarthroses.In

theinductionoftheMSCs,inadditiontocytodifferentiation,themicroenvironmental

con-textofthetissuetoberegeneratedandanappropriatespatialarrangementareextremely

importantfactors.Furthermore, itis knownthatMSC differentiationis fundamentally

determined bymechanisms such as cell proliferation (mitosis),biochemical-molecular

interactions,movement,celladhesion,andapoptosis.AlthoughtheuseofMSCsfor

car-tilageregenerationremainsataresearchlevel,thereareimportantquestionstoberesolved

inordertomakethistherapyefficientandsafe.Itisknown,forinstance,thattheexpansion

ofchondrocytesincultivation,neededtoincreasethenumberofcells,couldendup

produc-ingfibrocartilageinsteadofhyalinecartilage.However,thelatestresultsarepromising.In

2014,thefirststageI/IIclinicaltrialtoevaluatetheefficacyandsafetyoftheintra-articular

injectionofMSCsinfemorotibialcartilageregenerationwaspublished,indicatingadecrease

ininjuredareas.Oneissuetobeexploredishowmanymodificationsinthearticulate

inflam-matoryenvironmentcouldinducedifferentiationofMSCsalreadyallocatedinthatregion.

Suchissuearosefromstudiesthatsuggestedthatthesuppressionoftheinflammation

mayincreasetheefficiencyoftissueregeneration.Consideringthecomplexityoftheevents

relatedtothechondrogenesisandcartilagerepair,itcanbeconcludedthattheroadahead

isstilllong,andthatfurtherstudiesareneeded.

©2016PublishedbyElsevierEditoraLtda.onbehalfofSociedadeBrasileiradeOrtopedia

eTraumatologia.ThisisanopenaccessarticleundertheCCBY-NC-NDlicense(http://

creativecommons.org/licenses/by-nc-nd/4.0/).

StudyconductedattheInstituteofOrthopedicsandTraumatologyofPassoFundo,PassoFundo,andattheHealthSciencesCenter,

UniversidadeFederaldeSantaMaria(UFSM),SantaMaria,RS,Brazil.

Correspondingauthor.

E-mails:lech@lech.med.br,ensino@iotrs.com.br(O.Lech).

http://dx.doi.org/10.1016/j.rboe.2016.11.005

2255-4971/©2016PublishedbyElsevierEditoraLtda.onbehalfofSociedadeBrasileiradeOrtopediaeTraumatologia.Thisisanopen

(2)

Potencial

regenerativo

do

tecido

cartilaginoso

por

células-tronco

mesenquimais:

atualizac¸ão,

limitac¸ões

e

desafios

Palavras-chave: Células-tronco

Tecidocartilaginoso

Potencialregenerativo

r

e

s

u

m

o

Osavanc¸osnosestudoscomcélulas-troncomesenquimais(CTMs)adultastornouaterapia

regenerativatecidualumaferramentapromissoraemdiversasáreasdamedicina.Na

orto-pedia,umdosprincipaisdesafiostemsidoaregenerac¸ãodotecidocartilaginoso,sobretudo

emdiartroses.Nainduc¸ãodeCTMs,alémdacitodiferenciac¸ão,ocontexto

microambien-taldotecidoaserregenerado,bemcomoumadisposic¸ãoespacialadequada,sãofatores

deextremaimportância.Alémdisso,sabe-sequeadiferenciac¸ãodasCTMsébasicamente

determinadapormecanismoscomoproliferac¸ãocelular(mitose),interac¸ões

bioquímico-moleculares, movimento, adesão celulare apoptose.Apesar de ousode CTMsparaa

regenerac¸ãodacartilagemestaraindaemâmbitodepesquisa,existemquestões

impor-tantesaseremresolvidasparatornaressaterapêuticaeficazesegura.Sabe-se,porexemplo,

queaexpansãodecondrócitosemcultura,necessáriaparaaumentaronúmerodecélulas,

podeproduzirfibrocartilagem,enãocartilagemhialina.Noentanto,osúltimos

resulta-dossãopromissores.Em2014,foipublicadooprimeiroensaioclínicofaseI/IIparaavaliar

aeficáciaeaseguranc¸adainjec¸ãointra-articulardeCTMsnaregenerac¸ãodecartilagem

femorotibialehouveumadiminuic¸ão dasáreas lesadas.Umaquestãoa serexplorada

éoquantomodificac¸õesnopróprioambienteinflamatórioarticularpoderiaminduzira

diferenciac¸ãodeCTMsjáalocadasnaquelaregião.Talincógnitapartedoprincípiode

estu-dosquesugeremqueasupressãodainflamac¸ãoarticularaumentaria,potencialmente,a

eficiênciadaregenerac¸ãotecidual.Considerandoacomplexidadedoseventosrelacionados

àcondrogêneseeaoreparodacartilagem,conclui-sequeocaminhoaindaélongo,são

necessáriaspesquisascomplementares.

©2016PublicadoporElsevierEditoraLtda.emnomedeSociedadeBrasileirade

OrtopediaeTraumatologia.Este ´eumartigoOpenAccesssobumalicenc¸aCCBY-NC-ND

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

Thehumanbodyfundamentallyoriginatesfromembryonic

stemcells:ectoderm,mesoderm, andendoderm.Itisfrom

thesethreeleafletsthatthe230celltypesfoundinthebody

aredifferentiated.Inadifferentiatedorganism,manytissues

retainadultstemcelllinesthatworkintissuereplacement

andregeneration;themostabundantonesareofmesodermal

origin,themesenchymalstemcells(MSCs).MSCsarefound

invariousplacesinthebody,suchasintheredbonemarrow,

hairfollicles,muscle,umbilicalcord,dentalpulp,adipose

tis-sue,bone,andcartilage,amongothers.1Withtheincreased

knowledgeonadultMSCs,theirclinicalusefortissue

regen-erationhasbecomequiteattractive.However,understanding

andeffectivelyandsafelyhandlingMSCsisstilla

consider-ablechallenge,especiallyintissueswithdifficultregeneration,

suchascartilage.

Inthiscontext,thisreviewaimedtoprovideanupdateon

themainprocessesrelatedtomorphodifferentiationandits

potentialrole intheregenerationofcartilage tissue.

There-fore,theinformationcontainedhereinisbasedonscientific

journalarticlesindexedinthedatabasesofPubMed-MEDLINE

andSciELO.

Cartilaginous

tissue

and

challenges

for

regeneration

Instructuralterms,thearticularcartilageisrichin

extracel-lularmatrix,inwhichchondrocytesaredistributed,whether

isolatedorarrangedinclonalgroupsinsmallcellcolonies.2

Chondrocytes areresponsible forsecreting cartilage matrix

components such as collagen, proteoglycans, and

glyco-proteins. Cartilage tissue receives nutrition via capillaries

contained in the perichondrium, a connective tissue that

surroundsthecartilageandhasadultMSCstermed

chondrob-lasts.

Nonetheless, as the cartilages lining the bonesof

mov-ablejointsdonothaveperichondrium,theyreceivenutrition

throughthesynovialfluidpresentinthejointcavities.

Syno-vial fluidis a plasma ultrafiltrate that passes through the

synovialmembrane,whereitreceivesmucopolysaccharides

that contain hyaluronic acid and a small amount of high

molecular weight proteins. Therefore, even with a large

amountofcollagenprotein,thesmallamountofcellular

com-ponentsincartilagetissuehindersitsregenerationcapability

leadingrepetitivejointinjuriestowardatendencytobecome

(3)

Inorder tounderstand the roleof MSCsin adulttissue

regeneration,it is importanttorememberthat the human

organismismadeofcellsthat havedistinctdifferentiation

andfunctions.4 Itshould benoted thattissueregeneration

is not only focused on the induction of undifferentiated

MSCs in a differentiated cell. Each type of tissue has an

extracellular matrix, witha key role in body homeostasis.

Thus,themicroenvironmentalcontext(extracellularmatrix)

ofthetissuebeingregeneratedmustbetakeninto

considera-tion.

Five causal mechanisms are crucial forcell

differentia-tionintissuesandorgans,aswellasthetissueregeneration

processitself,namely:cellproliferation(mitosis),

biochemi-calandmolecularinteractions,movement,celladhesion,and

apoptosis.Asthesemechanismsareofgreatimportancefor

handlingMSCswiththeperspectiveofdeveloping

cartilagi-noustissueregenerationtechniques,theywillbethefocusof

thisreview.

Proliferation

and

cellular

senescence

TounderstandingreaterdepththebiologyofMSCs,itis

neces-sarytounderstandsomeofthemechanismsassociatedwith

thecellcycle.Eukaryoticcellsdividebymitosis,considered

thefinalstageofthecycle,inwhichthetwonewlyborncells

willperformtheirrespectivemetabolicfunctions.

Nonetheless, the mitotic division is not an unlimited

process.Astheydivide,mostspecializedcellslosetheir

proli-ferativecapacity.Somecellsthatwillnolongerdivideremain

constantlyin the gap1phase (G1)of mitosis, which isthe

caseofthevastmajorityofchondrocytes.Newchondrocytes

areformedfromchondroblastsfromtheperichondrium;itis

throughthismechanismthatthecartilagetissueisrenewed,

albeit slowly when compared, for example, withbone

tis-sue.Conversely,somematurespecializedcells undergothe

entire cell cycle until they lose their ability to proliferate,

byaprocesstermedreplicativesenescenceorcellularaging

(Fig.1).

Cellularagingistriggeredbychangesoccurringinthe

ter-minalregionofthechromosome,knownastelomere,which

comprises a single-stranded deoxyribonucleic acid (DNA)

molecule, in contrast with the double-stranded structure

presentintheremainderofthegeneticmaterial.Telomeric

DNA consists of a sequence of six nucleotides – thymine,

thymine, adenine, guanine, guanine, guanine (TTAGGG) –

whichrepeatsthousandsoftimes.Thischromosomalregionis

synthesizedbythereversetranscriptaseenzymetelomerase,

which synthesizes DNA and uses a ribonucleic acid (RNA)

moleculeasascaffold.

In cell division, a small telomere shortening is always

observed.In embryonic cells,the telomere isreconstituted

bytheactionoftelomerase.Inspecializedcells,telomerase

geneissilenced;therefore,whentelomericshorteningoccurs,

telomere reconstitution is not possible. Overthe divisions

(approximately 50–80 mitoses), the telomere becomes too

shortandstartstoinhibitmitosis,thusconstitutingcellular

senescenceorHayflicklimit.

Unlikespecializedcells,inMSCs,thetelomerasegeneis

active;therefore,withinthebody,suchcellsdonotpresent

a sharp cellularaging.However, theMSC proliferation rate

isextremelylowandthusthenumberofthesecellsinbody

tissuesisquitelimited.Thisisanimportantchallengetobe

overcomeinregenerativetherapy.

Somestudieshavesuggestedthattheinductionofinvitro

MSC proliferationcanbedonebyexposuretoreactive

oxy-genspecies(ROS)molecules,suchashydrogenperoxide.The

study byBornes etal.5 showedthatinvitrochondrogenesis

ofMSCsinducedinsheepbonemarrowincreased

prolifera-tionandcelldifferentiation.However,itappearsthat,despite

theincreaseincellgrowth,cellsstarttopresentsignificant

DNAdamage,indicatingchromosomalinstability.6Thestudy

byMachadoetal.6supportstheresultsoftheresearch

con-ducted by Brand et al.,7 suggesting that in vitro exposure

tooxidative stressinducescellularsenescencein

chondro-cytes.

Inturn,the study byMachado etal.6 showed areversal

ofreplicativesenescencemarkersinhumanMSCscollected

throughliposuctionbysupplementingculturemediumwitha

hydroalcoholicguarana(Paulliniacupana)extract.Theguarana

seed,usedfortheproductionoftheextract,isrichincaffeine,

theophylline,theobromine,andcatechins.

AnotherverysurprisingresultwasdescribedbySadeghiet

et al.,8 who investigatedtheeffect ofestrogen

supplemen-tation on chondrogenesis induced in MSCs derived from

adiposetissue.Itwasobservedthatthepresenceofestrogen

hadnegativeeffectsonthechondrogenesisprocessby

inhib-itingtheexpressionofthecollagen2geneandreducingthe

expressionoftheaggrecanproteingene.

Cell

differentiation

All bodycells andtissuesareformedfrom thezygote,ina

highlycontrolledtranscriptionalregulationprocess.In

gen-eral,theDNAoftheeukaryoticgenehasaninitialsequence

of nucleotides known asthe promoter region. Itis in this

regionthat thesignalingmoleculesbind,allow(ornot) the

transcription, and determining the amount of RNA to be

transcribed.Thismodulationisknownasgeneregulation,a

mechanism throughwhicheach cell typeisformedbythe

production of proteins in different shapes and quantities.

Endogenousmolecules,suchastranscriptionfactorsand

hor-mones,candifferentiallyregulategenes.Likewise,molecules

derivedfromthediet,suchasresveratrol(presentingrapes),

inducetheproductionofsirtuins,proteinsthatincreasecell

life.

Underinvitroconditions,theinductionofMSC

differentia-tioninthepresenceofcertainmoleculesisverywellknown.

Notwithstanding,whenMSCsareplacedinaninjuredorgan,

itisnotalwayspossibletoknowwhetherthe

microenviron-mentalconditionswillfavortheinductionofdifferentiation

(even when the inducing agents are co-inserted with the

cells).

Other molecules that regulate the maintenance of the

undifferentiatedstateofMSCs,ensuringtheir

pluripotential-ityandself-renewal,havebeenidentified.Thisisthecaseof

Oct-4,Nanog,andSox-2,whicharefoundbothinhumansand

inmice.9Whenthisproteinisnolongerexpressed,thecellhas

(4)

Epithelial cell

A

B

Chondrocyte

Chondrocyte

Go/G1

G2/M

S phase

Cells (number) Cells (number)

DNA content (fluorescence)

Type 2 collagen

Proteoglycans

Hyaluronic acid

Added component of matrix proteoglycan

Binding protein H2O

Articular cartilage composition DNA content (fluorescence)

Fig.1–Comparisonofthecellcycleofanepithelialcellandofachondrocyte,assessedbyflowcytometry.(A)Inan epithelialtissue,cellsarefoundinphaseG0/G1,S,andG2/M,whileinthecartilagetissuemostchondrocytesareintheG1 phase.Onlychondroblastsfromperichondriumwillpresentacompletecellcycle.(B)Chondrocytes,onceformed,are usuallyclusteredinabouteightcellsthatcontinuouslysecreteanextracellularmatrixcomposedmainlyoftype2collagen, proteoglycans,andhyaluronicacid.

Toinducechondrogenicdifferentiation,MSCsarecultured

without the presence of fetal or adult serum (animal or

human), which is typically used to nourishthe cells, and

uponexposuretogrowthfactorb3.11Thus,thecellsdevelop

a multilayer with a proteoglycan-rich extracellular matrix.

In 10–14-day cultures, cells begin to producetype 2

colla-gen,characteristicofthe articularcartilage.Moreover,they

presentpositivesurfacemarkersforchondrocytesand

typi-calcellgapsvisibleatopticalmicroscopy.Thechondrocytes

remainviableuntilapproximately90daysafterinitiationof

differentiation.12

Chondrogenesis is induced through various inducing

molecules, especially through supplementation of culture

mediumwithTFN-␤3,IGF-1,BMP-2, andBMP-6.

Chondrod-ifferentiationinductionisconfirmedbytheidentificationof

markerssuchastype2collagen,Sox-9,andaggrecan,through

analysisofgeneexpressionusingreal-timequantitative

poly-merasechainreaction(PCR).

Inaddition todifferentialregulationofgeneexpression,

methylationisanepigeneticmodificationthatusuallyoccurs

inthepromoterregionofthegenetobesilenced.This

(5)

Genescanalsobesilencedviatheacetylationprocess,which

preventshistonesfrom becomingrelaxedwhenthe DNAis

exposedtotranscriptionalregulation.13

Adhesion

and

cell

movement,

and

production

of

scaffolds

Duringembryogenesis,inadditiontodifferentiationprocess,

cellsneedtomigrateorgrowtowardaspecificlocationand

remaintheretoperformtheirroles.Celladhesionand

move-ment,which occur by chemical and spatial signals, are of

vitalimportance forcombining individual cells ina

three-dimensionalformat,suchasinbodytissuesandorgans.

Celladhesionmechanismsarehighlyregulatedduring

tis-sue morphogenesis. Reversible phosphorylation by protein

kinaseC(PKC)isakeyeventincelladhesionandmigration

duringchondrogenesis.14

Adhesionandcellmovementarealsorelatedtothe

archi-tectural formation of tissues and organs. In vitro studies

haveshownthatMSCsrespondtotheirenvironmental

for-mat and thatin vivocells are alsoinduced to differentiate

bythe topographical characteristics ofthe tissue inwhich

they are arranged. Such evidence boosted the field of

tis-sueengineering, whichcombinescellulartherapywithuse

ofbiomaterialscaffolds.Thisareainvolvestheuseof

compat-ibleandbiodegradablematerialsthatactasamatrixforcell

growth.Scaffoldsaresimplemediainwhichcellsare

culti-vatedtocreateatissueinvitro.

Apart from providing mechanical support and spatial

orientation for cell growth and differentiation, the

struc-ture ofthe scaffold must allow the transportof nutrients,

metabolites,growthfactors,andotherimportantregulatory

moleculestothecellsandextracellularmatrix.Scaffoldscan

beproducedfromnaturalorsyntheticmolecules.Among

nat-uralbiomaterials,collagen,hyaluronicacid,hydroxyapatite,

andglycosaminoglycansarenoteworthy.15

Electrospinningproducesscaffolds formedbyfibersthat

canphysicallymimicanaturalextracellularmatrix.This

con-ditioncreatesasuitablemicroenvironmentforcellandtissue

differentiation.Thecreationoffibersofdifferentdiametersby

electrospinningisperformedusingpolymersolutionsapplied

toamagneticfield.Thepolylactic-co-glycolicacid(PLGA)

poly-merhasbeenwidelyusedintheproductionofscaffoldsby

electrospinning, because it isbiodegradable, bioabsorbable,

andbiocompatible.TheuseofPLGA-basedscaffoldshasbeen

approvedinhumans bytheUS FoodandDrug

Administra-tion (FDA).Investigationshaveshown thatthis biomaterial

caninducegrowthindifferentcelltypes,suchasfibroblasts,

osteoblasts,andchondrocytes.16

Anothertechnologyderivedfrom electrospinningis

bio-electrospinning, which uses the processing of cellular

suspensionsthataresubjectedtoahighintensityelectricfield

andinducedtopassthroughasharpneedle,generatingfine

dropletsthatcontaincells.Thus,thescaffoldisbuiltwithcells

alreadyintegrated.Thistechniqueallowsforahomogeneous

distributionofMSCsinthescaffoldandtherefore,agreater

regenerativepotential.15Consideringthelimitedregenerative

capacityofcartilaginoustissue,themixtureofbiomaterials

and stem cells appears to be the most promising option,

althoughfurtherstudiesareneededtoconfirmthe efficacy

andsafetyofthismethod.

Apoptosis

and

inflammation

in

cartilage

degeneration

and

regeneration

Cells have the ability to self-regulate not only the rate

of proliferation and differentiation, but also their deathin

manysituations,fromaneventknownasapoptosisor

pro-grammedcelldeath.Unlikenecrosisandautophagy,apoptosis

is a highly coordinated mechanism and does not cause a

specific inflammatory process.17 However, evidence shows

that chronic inflammation induces disorganization of the

extracellular matrix and apoptosis of chondrocytes, which

consequently leads tocartilage destruction. Thisoccurs in

manydegenerativediseases,suchasrheumatoidarthritisand

osteoarthritis.18

It is known that monocytes/macrophages are essential

componentsoftheinnateimmunesystemandhaveavariety

offunctions.Theycontroltheonsetandresolutionof

inflam-mation byphagocytosis,releaseofinflammatorycytokines,

reactiveoxygenspecies(ROS),andactivationoftheacquired

immune system. Under normal circumstances, monocytes

circulateinthebloodstreamforashortperiodbefore

spon-taneouslyenteringinapoptosis.Thepresenceofstimulatory

factors inhibits the apoptosis of monocytes that

differen-tiate into macrophages, which can live for a long time in

tissues.19,20

Macrophages produce many substances that are

rele-vanttoimmuneresponseandcoordinatetheinflammatory

process (inflammatory cytokines L-1␤, IL-6, TNF␣, and

the anti-inflammatory cytokine IL-10). Furthermore, they

produce factors that are critical in combating

microor-ganisms (such as oxygen metabolites and nitric oxide)

and factors that promote tissue repair (such as fibroblast

growth factor), among others.21 Nowadays, two types of

macrophageactivationintheinflammatoryresponseare

rec-ognized:the“classicalactivation”and“alternativeactivation”

(Fig.2).

Inthisprocess,whenanincreaseintheactivationofM1

macrophagescomparedtoM2macrophagesisobserved,there

willbepoortissuerepairwithcontinueddestructionintissues

withlowregenerativecapacity,suchascartilage.

Inosteoarthritis,theoccurrenceofintra-articular

inflam-mationwithsynovitisindicatesthatsynovialfluidcanbethe

sourceofinflammatorycytokines andproteolyticenzymes.

In synovitis, there isrelease ofproinflammatory cytokines

suchasIL-1␤andTNF␤;thesemoleculeshaveaninhibitory

effectonthetype2collagenandaggrecanproductionby

chon-drocytes.Furthermore,thesecytokinescausethereleaseof

metalloproteinasesandaggrecanasesthatdegradethematrix,

whichresultsinthedestructionofcartilage.Othermolecules,

suchasMIL-1␤andTNF␤,mayalsobeinvolvedinapoptosis

ofchondrocytesbyincreasingthereleaseofnitricoxideand

prostaglandinE2(PGE2).18

Althoughthere are MSCsinjoint tissue,synovial

(6)

Antigen + natural killer cells

Interferon gamma

(IFNγ) Monocytes

Classical pathway Alternative pathway

2

1

3

M1 macrophages M2 macrophages Tissue

regeneration Phagocytosis

Tissue damage

4 IL-10

IL-1B IL-10 TNFa

Fig.2–MacrophagesactivatedbytheclassicalpathwayactasinflammationinducersandarecalledM1.Thesemacrophages producehighlevelsofIL-2andlowlevelsofIL-10.Studieshavealsoshownthattheactivationofmacrophagesis

dependentonthestimulationofinflammatorycytokinesproducedbyhelperlymphocytesorNKcells,inparticulargamma interferon(INF␥).Theactivatedmacrophagesthathavemicrobialandtumoricidalactivityarecharacterizedbysecreting

largeamountsofcytokinesandproinflammatorymediators.Inthisinflammatoryresponse,thesemacrophagesrelease proinflammatorycytokines,suchasIL-1,IL-6,TNF␣,andalsoproducereactiveoxygenspecies(ROS)suchassuperoxide

anionandhydrogenperoxide,aswellasreactiveintermediates,suchasnitricoxide.Shortlyafterphagocytosis,the macrophagesdiebyprogrammedcelldeath,knownasapoptosis.The“alternativeactivation”involvesthestimulationof macrophagesbymoleculessuchastheinterleukinsIL-4andIL-13,whichleadstoanincreaseinIL-10anti-inflammatory cytokinelevelsandinducestissuerepair(anti-inflammatoryresponse).Inthebody,theproinflammatoryimmuneresponse isusuallyfollowedbyananti-inflammatoryimmuneresponse.Thisisimportantfortissuerepairafteramicrobialinfection orphysicalinjury.Theimbalancebetweenthetworesponsescanleadtochronicdiseasessuchasosteoarthritis.

to regenerate cartilage tissue has not been fully

eluci-dated. It is known that the chondrogenesis process is

triggered by factors such as bone morphogenetic proteins

(BMPS) and growth factors such as TGF-␤. These factors

actongenes, suchastranscription factorSRY-box9(Sox9),

whichisessentialforchondrocytedifferentiation.Sox9

con-trolsthetranscriptionofgenesthatsynthesizeextracellular

matrix molecules, such as type 2 collagen and

aggre-can, while alsosuppressing the formation ofhypertrophic

chondrocytes.

Chronicinflammatoryprocessesappeartonegatively

influ-ence thedifferentiation ofMSCsinto chondrocytes. Inthis

case,thecytokineIL1␤andTNF-a␤haveasuppressiveeffect

onchondrogenesis.Thisisbecausethesecytokinesinhibitthe

expressionofthe Sox9genebysuppressingthe expression

oftheTFG-␤molecule(animportantinitiationfactorinthe

differentiationof chondrocytes) and increasingthe

expres-sion of the Smad7 molecule (a chondrogenesis inhibitor).

Theinflammatory cytokineIL-17, which is a key molecule

in chronic inflammation processes, also has the ability to

suppresschondrogenesis.Thismoleculesuppressesthe

phos-phorylation of Sox9 protein and prevents its regenerative

action.22

Therefore,consideringalltheevidenceontheimportant

roleofchronicinflammationinthe regenerativeprocess of

cartilage,itisclearthat,inaninflammatoryenvironmentwith

highlevelsofIL-1␤,TNF␤,andIL-17,MSCsmaynotrespond

adequatelytoregenerativetherapy.Thisisbecausethesecells

can be induced to apoptosis before they differentiate into

chondrocytes.

Clinical

applications

of

stem

cells

in

cartilage

tissue

regeneration

Manypreclinicalandclinicalstudiesinvolvingpotential

car-tilage regeneration with MSCs are conducted for various

diseases,includingosteoarthritis.AlthoughtheuseofMSCs

forcartilageregenerationisstillattheresearchlevel,thereare

importantissuestoberesolvedtomakethisaneffectiveand

safetherapy.

Theimplantationofchondrocytesfromoneregionofthe

bodytotheinjuredregionhasthedisadvantageofrequiring

twosurgicalprocedures.Theneedforgrowingchondrocytes

inculturetoincreasethenumberofcellstobeimplantedis

alsoanothermajorproblem,asthesecellsmaydedifferentiate

andproducefibrocartilageinsteadofhyalinecartilage.23–26

Inanattempttominimizetheseproblems,someauthors

begantoresearchtheeffectofintra-articularMSCinjection

(7)

Eligible patients=22

18 patients allocated to MSCs (IIA- MSC) intra-articular injection

09 allocated to phase 1

03 IIA- MSC low dose

03 IIA- MSC moderate dose

03 IIA- MSC high dose

2 IIA- MSC high dose

03 IIA-CTM high dose

Follow-up: 6 months Follow-up:

6 months Follow-up:

6 months Follow-up:

6 months

09 allocated to phase 1

Fig.3–OverallexperimentaldesignofthestudybyJohnetal.33(2014),whoassessed,inaphaseI/IIclinicaltrialtheeffect

ofintra-articularinjectionontheregenerationofthekneecartilageinpatientswithosteoarthritis.MSCswereobtained fromabdominallipoaspirate,culturedinthelaboratory,andinjectedinthejointafterthreeweeks.Lowdose=1×107;

moderatedose=5×107;highdose=1×108cellsinsaline.Pharmacologicaltherapywasdiscontinued,withtheexceptionof

ketoprofenadministration.

hasmanyadvantages,sinceitwouldavoidsurgeryinmany

cases.27–32Nonetheless,thefirstphaseI/IIclinicaltrialto

eval-uatetheefficacyandsafetyofintra-articularinjectioninknee

articular cartilage regenerationthrough clinical,laboratory,

radiological,arthroscopic,andhistologicalanalyseswasonly

publishedin2014,byJoetal.(Fig.3).33

TheinjectedMSCs wereobtainedbyliposuctionof

sub-cutaneous abdominal fat; the obtained MSCs were tested

for their viability, purity (with evaluation of CD31

mark-ers,CD34,CD45),identity(withevaluationofCD73markers,

CD90),sterility,andlackofcontaminationwithendotoxinsor

mycoplasma.

The procedures for intra-articular injection were

per-formedinthe supinepositionwithspinalanesthesia three

weeksafter liposuction.A standard arthroscopic

examina-tionwasperformedandthekneearticularcartilagelesions

were measured with a calibrated and graduated

arthro-scopicprobe,inaccordancewiththeInternationalCartilage

Repair Society (ICRS)classificationofcartilage lesions.The

MSCsdilutedinsalinewereinjected, withoutdebridement,

synovectomy, or meniscectomy during the procedure. No

serious adverse effects were reported and the quality of

knee condition was assessed by the Western Ontario and

McMasterUniversitiesArthritisIndex(WOMAC),andshowed

significant improvements in patients receiving high

con-centrationofintra-articularMSCs.Thecartilagedefect size

decreased in the medial femoral and tibial condyles, and

alsointhegroupsreceiving highdosesofMSCs.Thus,the

authors concluded that intra-articular injection of 1×108

cellsimprovedthefunctionofosteoarthritickneeandpain,

without causing adverse effects, through the reduction of

cartilagedefectsbyregeneratingtissuesimilartohyaline

car-tilage.

Final

considerations

AlthoughtheresultsofJoetetal.33are encouraging,Kondo

et al.,18 in their review on the subject, pointed out that

the results of additional studies involving multiple

pro-tocols are needed in order to truly prove the efficacy

and safety of this procedure. Furthermore, these latest

authors commented that further investigations are being

conducted, aimingto improve efficiencyofMSC

differenti-ation into chondrocytes byanalyzing the supplementation

of culture media with various regulatory molecules, such

as TGF-␤1–3; BMP-2, -4, -6, -7; FGF-2, and IGF-1, among

others. In addition to these, some compounds such as

dexamethasone and ATP have shown a positive effect on

chondrogenesis.

Another important question concernsthe inflammatory

microenvironmental conditions of the MSC injection site.

Evidence shows that MSCs have immunosuppressive and

anti-inflammatoryeffects.Nonetheless,suppressionofjoint

inflammationcouldpotentiallyincreasetheefficiencyof

tis-sueregeneration.

Inthiscase,whatremainsunclear,requiringfurther

(8)

jointenvironment itself couldinduce thedifferentiation of

MSCsalreadyallocatedintheregion.Theanswertothis

ques-tioncouldleadtothedevelopmentofregenerativetechniques

associatedwith the already well-establishedsurgical

tech-niques, without transplantation of MSCs to other parts of

thebody.However,consideringthecomplexityoftheevents

relatedtochondrogenesisandcartilagerepair,theroadahead

isstilllongandaconsiderablevolumeofadditionalresearch

isneeded.

Conflicts

of

interest

Theauthorsdeclarenoconflictsofinterest.

r

e

f

e

r

e

n

c

e

s

1. BakshD,SongL,TuanRS.Adultmesenchymalstemcells: characterization,differentiation,andapplicationincelland genetherapy.JCellMolMed.2004;8(3):301–16.

2. AmorinB,ValimVS,LemosNE,MoraesJúniorL,SilvaAMP, SilvaMAL,etal.Mesenchymalstemcells–characterization, cultivation,immunologicalproperties,andclinical

applications.RevHCPAFacMedUnivFedRioGddoSul. 2012;32(1):71–81.

3. AlbertsB,BrayD,LewisJ,RaffM,RobertsK,WatsonJD. Molecularbiologyofthecell.3rded.NewYork:Garland Publishing;1994.p.971–84.Theextracellularmatrixof animals.

4. BobisS,JarochaD,MajkaM.Mesenchymalstemcells: characteristicsandclinicalapplications.FoliaHistochem Cytobiol.2006;44(4):215–30.

5. BornesTD,JomhaNM,SierraAM,AdesidaAB.Hypoxic cultureofbonemarrow-derivedmesenchymalstromalstem cellsdifferentiallyenhancesinvitrochondrogenesiswithin cell-seededcollagenandhyaluronicacidporousscaffolds. StemCellResTher.2015;6(84):1–17.

6. MachadoAK,CadonáFC,AzzolinVF,DornellesEB,BarbisanF, RibeiroEE,etal.Guaraná(Paulliniacupana)improvesthe proliferationandoxidativemetabolismofsenescent adipocytestemcellsderivedfromhumanlipoaspirates.Food ResInt.2015;67:426–33.

7. BrandlA,HartmannA,BechmannV,GrafB,NerlichM,Angele P.Oxidativestressinducessenescenceinchondrocytes.J OrthopRes.2011;29(7):1114–20.

8. SadeghiF,EsfandiariE,HashemibeniB,AtefF,SalehiH, ShabaniF.Theeffectofestrogenontheexpressionof cartilage-specificgenesinthechondrogenesisprocessof adipose-derivedstemcells.AdvBiomedRes.2015; 4:43.

9. RoddaDJ,ChewJL,LimLH,LohYH,WangB,NgHH,etal. TranscriptionalregulationofnanogbyOCT4andSOX2.JBiol Chem.2005;280(26):24731–7.

10.LeeJ,KimHK,RhoJY,HanYM,KimJ.ThehumanOCT-4 isoformsdifferintheirabilitytoconferself-renewal.JBiol Chem.2006;281(44):33554–65.

11.MackayAM,BeckSC,MurphyJM,BarryFP,ChichesterCO, PittengerMF.Chondrogenicdifferentiationofcultured humanmesenchymalstemcellsfrommarrow.TissueEng. 1998;4(4):415–28.

12.PittengerMF,MackayAM,BeckSC,JaiswalRK,DouglasR, MoscaJD,etal.Multilineagepotentialofadulthuman mesenchymalstemcells.Science.1999;284(5411): 143–7.

13.TamburiniBA,TylerJK.Localizedhistoneacetylationand deacetylationtriggeredbythehomologousrecombination pathwayofdouble-strandDNArepair.MolCellBiol. 2005;25(12):4903–13.

14.MattaC,MobasheriA.Regulationofchondrogenesisby proteinkinaseC:emergingnewrolesincalciumsignalling. CellSignal.2014;26(5):979–1000.

15.GargT,GoyalAK.Biomaterial-basedscaffolds–currentstatus andfuturedirections.ExpertOpinDrugDeliv.

2014;11(5):767–89.

16.SachlosE,ReisN,AinsleyC,DerbyB,CzernuszkaJT.Novel collagenscaffoldswithpredefinedinternalmorphologymade bysolidfreeformfabrication.Biomaterials.2003;24(8): 1487–97.

17.SorrentinoG,ComelA,MantovaniF,DelSalG.Regulationof mitochondrialapoptosisbyPin1incancerand

neurodegeneration.Mitochondrion.2014;19PtA:88–96. 18.KondoM,YamaokaK,TanakaY.Acquiringchondrocyte

phenotypefromhumanmesenchymalstemcellsunder inflammatoryconditions.IntJMolSci.2014;15(11):21270–85. 19.Wiktor-JedrzejczakW,GordonS.Cytokineregulationofthe

macrophage(Mphi)systemstudiedusingthecolony stimulatingfactor-1-deficientop/opmouse.PhysiolRev. 1996;76(4):927–47.

20.SavillJ,FadokV.Corpseclearancedefinesthemeaningofcell death.Nature.2000;407(6805):784–8.

21.CruvinelWM,MesquitaJúniorD,AraújoJAP,CatelanTTT, SouzaAWS,SilvaNP,etal.Sistemaimunitário–ParteI: Fundamentosdaimunidadeinatacomênfasenos mecanismosmolecularesecelularesdaresposta inflamatória.RevBrasReumatol.2010;50(4):434–61. 22.MorissetS,FrisbieDD,RobbinsPD,NixonAJ,McIlwraithCW.

IL-1ra/IGF-1genetherapymodulatesrepairofmicrofractured chondraldefects.ClinOrthopRelatRes.2007;462:

221–8.

23.vonderMarkK,GaussV,vonderMarkH,MüllerP. Relationshipbetweencellshapeandtypeofcollagen synthesisedaschondrocyteslosetheircartilagephenotypein culture.Nature.1977;267(5611):531–2.

24.BrittbergM,LindahlA,NilssonA,OhlssonC,IsakssonO, PetersonL.Treatmentofdeepcartilagedefectsintheknee withautologouschondrocytetransplantation.NEnglJMed. 1994;331(14):889–95.

25.KnutsenG,DrogsetJO,EngebretsenL,GrøntvedtT,IsaksenV, LudvigsenTC,etal.Arandomizedtrialcomparingautologous chondrocyteimplantationwithmicrofracture.Findingsatfive years.JBoneJtSurgAm.2007;89(10):2105–12.

26.VanlauweJ,SarisDB,VictorJ,AlmqvistKF,BellemansJ, LuytenFP.Five-yearoutcomeofcharacterizedchondrocyte implantationversusmicrofractureforsymptomaticcartilage defectsoftheknee:earlytreatmentmatters.AmJSports Med.2011;39(12):2566–74.

27.MurphyJM,FinkDJ,HunzikerEB,BarryFP.Stemcelltherapy inacaprinemodelofosteoarthritis.ArthritisRheum. 2003;48(12):3464–74.

28.LeeKB,HuiJH,SongIC,ArdanyL,LeeEH.Injectable

mesenchymalstemcelltherapyforlargecartilagedefects–a porcinemodel.StemCells.2007;25(11):

2964–71.

29.CentenoCJ,BusseD,KisidayJ,KeohanC,FreemanM,KarliD. Increasedkneecartilagevolumeindegenerativejointdisease usingpercutaneouslyimplanted,autologousmesenchymal stemcells.PainPhysician.2008;11(3):343–53.

(9)

31.DavatchiF,AbdollahiBS,MohyeddinM,ShahramF,NikbinB. Mesenchymalstemcelltherapyforkneeosteoarthritis. Preliminaryreportoffourpatients.IntJRheumDis. 2011;14(2):211–5.

32.EmadedinM,AghdamiN,TaghiyarL,FazeliR,MoghadasaliR, JahangirS,etal.Intra-articularinjectionofautologous

mesenchymalstemcellsinsixpatientswithknee osteoarthritis.ArchIranMed.2012;15(7):422–8. 33.JoCH,LeeYG,ShinWH,KimH,ChaiJW,JeongEC,etal.

Imagem

Fig. 1 – Comparison of the cell cycle of an epithelial cell and of a chondrocyte, assessed by flow cytometry
Fig. 2 – Macrophages activated by the classical pathway act as inflammation inducers and are called M1
Fig. 3 – Overall experimental design of the study by John et al. 33 (2014), who assessed, in a phase I/II clinical trial the effect of intra-articular injection on the regeneration of the knee cartilage in patients with osteoarthritis

Referências

Documentos relacionados

Ao longo da pesquisa buscou-se compreender se os processos de re-existência de agricultores familiares em áreas de domínio sucro-energético estariam possibilitando a

Em suma, poder-se-ia dizer que o têrmo ciência é aplicável à administração pública sempre que alguns de seus métodos possam seguir princípios cinetíficos,

território a maior parte da floresta amazônica, o grande símbolo planetário da luta pela proteção da biodiversidade e da diversidade social e cultural associadas

Assim como o estudo de Harvard demonstrou que o relacio- namento é a grande forc¸a de nossas associac¸ões, será por meio dele que teremos mais forc¸a para continuar a fazer CBOTs,

Harvard University has recently published a study reporting the follow-up of the lives of 724 people in the city of Boston, from university students to ordinary people, during 76

economy since 1980 to 2010, such as: (i) rising skill premium; (ii) increase in income and wealth Gini coefficient; (iii) decrease in the wealth share owned by the bottom 90%

3 according to the Ministry of health, 29 , the use of non-pharmacological treatment, such as: physical activity, weight reduction, less sodium and alcohol intake has