• Nenhum resultado encontrado

Rev. Bras. Reumatol. vol.55 número4

N/A
N/A
Protected

Academic year: 2018

Share "Rev. Bras. Reumatol. vol.55 número4"

Copied!
11
0
0

Texto

(1)

w w w . r e u m a t o l o g i a . c o m . b r

REVISTA

BRASILEIRA

DE

REUMATOLOGIA

Review

article

High

resolution

peripheral

quantitative

computed

tomography

for

the

assessment

of

morphological

and

mechanical

bone

parameters

Henrique

Fuller

a

,

Ricardo

Fuller

b

,

Rosa

Maria

R.

Pereira

a,∗

aBoneLaboratoryMetabolism,RheumatologyDivision,MedicineSchool,UniversidadedeSãoPaulo,SãoPaulo,SP,Brazil

bRheumatologyDivision,HospitaldasClÍnicas,MedicineSchool,UniversidadedeSãoPaulo,SãoPaulo,SP,Brazil

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received17January2014 Accepted6July2014

Availableonline5January2015

Keywords:

Highresolutionperipheral

quantitativecomputedtomography (HR-pQCT)

Structuralparameters Radius

Tibia

a

b

s

t

r

a

c

t

Highresolutionperipheralquantitativecomputedtomographyisanewtechnology com-mercially available for <10 years that allows performing in vivo assessment of bone parameters.Highresolutionperipheralquantitativecomputedtomographyassessesthe trabecularthickness,trabecularseparation,trabecularnumberandconnectivitydensity and,inaddition,corticalbonedensityandthicknessandtotalbonevolumeanddensity inhigh-definitionmode,whichadditionallyallowsobtaining digitalconstructsofbone microarchitecture.Theapplicationofmathematicstocaptureddata,amethodcalledfinite elementanalysis,allowstheestimationofthephysicalpropertiesofthetissue, simulat-ingsupportedloadsinanon-invasiveway.Thus,highresolutionperipheralquantitative computedtomographysimultaneously acquiresdata previouslyprovided separatelyby dualenergyX-rayabsorptiometry,magneticresonanceimagingandhistomorphometry, aggregatingbiomechanicalestimatespreviouslyonlypossibleinextractedtissues. This methodhasasatisfactoryreproducibility,withcoefficientsofvariationrarelyexceeding 3%.Regardingaccuracy,themethodshowsafairtogoodagreement(r2=0.37–0.97).

Themainclinicalapplicationofthismethodisinthequantificationandmonitoringof metabolicbonedisorders,morefullyevaluatingbonestrengthandfracturerisk.In rheuma-toidarthritispatients,thisallowsgaugingthenumberandsizeoferosionsandcysts,in additiontojointspace.Inosteoarthritis,itispossibletocharacterizethebonemarrow edema-likeareasthatshowacorrelationwithcartilagebreakdown.

Givenitshighcost,highresolutionperipheralquantitativecomputedtomographyisstill aresearchtool,butthehighresolutionandefficiencyofthismethodrevealadvantagesover themethodscurrentlyusedforboneassessment,withapotentialtobecomeanimportant toolinclinicalpractice.

©2014ElsevierEditoraLtda.Allrightsreserved.

Correspondingauthor.

E-mail:rosamariarp@yahoo.com(R.M.R.Pereira).

http://dx.doi.org/10.1016/j.rbre.2014.07.010

(2)

Tomografia

computadorizada

quantitativa

periférica

de

alta

resoluc¸ão

para

avaliac¸ão

de

parâmetros

morfológicos

e

funcionais

ósseos

Palavras-chave:

Tomografiacomputadorizada quantitativaperiféricadealta resoluc¸ão(HR-pQCT) Parâmetrosestruturais Rádio

Tíbia

r

e

s

u

m

o

Atomografiacomputadorizadaquantitativaperiféricadealtaresoluc¸ão(HR-pQCT)éuma novatecnologiadisponívelcomercialmentehámenosde10anosquepermiteafeiturade examesinvivoparaaavaliac¸ãodeparâmetrosósseos.AHR-pQCTavaliaaforma,onúmero,o volume,adensidade,aconectividadeeaseparac¸ãodastrabéculas;adensidadeeaespessura doossocorticaleovolumeeadensidadetotal,emaltadefinic¸ão,oquepermiteaconstruc¸ão digitaldamicroarquiteturaósseaadicionalmente.Aaplicac¸ãodecálculosmatemáticosaos dadoscapturados,métododenominadoelementofinito(FE),permiteaestimativadas pro-priedadesfísicasdotecidoesimulacargassuportadasdeformanãoinvasiva.Dessemodo, aHR-pQCTadquiresimultaneamentedadosantesfornecidosseparadamentepela densit-ometriaóssea,pelaressonânciamagnéticaepelahistomorfometriaeagregaestimativas biomecânicasantessópossíveisemtecidosextraídos.Areprodutibilidadedométodoé sat-isfatória,comcoeficientesdevariac¸ãoqueraramenteultrapassamos3%.Quantoàacurácia, osparâmetrosapresentamderegularaboaconcordância(r2=0,37–0,97).

A principal aplicac¸ão clínica é na quantificac¸ão e no monitoramento das doenc¸as osteometabólicas,porqueavaliademodomaiscompletoaresistênciaósseaeoriscode fratura.Naartritereumatoidepermite-seaaferic¸ãodonúmeroedotamanhodaserosõese doscistos,alémdoespac¸oarticular.Naosteoartriteépossívelcaracterizarasáreas edema-símilequeguardamcorrelac¸ãocomadegradac¸ãodacartilagem.

Restritasaindaauminstrumentodepesquisa,dadooseuelevadocusto,aaltaresoluc¸ão eaeficiênciamostram-secomovantagensemrelac¸ãoaosmétodosatualmenteusadospara aavaliac¸ãoóssea,comumpotencialparatornar-seumaimportanteferramentanaprática clínica.

©2014ElsevierEditoraLtda.Todososdireitosreservados.

Introduction

Inthe1990s,theincorporationofdualenergyX-ray absorp-tiometry(DXA)inclinical practiceconsiderablyboostedthe knowledgeofmetabolicbonediseasesandtheestablishment offracturerisk.However,bonestrengthalsodependson tis-suemicroarchitecture.Thus,thehistomorphometricanalysis

hasbecomenecessary tosupplement the boneevaluation,

inferring its spatial properties. But this isan invasive and

expensive method that can only be performed from bone

samples.

Inthisscenario,anewinvivomethodforassessingbone microarchitectureandvolumetricbonemineraldensity(BMD) inhigh-quality3Demerges:highresolutionperipheral quanti-tativecomputedtomography(HR-pQCT).Thistechnologywas originallydesignedfortheanalysisofmaterialssuchassnow, concrete,gems,andsoon.Subsequently,thetechnologycame tobeusedforthestudyofbiologicalmaterialssuchasteeth, implants,boneand,morerecently,cartilage.Inaddition,the methodalsoallowedtheanalysisofbiomechanicalproperties oftheanalyzedmaterial,withtheuseofacomplex mathe-maticalprocess.

Itsuseformedicalpurposeshasgrownrapidlyinrecent years,becausethemethodrevealsindetailtheinternal struc-ture ofin vivoand ex vivo biological materials.The use of HR-pQCT is still largely confined to the field of scientific research,giventhatthereislessthanhalfahundreddevices worldwideinoperationtoperformtheexamination1andonly

two inBrazil.Due toits greatpotential, wepresent herea reviewofmethodologicalaspectsofHR-pQCTanditspotential clinicalapplication.

What

is

HR-pQCT?

HR-pQCT isan imaging techniquethat uses computerized

processing of X-ray attenuation (measured in Hounsfield

Units,HU)fortheacquisitionofsectionalimages,inthesame waythataconventionalCTscandoes.Fromtheslices,itis pos-sibletoproduceathree-dimensional(3D)high-qualitymodel.

AlthoughHR-pQCTisalsooftenconfusedwithComputed

Microtomography(MicroCTor␮CT),thesetermsarenot

syn-onymous. While ␮CT has a very high resolution of up to

fractionsof␮m(micron)andevaluatesingreatdetailthe mor-phologyofthesamples,itsuseisrestrictedtoexvivoanalysis.2

On the other hand,HR-pQCT,specifically, isanequipment whoseresolutionreachesonlytensofmicrometers;thissize isslightlylargerthanthatrepresentedbythetrabecular struc-ture,butalsoallowsadetailedanalysisoftissuemorphology. Inaddition,thismethoddifferentiatesitselffrom␮CTasto the possibility to perform rapidtests in vivo.3,4 Thestudy

ofbone structureswith ␮CTwas introduced in1989,5 and soonbecame thegoldstandardfortheevaluationof three-dimensionalbonestructure.

(3)

Fig.1–(A)ScancoXtremeCTHR-pQCTdevice.(B)ReferencestandardizedplanesforHR-pQCT.Thedottedlineindicatesthe referenceplane,whilethesolidlinesindicateinitialandfinalplanesofthetest,comprisingathicknessof9.02mm.(C)The sectionalimageoftheleg,highlightingthetibialperiosteumcontour(ingreen).(D)Thesectionalimageoftheforearm, highlightingtheradialperiosteumcontour(ingreen).(E)Constructionofa3Dmodeloftibia,afterinitialanalysis.

measurethree-dimensional humanbone microarchitecture

in vivo, the XtremeCT (SCANCO Medical AG, Brüttisellen,

Switzerland).(Fig.1A).Nevertheless,theabilitytomeasurethe averagetrabecularthicknessisstilllimitedbythemaximum resolutionofthemachine.6–8

Despitetheabilitytocarryonmorphologicalscanningof thetissue microstructure,therewas stillnoproper wayto

estimate the mechanical properties of the material under

analysisinvivo.Theimprovedresolutionof3Dimages pro-videdbythisnewdevicecoupledwithcomputer-basedfinite elementanalysis(FEA)modeling9providesestimatesof

func-tionalpropertiesofthematerial.

Image

acquisition

and

results

ThestandardtestwithXtremeCTevaluatesdistalradiusand tibiain vivo.10 Thelimbbeing scannedisimmobilized ina

carbon fiber shell to avoidartifacts resulting from motion, which could lead tothe needfor rescanning.11–13 Initially,

a scout view, essentially a two-dimensional X-ray scan,

is obtained to determine a precise region for the

three-dimensional measurement (Fig. 1B). Eachsite includes110

computerized tomography slices, totaling an extension of

9.02mm along the axial axis ofthe bone. The acquisition

of these images takes about 3min. The standard

proto-colistypicallyconductedwiththefollowingsettings:X-ray tube current=95mA, X-ray tube potential=60kVp, voxel size=82␮m,anda1536×1536matrix.

TheHR-pQCTsingle-scaneffectiveradiationdoseisless than 5␮Sv.14 Somestudiesestimatethat itisaround3␮Sv permeasure.15Theinternationalrecommendationisthatthe

averageannualdoseforplannedradiationexposuremustnot exceed 20␮Sv/year, measuredover a definedperiodoffive years.16,17Forcomparison,achestX-rayexposestoaradiation

(4)

Table1–HR-pQCTmainboneparameters.

Abbreviation Parameter Description Unit

Structuralparameters

BV/TV Bonevolumeratio Ratiobetweenbonevolume

andtotalvolumeoftissue

Tb.N Trabecularnumber Meannumberoftrabeculae permm

Tb.Th Trabecularthickness Meanthicknessoftrabeculae mm

Tb.Sp Trabecularseparation Meanspacebetween

trabeculae

mm

Tb.1/N.SD Inhomogeneityofnetwork Standarddeviationofthe

inverseofnumberof trabeculae

mm

Ct.Th Corticalthickness Averagecorticalthickness mm

Co.Po Corticalporosity Ratiobetweenporevolume

andtotalcorticalvolume

Tt.Ar Totalbonearea Cross-sectionalarea mm2

Ct.Ar Corticalbonearea Meanoftheareaoccupiedby

corticalbone

mm2

Tt.Ar Trabecularbonearea Meanoftheareaoccupiedby

trabecularbone

mm2

Densityparameters

BMD(D100) Bonemineraldensity Totalvolumetricdensity mgHA/cm3

Tb.BMD(Dtrab) Trabecularbonemineraldensity Trabecularvolumetricdensity mgHA/cm3

Dmeta Metatrabecularbonemineraldensity(40%) Externaltrabecularvolumetric

density(40%oftrabecular volume)

mgHA/cm3

Dinn Innertrabecularbonemineraldensity(60%) Innertrabecularvolumetric

density(60%oftrabecular volume)

mgHA/cm3

Meta/Inn Ratiometatoinnerbonemineraldensity Ratiobetweenouterandinner

trabecularbonedensity

Ct.BMD(Dcomp) Corticalbonemineraldensity Corticalvolumetricdensity mgHA/cm3

Aftertheacquisitionofimages,thesystemautomatically performsaninitialevaluationthatconsistsoftwoprocesses: (1)processingofdigitaldatainsectionalimages(Fig.1CandD) and(2)constructionofa3Dmodel(Fig.1E).Subsequently,itis necessarytodeterminethecompartments.Thefirstcontour ischaracterizedbytheouterenvelopeoftheradius,which isthenusedtodefinethefullcompartment.Thesoftwareis providedwithasemiautomaticcontouringalgorithm(Fig.1C andD).

Afterobtainingthiscontour,thenextnecessarystepisto determinetheinnercontourdelineatingcorticalfrom trabe-cularbone,withthegoalofobtainingisolateddatarelatingto eachofthecompartments.Thisisacomplexprocess,because their boundary isnot always well defined. Where the cor-texisrather thickor highlyporous,theboundary between thecompartmentsmaybeinaccurate.18Thisprocedure

auto-maticallycreatesthedifferentcompartmentsbasedonimage processing.19,20

Anotheraspectthatmustbeestablishedwithrespectto trabecularboneistodescribeandquantifytheplateand rod-like structure ofbone. While rod-like trabeculae havetwo connections(calleddisjunctive)attachedtotheadjacentbone andonlyonecontactsurfacewiththebonemarrow,plate-like trabeculaehaveonlyonecontactsurfacewiththeadjoining bone(inallitsperimeter)andtwowiththebonemarrow(one oneachsideofthedisc).20Thisprocessofrod-likeand

plate-liketrabeculaeseparationisperformedautomaticallybythe

software,havinganinfluenceontheresultsofsomeofthe parameters.

Aseriesofteststodeterminethemainboneparameters usedintheliteraturefollows.1Thus,mathematicalalgorithms

arerequiredthatallowsuchcalculations.Themanufacturer’s software already includescomputer scripts containing the equations.

Thesescriptsincludethedefinitionofbonevolume,bone volumedensity,structuremodelindex,trabecularthickness, trabecular separation, trabecular number and connectivity density,andcorticalthickness.Thedegreeofcorticalporosity isthemostrelevantcorticaldataobtained.Table1 discrimi-natesthemainparametersandtheirterminology,asusedin themedicalliterature.

Finite

element

analysis

modeling

FEA isa numericaltechniqueofengineering, which, when

applied to medicine, allows a quantitative and

qualita-tive estimation of biomechanical propertiesresulting from

bone microarchitecture, by means of complex differential

equations.21–23

(5)

Fig.2–(A)Voxelconversiontechnique.Inthescheme,eachofthecubestotherightisavoxelwithaspecificelasticity,here representedbydifferentshadesofgray.(B)Virtualcompressiontest,performedbythefiniteelementsoftware.Application ofcompressiveforces(inyellow).(C)IllustrationofYoung’smodulus.Theremovalofthecompressionforces(inyellow) causesthematerialtoreturntoitsoriginalshape.(D)Exampleoftheresultofananalysiswiththefiniteelementmethod; axialbonesection.Inred,areassubjectedtogreaterstress;ingreen,areasunderlessstress.

softwareemploystheso-called“voxelconversiontechnique” (Fig.2A)tocreatefiniteelementmodels(FiniteElement Soft-ware,V.1.13,Scanco MedicalAG, Switzerland,January2009 ManufacturerHandbook).Inthistechnique,thevector infor-mationobtainedinthemodelisconvertedintoblockscalled voxels,whichhaveidenticalshapeandsize.Thevoxelsare shapedlikecubes,beingthesmallestunitthatmakesupthe imageoftheanalyzedmaterial.Eachvoxelisregisteredwith oneamong255gradationsofelasticityrecognizedbythe sys-temtoperformthemathematicalcalculations.Thestandard analysisofFEAcomprisesavirtualresistancetest,namely,the computerestimatesandanalyzesthebehaviorofthebone tis-suewhenitissubmittedtoacompressiveforcealongitsmajor axis(Fig.2B).

For analysis of FE, two mechanical properties of the

bone under study must be estimated, considering that

no histofunctional study of bone tissue is being carried

out:

• ThefirstofthemistheYoung’smodulus,ameasureofthe abilityof amaterial toreturn to its original shapeafter removalofastressforce,thusindicatingthetissue’s elastic-ity.Thismeasureisvalidonlyintherangeofforcesinwhich theelasticdeformationoccurs,namely,whenthereis nei-thermicrorupturenorchangeinbonestructure,enablingit toreturntoitsoriginalform.

(6)

Table2–MechanicalparametersobtainedbyFiniteElement.

Abbreviature Parameter Description Unit

S Stiffness Tissuestiffness N/mm

F.ult Estimatedultimatefailureload Estimateofmaximumsupportedload N

(Tb.F/TF)dist – Theratiobetweentheloadsupportedby

trabecularboneandtheloadsupported bythewholebone,atitsdistalend

(Tb.F/TF)prox – Theratiobetweentheloadsupportedby

trabecularboneandtheloadsupported bythewholebone,atitsproximalend

E.app Apparentmodulus Apparentmodulus(gaugesstress) N/mm2

Tb.VM TrabecularVanMisesstress Trabecularstress(gaugespressureon

trabeculae)

N/mm2

C.VM CorticalVanMisesstress Corticalstress(gaugespressureonthe

cortex)

N/mm2

Tb.ES Averageequivalentstrain

trabecularbone

Measuresaveragetrabeculardeformation –

Ct.ES Averageequivalentstrain

corticalbone

Measuresaveragecorticaldeformation –

Thevaluesofthesevariablesarenotyetfullyestablished, andhencetheirusevariesaccordingtotheliteratureused. ThenormalrangeofYoung’smodulususedisbetween10GPa and22.5GPa(GigaPascalisamultipleofthestandardunitof pressureintheinternationalsystem,definedasNewton/m2).

TheYoung’smoduluscanbesetseparatelyforbothtrabecular andcorticalbone.Ontheotherhand,thePoissonratiois0.3 formoststudies.25–30

Theapplicationofthistechniquehasproduced,inasimple andfastway,ahugeamountofdata,previouslyonlyobtained frominvasive,costlyandtime-consumingprocedures.These aredatathatestimatethesupportedloadandthe deforma-tionsoftheboneasawhole,andineachofitsregions.Table2

liststhemainparametersobtainedfromthismethod.

Accuracy

The analysesof HR-pQCT accuracy are based on the gold

standard for measurement of bone microarchitecture, the

␮CT.Comparisonsareperformedoncadaverdata,mostlydue totheinabilitytoperforminvivotestswith␮CTdevices.

Overall,theparametersexhibitgood tomoderate agree-ment(r2=0.37–0.97).Itisnoted,however,thatsome param-eterssuchas BV/TV (r2=0.91–0.97)3,31 and Tb.Sp(r2=0.91)3

exhibitedanexcellentcorrelation,whileparameterssuchas Tb.1/N.SD(r2=0.62–0.71)4andTb.Th(r2=0.42–0.64)3,31 hada

lowercorrelation.

Tjongetal.3alsoinvestigatedtheimpactofdifferentvoxel

sizes on HR-pQCT and its correlation with gold standard

parameters. Alternating between standardized values by

XTremeCT(41␮m;82␮m; and123␮m),it ispossibleto

sig-nificantly change the accuracy. With a voxel of 123␮m,

Tb.Thpresents r2=0.37;increasing the resolutionto41␮m onereachesr2=0.82.Similarly,Tb.Spcanvaryfromr2=0.78 to r2=0.95. But some parameters, especially BMD, are lit-tleinfluencedbytheincreasedresolution.Tb.BMDremains atr2=0.84–0.85inthevariousresolutionscompared.While improvingtheaccuracy,decreasingthevoxelsizeimpliesina

greaterexaminationtimeand,therefore,thechancesof occur-renceofartifactsresultingfrompatientmotionaremultiplied. Totalbonemineraldensity(D100),inadditiontotheother

BMDparametersobtainedwithHR-pQCT,mayalsobe

com-paredwiththoseobtainedbyDualenergyX-raydensitometry (DXA).Itisimportanttonote,however,thatwhileHR-pQCT and ␮CTcalculatevolumetricdensities(vBMD), DXA calcu-latesdensityperarea(aBMD).Thecorrelationshowninthe

comparisonbetweenHR-pQCTandDXA,dependingon the

parameteranalyzed,canvaryfromr2=0.37tor2=0.73,being

maximumwhenthecomparisonismadebetweentotalvBMD

andaBMD.32Itcanbenoted,however,thattherearestillfew

studies focused on showingthe correlation between these

parameters.

Reproducibility

Todate,few studiesreporting thereproducibilityofresults obtainedbyHR-pQCTwerepublished.Mostofthesestudies showthattheequipment,whenusedinaccordancewith stan-dardizedandwell-definedprotocols,reacheslowcoefficients ofvariation.Severalaspectsinfluencethe reproducibilityof results,amongwhichstandouttheparameterbeinganalyzed, theprotocolsused,thebonebeingevaluatedandthecorrect accomplishmentofcalibrationprotocols.

TheparametersderivedfromHR-pQCTcanbedividedinto those concerningstructuralmeasures and those relatedto

BMD(Table1).Comparingthereproducibility,itcanbenoticed

thatthisfactorisgreaterinthesecondversusfirstgroup.While thestructuralmeasurescanachievecoefficientsofvariation ofupto3.2–4.4%,thoserelativetobonemineraldensityhardly exceed1%.33,34 Theexplanationforthisfact isthat, inthe

(7)

Asforthe protocols employed,these mustbevery well defined,toimprovereproducibility.Theyinclude:patient posi-tioning,fixingthelimbintothesupportshell,andthechoiceof thereferenceplane,amongothers.Basically,allthesefactors cangiverisetothreetypesoferrors:artifactsofmovement, reducingtheoverlapindifferentmeasurements,andchanges inangulation.Thelackofacomfortablepositionandthe non-fixation into the supportshell can leadto patient motion, whichincreasesthevariationbetweentests.Thechoiceofthe referenceplane(boundariesofboneareaanalyzed)cancause significantdiscrepanciesintheresultsobtained33;inthis

mea-surement,thechangeofonly1mmcanleadtoavarietyof

11% in the tissue sampleanalyzed. Asto the bone

evalu-ated,accordingtoBoutroyetal.34 inmostcasestheresults

forthetibiahavehighercoefficientsofvariation,when com-paredtosimilarparametersfortheradius.ButMacNeiletal.33

observedthatradiusmeasurementsaremoreproneto move-mentartifacts.

Regarding XtremeCT, it is important to note that the

properconductofdailyandweeklycalibrationprotocolswas extremelyimportantformaintaininghighstandardsof repro-ducibility and low variability in the short and long term, besidesmulticenterreproducibility.35

Applications

TheuseofHR-pQCTinbiologicaltissuesgeneratedan enor-mousrangeofpossibilitiesforscientificresearch,andthiscan beobservedbytheexponentialincreaseinthenumberof pub-licationsthatmakeuseofthistechnologyinrecentyears.The functionalanalysiswiththefiniteelementmethodhasfurther expandedthenumberofapplicationsofthetechnique.

Since its first use for bone assessment, this has been the main application of HR-pQCT. Studies indicate that it ispossibletoevaluatetheprofileofbonemicroarchitecture throughoutlife,theriskoffractures,mineralizationandthe developmentofbonediseases(e.g.,osteoporosis).Theeffectof drugsanddietsinboneformation,resorptionandmorphology alsocanbeverified.Currently,theuseofHR-pQCThasbeen

extendedtothediagnosis and monitoringofinflammatory

arthropathies,suchasrheumatoidarthritisand osteoarthri-tis.However,thepracticaluseofthemethodstillseemsmuch morepromisingfor,andrespondstogapsin,osteoporosis;in osteoarthritisandrheumatoidarthritis,itsusefulnessisstill morerelatedtoresearch.

The

use

of

HR-pQCT

in

osteoporosis

and

fracture

risk

assessment

Osteoporosis(OP) ischaracterizedby acompromised bone

strength,predisposingtheindividualtotheriskoffractures.36

Dual emission X-ray densitometry (DXA) is still the gold

standardfordiagnosis,monitoringandclinicalinvestigation ofthe patient with osteoporosis.37 However, bone mineral

density(BMD)onlycorrespondstoapartofbonestrength.38

Thus, for the assessment of fracture risk, BMD

measure-mentsshouldbeassociatedwithotherfactorsthatinfluence bone strength: cortical thickness and porosity, trabecular microstructureandbonegeometry.39Thesecombinedfactors

contributetodefinethebiomechanicalpropertiesofbone tis-sue,suchasstiffnessandsupportedload.31

TheabilityofHR-pQCTtodefinetheseparametersofbone architecture,inconjunctionwiththeabilityoftheFEAfor

esti-mating biomechanicalproperties, makesthis techniquean

excellenttoolforosteoporosisevaluation.Ithasbeenshown byseveralstudiesthatthisdatasetiscloselylinkedtotherisk offracturesinOP,10,22,40andalsothatindividualswithsimilar

resultsobtainedbyDXAmayhavelargedifferencesinfracture risk,duetotheabovefactors.41,42

The

use

of

HR-pQCT

in

monitoring

therapy

Some,43–46butnotall,47studiessuggestthatchangesinBMD

duringthetherapyofosteoporosiscorrelatetothereduction infracturerisk.Ameta-analysisof12clinicaltrialsconcluded thataBMDimprovementinthespinecomprisesonlyasmall partofthereductioninfracturerisk.48Thus,toevaluatethe

therapeuticaspects,theuseofparametersthatmeasurenot onlytheBMDisinorder,butalsothebonemicroarchitecture. Severalstudiesalreadypublishedhavedemonstratedthat therapeutictreatmentsforosteoporosiscanbring improve-mentinmanyboneparameters.Thus,HR-pQCTisatoolthat

allowsamuchmoredetailedassessmentoftreatment

com-paredwithDXA.

Cheungetal.1reportedseveralstudiesontheuseof

HR-pQCT in monitoring osteoporosis treatment. Research

conducted with alendronate,49–52 zoledronic acid,53

ibandronate,54,55 denosumab,51 strontium ranelate,49,50

odanacatib56,57andteriparatide53,58candemonstratechanges

mainlyintheparametersofvBMDforthevariousbone com-partments,corticalthickness,maximumsupportedloadand trabecularnumber.

The

use

of

HR-pQCT

in

rheumatoid

arthritis

Boneerosionsarecloselylinkedtotheprogressionof rheuma-toidarthritis(RA).Therefore,monitoringoftheselesionsisan earlyprognosticparameterandanimportantinputto mon-itortheeffectivenessoftreatment.59,60Currently,amongthe

imagingmethods,conventionalradiographyisthemostused tool in clinical practice to aid in the diagnosis and mon-itoring ofRA for evaluating erosions and bone loss,61 but

besidesbeingasemiquantitativeprocedure,theidentification oflesionsinthistypeoftesttakes6–12monthstobecome apparent.62

Stachetal.63 showedthatitispossibletoadaptthe

HR-pQCT device for evaluating the volume of bone erosions.

Thisinformationisobtainedbymeasuringdistancesin var-iousdirectionsintheslicesmade.64,65 Thecurrentanalysis

methodisstillnotautomatednorstandardized,but prelimi-naryresultsofsomestudiesshowthatthehigh-resolutionof HR-pQCTallowsaprecisecharacterizationofboneerosions onamuchgreaterdegreeofdetailthantraditionalmethods.61

Thetechniquealsoallowstheevaluationofthejointspaceof metacarpophalangealandproximalinterphalangealjoints,66

(8)

Recent studies show that the data obtained with

HR-pQCT inpatients with RA havea higher sensitivity, when

comparedtodata obtainedbyconventional radiographs in

correlationwithmarkersofbonecatabolismandanabolism (r=0.393–0.474).67ThisshowsthatHR-pQCTcannotonly

eval-uatemomentarilyRA,butalsoshowdiseaseprogression.

The

use

of

HR-pQCT

in

osteoarthritis

Inosteoarthritis (OA), acartilage lesion is accompaniedby alterationsinsubchondralboneandmarrowspace.Magnetic resonance imaging can connect cartilage injury toregions wheretherearetheso-calledbonemarrowedema-like(BMEL)

injuries, which are areas of high signal on T2-weighted

images.68 Inthese placesit ispossibletoobserve, in

addi-tiontoedema,necrosisofadipocytes,increaseoffibroustissue andanacceleratedbonemetabolism.However,themagnetic

resonance is unable to determine which changes in bone

microarchitecturearepresent,andhowtheyrelatetodisease. There are still few studies demonstrating the efficacy

ofassessmentwithHR-pQCTinthe diagnosis and

progno-sisofOA,but Kazakia et al.69 demonstrated that, inBMEL

injuries,importantchangesoccurinsomeboneparameters. Theseauthors69evaluatedfragmentsofsubchondralboneof

the tibiain patientstreated withknee arthroplasty due to osteoarthritis.Theyfoundthattherewasasignificantincrease

in volumetricbone mineral density (vBMD) and bone

vol-ume/totalvolume(BV/TV),alongwithtrabecularthickening (Tb.Th).Alsointhisstudy,whendataobtainedwithHR-pQCT werecoupledtothebonespectroscopicanalysis,areduction inthe mineral/matrixratio was noted. In fact, histological evaluationsreveal that,intheseBMELareas,aninfiltration ofmarrowspacesbyafibrouscollagennetworkandintense boneremodelingoccur.Therelationshipbetweenthesebone changeswithcartilagedamageisnotyetfullyknown.Itis

possiblethatthe measurementofthesedata mayhave an

importantclinicalroleinOA.

Perspectives

AlthoughHR-pQCThasbeenlaunchedonthemarketlessthan 10yearsago,thistechnologyhasalreadyamyriadof medi-calapplications.Groupsofresearchersworldwidehavebeen workingtofindnewwaystoexploititsfullpotential.Fornow, thedeviceisstillatoolrestrictedtoresearch;butconsidering thethingsithasbeenabletoassess,theunderlyingviewis that,inashorttime,HR-pQCTwillbecomeanimportant clin-icaltool.However,thecurrentcostsarestillanobstacletoits fullclinicaluse.

Itshigh resolutionand non-invasive characteristics,the evaluationin vivo, and its speed and efficiencyare advan-tageouspointsovertraditionalmethodsofmeasuringbone

mineral density and histomorphometry for bone studies.

Thus, HR-pQCT can be used foran efficient and accurate

assessmentofthe developmentofdiseases such as

osteo-porosis,osteoarthritisandrheumatoidarthritis.Thus,inthe future,theincorporationofthemeasurementsofthis tech-nologyonclassificationcriteriaandinthestagingofvarious

clinicalconditionsmayoccur.Itwillbeabsolutelyessentialto carryoutfurtherstudiesonsafety,accuracyand reproducibil-ityoftheanalysespromotedbyHR-pQCTinvariousdiseases andintheagingprocess,whencomparedtowhatisalready establishedby␮CT,DXAandhistomorphometry.

Itwillbeimportantalsotodetermineandconsolidatethe standardsofnormalityfordifferentpopulations.Some stud-iesusingcontrolgroupsforcomparisonhavebeenpublished, butthereisstillnotonecomprehensivestudyinthisdirection fortheBrazilianpopulation.Presently,thestudygroupatthe LaboratoryforBoneMetabolism,MedicineSchool, Universi-dadedeSãoPaulo(LIM-17)isconductingastudytodetermine

normality curvesforHR-pQCTand FiniteElement Analysis

parameterswithasampleofover400healthywomenaged

over20years.

Atthispoint,itisworthmentioningsomelimitationsof

theassessmentsperformedwithHR-pQCTandinthe

appli-cationoffiniteelement analysismodeling.One ofthemis thattheachievementofparametersofstrengthandstiffness dependson functionalestimates andon theapplicationof mathematical modelsthat, inmany cases,are notentirely reliablerepresentationsofreality.Moreover,itisnotyetreally clearhowthemorphofunctionalchangesobservedin periph-eral bones(radiusand tibia)maycorrelate withtherestof theskeleton.Anotherlimitationtobeemphasizedisrelated totheresolutionofthedevicethat,despitebeingthe high-estavailabletodayfortestinginvivo,isnotstillsufficientto individuallyassesstrabeculae.

Finally,itisnecessarytoconsolidatethestandardization ofmethodsofacquisitionandanalysisofimageswith HR-pQCTtechnology.Todoso,onemustkeepinmindthepatient positioning,system settings,the initialand final planesof

imagingforthesitemeasurementsandthemostimportant

parametersinthevariousassessments.Regardingfinite ele-mentanalysismodeling(whichonlyrecentlyisbeingusedin bonestudies),itisreallyimportanttodefinepatternsofbone functionalproperties(Young’smodulusandPoisson’sratio).

Funding

Conselho Nacional de Desenvolvimento Científico e

Tec-nológico (CNPQ nr. 300559/2009-7 for RMRP), Federico

Foundation(RMRP).

Conflict

of

interest

Theauthorsdeclarenoconflictofinterests.

r

e

f

e

r

e

n

c

e

s

1.CheungAM,AdachiJD,HanleyDA,KendlerDL,DavisonKS,

JosseR,etal.High-resolution-peripheralquantitative

computedtomographyfortheassessmentofbonestrength

andstructure:areviewbytheCanadianBoneStrength

WorkingGroup.CurrOsteoporosRep.2013;11:136–46.

2.BouxseinML,BoydSK,ChristiansenBA,GuldbergRE,Jepsen

(9)

microstructureinrodentsusingmicro-computed

tomography.JBoneMinerRes.2010;25:1468–86.

3. TjongW,KazakiaGJ,BurghardtAJ,MajumdarS.Theeffectof

voxelsizeonhigh-resolutionperipheralcomputed

tomographymeasurementsoftrabecularandcorticalbone

microstructure.MedPhys.2012;39:1893–903.

4. BurghardtAJ,KazakiaGJ,MajumdarS.Alocaladaptive

thresholdstrategyforhighresolutionperipheralquantitative

computedtomographyoftrabecularbone.AnnBiomedEng.

2007;35:1678–86.

5. FeldkampLA,GoldsteinSA,ParfittAM,JesionG,Kleerekoper

M.Thedirectexaminationofthree-dimensionalbone

architectureinvitrobycomputedtomography.JBoneMiner

Res.1989;4:3–11.

6. NieburGL,YuenJC,HsiaAC,KeavenyTM.Convergence

behaviorofhigh-resolutionfiniteelementmodelsof

trabecularbone.JBiomechEng.1999;121:629–35.

7. GuldbergRE,HollisterSJ,CharrasGT.Theaccuracyofdigital

image-basedfiniteelementmodels.JBiomechEng.

1998;120(2):289–95.

8. NagarajaS,CouseTL,GoldbergRE.Trabecularbone

microdamageandmicrostructuralstressesunderuniaxial

compression.JBiomech.2005;38:707–16.

9. VanRietbergenB,HuiskesR,EcksteinF,RüegseggerP.

Trabecularbonetissuestrainsinthehealthyandosteoporotic

humanfemur.JBoneMinerRes.2003;18:1781–8.

10.VicoL,ZouchM,AmiroucheA,FrereD,LarocheN,KollerB,

etal.High-resolutionperipheralquantitativecomputed

tomographyanalysisatthedistalradiusandtibia

discriminatespatientswithrecentwristandfemoralneck

fractures.JBoneMinerRes.2008;23:1741–50.

11.PialatJB,BurghardtAJ,SodeM,LinkTM,MajumdarS.Visual

gradingofmotioninducedimagedegradationin

high-resolutionperipheralcomputedtomography:impactof

imagequalityonmeasuresofbonedensityand

micro-architecture.Bone.2012;50:111–8.

12.SodeM,BurghardtAJ,PialatJB,LinkTM,MajumdarS.

QuantitativecharacterizationofsubjectmotioninHR-pQCT

imagesofthedistalradiusandtibia.Bone.2011;48:

1291–7.

13.PauchardY,LiphardtAM,MacdonaldHM,HanleyDA,Boyd

SK.Qualitycontrolforbonequalityparametersaffectedby

subjectmotioninhigh-resolutionperipheralquantitative

computedtomography.Bone.2012;50:1304–10.

14.XtremeRevision5.05.ScancoMedicalAg.18July2005. BassersdorfSwitzerland.

15.KrugR,BurghardtAJ,MajumdarS,LinkTM.High-resolution

imagingtechniquesfortheassessmentofosteoporosis.

RadiolClinNorthAm.2010;48:601–21.

16.ICRP.RecommendationsoftheInternationalCommissionon

RadiologicalProtection,vol.103.ICRP;2007.p.2–4.

17.WrixonAD.NewICRPrecommendations.JRadiolProt.

2008;28:161–8.

18.ZebazeRM,Ghasem-ZadehA,BohteA,Iuliano-BurnsS,

MiramsM,PriceRI,etal.Intracorticalremodellingand

porosityinthedistalradiusandpost-mortemfemursof

women:across-sectionalstudy.Lancet.2010;375:1729–36.

19.LaibA,HäuselmannHJ,RüegseggerP.Invivohighresolution

3D-QCTofthehumanforearm.TechnolHealthCare.

1998;6:329–37.

20.VanRuijvenLJ,GiesenEB,MulderL,FarellaM,VanEijdenTM.

Theeffectofbonelossonrod-likeandplate-liketrabeculae

inthecancellousboneofthemandibularcondyle.Bone.

2005;36:1078–85.

21.VanRietbergenB,HeinansH,HuiskesR,OdgaardA.Anew

methodtodeterminetrabecularboneelasticpropertiesand

loadingusingmicromechanicalfinite-elementmodels.J

BiomechEng.1995;28:69–81.

22.BoutroyS,VanRietbergenB,Sornay-RenduE,MunozF,

BouxseinML,DelmasPD.Finiteelementanalysisbasedon

invivoHR-pQCTimagesofthedistalradiusisassociated

withwristfractureinpostmenopausalwomen.JBoneMiner

Res.2008;23:392–9.

23.MacNeilJA,BoydSK.Improvedreproducibilityof

high-resolutionperipheralquantitativecomputed

tomographyformeasurementofbonequality.MedEngPhys.

2007;29:1096–105.

24.SundarSS,NandlalB,SaikrishnaD,MalleshG.Finiteelement

analysis:amaxillofacialsurgeon’sperspective.JMaxillofac

OralSurg.2012;11:206–11.

25.PistoiaW,VanRietbergenB,LochmullerEM,LillCA,Eckstein

F,RuegseggerP.Image-basedmicro-finite-elementmodeling

forimproveddistalradiusstrengthdiagnosis:movingfrom

benchtobedside.JClinDensitom.2004;7:153–60.

26.TurnerCH,RhoJ,TakanoY,TsuiTY,PharrGM.Theelastic

propertiesoftrabecularandcorticalbonetissuearesimilar:

resultsfromtwomicroscopicmeasurementtechniques.J

Biomech.1999;32:437–41.

27.RhoJY,AshmanRB,TurnerCH.Young’smodulusoftrabecular

andcorticalbonematerial:ultrasonicandmicrotensile

measurements.JBiomech.1993;26:111–9.

28.VanRietbergenB,HuiskesR,WeinansH,OdgaardA,KabelJ.

Theroleoftrabeculararchitectureintheanisotropic

mechanicalpropertiesofbone.Bonestructureand

remodeling.WorldScientific.1995:137–45.

29.RhoJY,TsuiTY,PharrGM.Elasticpropertiesofhuman

corticalandtrabecularlamellarbonemeasuredby

nanoindentation.Biomaterials.1997;18:1325–30.

30.VanRietbergenB,OdgaardA,KabelJ,HuiskesR.

Relationshipsbetweenbonemorphologyandboneelastic

propertiescanaccuratelyquantifiedusinghigh-resolution

computerreconstructions.JOrthopRes.1998;16:23–8.

31.LiuXS,ZhangXH,SekhonKK,AdamsMF,McMahonDJ,

BilezikianJP,etal.High-resolutionperipheralquantitative

computedtomographycanassessmicrostructuraland

mechanicalpropertiesofhumandistaltibialbone.JBone

MinerRes.2010;25:746–56.

32.KazakiaGJ,BurghardtAJ,LinkTM,MajumdarS.Variationsin

morphologicalandbiomechanicalindicesatthedistalradius

insubjectswithidenticalBMD.JBiomech.2011;44:257–66.

33.MacNeilJA,BoydSK.Loaddistributionandthepredictive

powerofmorphologicalindicesinthedistalradiusandtibia

byhighresolutionperipheralquantitativecomputed

tomography.Bone.2007;41:129–37.

34.BoutroyS,BouxseinML,MunozF,DelmasPD.Invivo

assessmentoftrabecularbonemicroarchitectureby

high-resolutionperipheralquantitativecomputed

tomography.JClinEndocrinolMetab.2005;90:6508–15.

35.BurghardtAJ,PialatJB,KazakiaGJ,BoutroyS,EngelkeK,

PatschJM,etal.Multicenterprecisionofcorticaland

trabecularbonequalitymeasuresassessedbyhighresolution

peripheralquantitativecomputedtomography.JBoneMiner

Res.2013;28:524–36.

36.MillerPD.Clinicaluseofbonemassmeasurementsinadults

fortheassessmentandmanagementofosteoporosis.In:

FavusMJ,editor.Primeronthemetabolicbonediseaseand

disordersofmineralmetabolism.6thed.Washington,DC:

AmericanSocietyforBoneandMineralResearch;2006.p.

150–61.

37.MartinRM,CorreaPH.Bonequalityandosteoporosistherapy.

ArqBrasEndocrinolMetabol.2010;54:186–99.

38.WattsNB.Bonequality:gettingclosertoadefinition.JBone

MinerRes.2002;17:1148–50.

39.Sornay-RenduE,BoutroyS,MunozF,DelmasPD.Alterations

ofcorticalandtrabeculararchitectureareassociatedwith

(10)

ofdecreasedBMDmeasuredbyDXA:theOfelyStudy.JBone

MinerRes.2007;22:425–33.

40.KhoslaS,RiggsBL,AtkinsonEJ,ObergAL,McDanielLJ,Holets

M,etal.Effectsofsexandageonbonemicrostructureatthe

ultradistalradius:apopulation-basednoninvasiveinvivo

assessment.JBoneMinerRes.2006;21:124–31.

41.SteinEM,LiuXS,NickolasTL,CohenA,ThomasV,McMahon

DJ,etal.Abnormalmicroarchitectureandreducedstiffnessat

theradiusandtibiainpostmenopausalwomenwith

fractures.JBoneMinerRes.2010;25:2572–81.

42.LiuXS,SteinEM,ZhouB,ZhangCA,NickolasTL,CohenA,

etal.Individualtrabeculasegmentation(ITS)-based

morphologicalanalysesandmicrofiniteelementanalysisof

HR-pQCTimagesdiscriminatepostmenopausalfragility

fracturesindependentofDXAmeasurements.JBoneMiner

Res.2012;27:263–72.

43.HochbergMC,RossPD,BlackD,CummingsSR,GenantHK,

NevittMC,etal.Largerincreasesinbonemineraldensity

duringalendronatetherapyareassociatedwithalowerrisk

ofnewvertebralfracturesinwomenwithpostmenopausal

osteoporosis.FractureInterventionTrialResearchGroup.

ArthritisRheum.1999;42:1246.

44.WasnichRD,MillerPD.Antifractureefficacyofantiresorptive

agentsarerelatedtochangesinbonedensity.JClin

EndocrinolMetab.2000;85:231.

45.HochbergMC,GreenspanS,WasnichRD,MillerP,Thompson

DE,RossPD.Changesinbonedensityandturnoverexplain

thereductionsinincidenceofnonvertebralfracturesthat

occurduringtreatmentwithantiresorptiveagents.JClin

EndocrinolMetab.2002;87:1586.

46.EastellR,VrijensB,CahallDL,RingeJD,GarneroP,WattsNB.

Boneturnovermarkersandbonemineraldensityresponse

withrisedronatetherapy:relationshipwithfractureriskand

patientadherence.JBoneMinerRes.2011;26:1662.

47.SarkarS,MitlakBH,WongM,StockJL,BlackDM,HarperKD.

Relationshipsbetweenbonemineraldensityandincident

vertebralfractureriskwithraloxifenetherapy.JBoneMiner

Res.2002;17:1.

48.CummingsSR,KarpfDB,HarrisF,GenantHK,EnsrudK,

LaCroixAZ,etal.Improvementinspinebonedensityand

reductioninriskofvertebralfracturesduringtreatmentwith

antiresorptivedrugs.AmJMed.2002;112:281.

49.RizzoliR,ChapurlatRD,LarocheJM,KriegMA,ThomasT,

FrielingI,etal.Effectsofstrontiumranelateandalendronate

onbonemicrostructureinwomenwithosteoporosis:results

ofa2-yearstudy.OsteoporosInt.2012;23:305–15.

50.RizzoliR,LarocheM,KriegMA,FrielingI,ThomasT,DelmasP,

etal.Strontiumranelateandalendronatehavediffering

effectsondistaltibiabonemicrostructureinwomenwith

osteoporosis.RheumatolInt.2010;30:1341–8.

51.SeemanE,DelmasPD,HanleyDA,SellmeyerD,CheungAM,

ShaneE,etal.Microarchitecturaldeteriorationofcorticaland

trabecularbone:differingeffectsofdenosumaband

alendronate.JBoneMinerRes.2010;25:1886–94.

52.BurghardtAJ,KazakiaGJ,SodeM,dePappAE,LinkTM,

MajumdarS.AlongitudinalHRpQCTstudyofAlendronate

treatmentinpostmenopausalwomenwithlowbonedensity:

relationsamongdensity,corticalandtrabecular

microarchitecture,biomechanics,andboneturnover.JBone

MinerRes.2010;25:2558–71.

53.HansenS,HaugeEM,JensenJE,BrixenK.Differingeffectsof

PTH1-34,PTH1-84,andzoledronicacidonbone

microarchitectureandestimatedstrengthinpostmenopausal

womenwithosteoporosis.An18monthopen-labeled

observationalstudyusingHR-pQCT.JBoneMinerRes.

2013;28:736–45.

54.ChapurlatRD,LarocheM,ThomasT,RouanetS,DelmasPD,

DeVernejoulMC.Effectoforalmonthlyibandronateonbone

microarchitectureinwomenwithosteopenia-arandomized

placebo-controlledtrial.OsteoporosInt.2013;24:

311–20.

55.SchaferAL,BurghardtAJ,SellmeyerDE,PalermoL,Shoback

DM,MajumdarS,etal.Postmenopausalwomentreatedwith

combinationparathyroidhormone(1-84)andibandronate

demonstratedifferentmicrostructuralchangesattheradius

vs.tibia:thePTHandIbandronateCombinationStudy(PICS).

OsteoporosInt.2013;24:2591–601.

56.JayakarRY,CabalA,SzumiloskiJ,SardesaiS,PhillipsEA,Laib

A,etal.Evaluationofhigh-resolutionperipheralquantitative

computedtomography,finiteelementanalysisand

biomechanicaltestinginapre-clinicalmodelofosteoporosis:

astudywithodanacatibtreatmentintheovariectomized

adultrhesusmonkey.Bone.2012;50:1379–88.

57.CabalA,JayakarRY,SardesaiS,PhillipsEA,SzumiloskiJ,

PosavecDJ,etal.High-resolutionperipheralquantitative

computedtomographyandfiniteelementanalysisofbone

strengthatthedistalradiusinovariectomizedadultrhesus

monkeydemonstrateefficacyofodanacatiband

differentiationfromalendronate.Bone.2013;56:

497–505.

58.MacdonaldHM,NishiyamaKK,HanleyDA,BoydSK.Changes

intrabecularandcorticalbonemicroarchitectureat

peripheralsitesassociatedwith18monthsofteriparatide

therapyinpostmenopausalwomenwithosteoporosis.

OsteoporosInt.2011;22:357–62.

59.SchettG,RedlichK,SmolenJS.Inflammation-inducedbone

lossintherheumaticdiseases.In:FavusMJ,editor.Primeron

themetabolicbonediseasesanddisordersofmineral

metabolism.6thed.Philadelphia:LippincottWilliams&

Wilkins;2006.p.310.

60.FarrantJM,GraingerAJ,O’ConnorPJ.Advancedimagingin

rheumatoidarthritis:part2:erosions.SkeletalRadiol.

2007;36:381–9.

61.TöpferD,FinzelS,MuseykoO,SchettG,EngelkeK.

Segmentationandquantificationofboneerosionsin

high-resolutionperipheralquantitativecomputed

tomographydatasetsofthemetacarpophalangealjointsof

patientswithrheumatoidarthritis.Rheumatology(Oxford).

2014;53:65–71.

62.SokkaT.Radiographicscoringinrheumatoidarthritis:ashort

introductiontothemethods.BullNYUHospJtDis.

2008;66:166–8.

63.StachCM,BäuerleM,EnglbrechtM,KronkeG,EngelkeK,

MangerB,etal.Periarticularbonestructureinrheumatoid

arthritispatientsandhealthyindividualsassessedby

high-resolutioncomputedtomography.ArthritisRheum.

2010;62:330–9.

64.FinzelS,RechJ,SchmidtS,EngelkeK,EnglbrechtM,StachC,

etal.Repairofboneerosionsinrheumatoidarthritistreated

withtumournecrosisfactorinhibitorsisbasedonbone

appositionatthebaseoftheerosion.AnnRheumDis.

2011;70:1587–93.

65.AlbrechtA,FinzelS,EnglbrechtM,RechJ,HueberA,

SchlechtwegP,etal.ThestructuralbasisofMRIbone

erosions:anassessmentbymicroCT.AnnRheumDis.

2012;72:1351–7.

66.BarnabeC,SzaboE,MartinL,BoydSK,BarrSG.Quantification

ofsmalljointspacewidth,periarticularbonemicrostructure

anderosionsusinghigh-resolutionperipheralquantitative

computedtomographyinrheumatoidarthritis.ClinExp

Rheumatol.2013;31:243–50.

67.AschenbergS,FinzelS,SchmidtS,KrausS,EngelkeK,

EnglbrechtM,etal.Catabolicandanabolicperiarticularbone

changesinpatientswithrheumatoidarthritis:acomputed

tomographystudyontheroleofage,diseasedurationand

(11)

68.ZhaoJ,LiX,BolbosRI,LinkTM,MajumdarS.Longitudinal

assessmentofbonemarrowedema-likelesionsandcartilage

degenerationinosteoarthritisusing3TMRT1rho

quantification.SkeletalRadiol.2010;39:

523–31.

69.KazakiaGJ,KuoD,SchoolerJ,SiddiquiS,ShanbhagS,

BernsteinG,etal.Boneandcartilagedemonstratechanges

localizedtobonemarrowedema-likelesionswithin

osteoarthriticknees.OsteoarthritisCartilage.2013;21:

Imagem

Fig. 1 – (A) Scanco XtremeCT HR-pQCT device. (B) Reference standardized planes for HR-pQCT
Table 1 – HR-pQCT main bone parameters.
Fig. 2 – (A) Voxel conversion technique. In the scheme, each of the cubes to the right is a voxel with a specific elasticity, here represented by different shades of gray
Table 2 – Mechanical parameters obtained by Finite Element.

Referências

Documentos relacionados

Phenylcarbamates of amylose and cellulose derivatives are the most successful; however, polysaccharide-based CSPs comprising marine-derived polysaccharides are also described

The bone structural analysis of rats in the test arm group showed a significant increase in the bone volume per tissue volume (BV/TV), trabecular thickness (Tb.Th) and trabecular

Sõgundo ele, tanto o mundo que nos circunda quanto seus discursos (Informações, saberes, aparelhos ideológicos de estado, projeçôes que tomam o lugar da Natureza, - pois é

Specifically, the following hypotheses were formulated: (i) LULC at the reach, riparian, and catchment scales are related to geographic and spatial factors; (ii) the

The parameters for the trabecular bone (Trabecular Number, Trabecular Thickness, Trabecular Separation, Bone Pattern Factor, Fractal Dimension, Euler Number, Structural Model

[r]

In addition to the significant difference in the number of blood cells and the increase in trabecular bone in the GF-liposome groups at seven days after the surgical procedure,

With regard to meloxicam, although the results were not ideal, in view of the radioprotective effect demonstrated in previous studies and the improvement in trabecular separation