• Nenhum resultado encontrado

Resistance patterns, ESBL genes, and genetic relatedness of Escherichia coli from dogs and owners

N/A
N/A
Protected

Academic year: 2021

Share "Resistance patterns, ESBL genes, and genetic relatedness of Escherichia coli from dogs and owners"

Copied!
9
0
0

Texto

(1)

h tt p:/ / w w w . b j m i c r o b i o l . c o m . b r /

Medical

Microbiology

Resistance

patterns,

ESBL

genes,

and

genetic

relatedness

of

Escherichia

coli

from

dogs

and

owners

A.C.

Carvalho

a,b,∗

,

A.V.

Barbosa

b

,

L.R.

Arais

b

,

P.F.

Ribeiro

b

,

V.C.

Carneiro

b

,

A.M.F.

Cerqueira

b

aLaboratóriodeBiologiaMolecular,DepartamentoInterdisciplinardeRiodasOstras,InstitutodeHumanidadeseSaúde, PóloUniversitáriodeRiodasOstras,RiodasOstras,RJ,Brazil

bLaboratóriodeEnteropatógenos,MicrobiologiaVeterináriaedeAlimentos/(LEMA),DepartamentodeMicrobiologiaeParasitologia, InstitutoBiomédico,UniversidadeFederalFluminense,Niterói,RJ,Brazil

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received20December2013

Accepted9October2014

AssociateEditor:RoxaneMaria

FontesPiazza Keywords: Escherichiacoli Antimicrobialresistance Dogs Geneticrelatedness

a

b

s

t

r

a

c

t

AntimicrobialresistanceinEscherichiacoliisolatedfrompetdogscanbeconsidereda

poten-tialthreatofinfectionforthehumanpopulation.Ourobjectivewastocharacterizethe

resistancepattern,extendedspectrumbeta-lactamaseproductionandgeneticrelatedness

ofmultiresistantE.colistrainsisolatedfromdogs(n=134),theirowners(n=134),andhumans

whoclaimtohavenocontactwithdogs(n=44,control),searchingforsharingofstrains.The

strainswereassessedfortheirgeneticrelatednessbyphylogeneticgroupingandpulsed-field

gelelectrophoresis.MultiresistantE.colistrainswereisolatedfrom42(31.3%)fecalsamples

frompairsofdogsandowners,totaling84isolates,andfrom19(43.1%)controlgroup

sub-jects.Thestrainsshowedhighlevelsofresistancetoampicillin,streptomycin,tetracycline,

trimethoprimandsulfamethoxazoleregardlessofhostspeciesorgroupoforigin.TheblaTEM,

blaCTX-M,andblaSHVgenesweredetectedinsimilarproportionsinallgroups.Allisolates

pos-itiveforblageneswereESBLproducers.ThephylogeneticgroupAwasthemostprevalent,

irrespectiveofthehostspecies.NoneofthestrainsbelongingtotheB2groupcontainedbla

genes.Similarresistancepatternswerefoundforstrainsfromdogs,ownersandcontrols;

furthermore,identicalPFGEprofilesweredetectedinfour(9.5%)isolatepairsfromdogsand

owners,denotingthesharingofstrains.Petdogswereshowntobeapotentialhousehold

sourceofmultiresistantE.colistrains.

©2016SociedadeBrasileiradeMicrobiologia.PublishedbyElsevierEditoraLtda.Thisis

anopenaccessarticleundertheCCBY-NC-NDlicense

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Correspondingauthor.

E-mail:doutoracristiane@ig.com.br(A.C.Carvalho).

http://dx.doi.org/10.1016/j.bjm.2015.11.005

1517-8382/©2016SociedadeBrasileiradeMicrobiologia.PublishedbyElsevierEditoraLtda.ThisisanopenaccessarticleundertheCC

(2)

Introduction

Theimplicationsofmicrobialresistanceforpublichealthhave

increasedtheinterestofthescientificcommunityinthe

pres-enceandcirculationofresistantorganismsbetweenpetsand

thehumanpopulation.Amongpets,dogsshareaclose

prox-imitywithhumans,andproximityisknowntoincreasethe

possibilityoftransmitting resistant bacteriabetweenthese

hostspecies.Itisimportanttonotethatthebacterialabilityto

transfergeneticcassettes,whichconferresistancetoseveral

classesofdrugs,andobservationsofthespreadofresistance

haveincreasedinrecentyears.1,2 Themolecular

character-izationofantimicrobialresistancecouldbeveryuseful not

onlyinsurveillancestudiesandmonitoringandtrackingof

multidrug-resistantstrainsbutalsoinobtaininginformation

aboutcommonalityamonghumanandanimalbacterial

iso-lates.

Escherichia coli is characterized by a substantial genetic

diversity,broadhostrange,versatilityinpathogenicpotential,

anddistribution betweenhostsinthe environment.3 E. coli

isolates,commensal or pathogenic,obtainedfrom humans

andotheranimals,havebeenextensivelystudiedand

char-acterizedintermsoftheirdrugresistanceprofilesbasedon

their phenotypic sensitivity to various antimicrobialdrugs

as well as by their genetic resistance to major classes of

antibiotics detected by molecular assays of genetic

simi-larities amongisolates.4–6 Similarities inresistanceprofiles

amongisolateshavebeendescribed,andthemolecular

char-acterizationoftheseisolateshasdemonstrated substantial

differencesdependingonthepopulationandthegeographic

regionoforigin.Ingeneral,comparisonsofresistanceprofiles

are performedonsamplesofindividuals who are not

nec-essarilycohabiting and are therefore notepidemiologically

related. Further studies are needed tocharacterize related

humanand dog isolatesin Brazil aswell as toinvestigate

thepossibilityofhumansandcaninessharingmultiresistant

strains.Theaimofthisstudywastocompareresistance

pro-filesofisolatesofE.colifromtheintestinaltractsofdogsand

theirownersandtoassessthepresenceofextended-spectrum

beta-lactamase(ESBL)genesinE.coliisolatesrecoveredfrom

dogsandhumanslivinginthesamehousehold.Inaddition,

weintendedtocharacterizethegeneticrelatednessamong

antimicrobial-resistantisolates.

Materials

and

methods

Studydesign

Atotalof134fecalsamplepairsfromdogsandtheirownersof

householdslocatedinthecityofRiodasOstras(RiodeJaneiro,

Brazil)werestudied.Everyowner(>18yearsold)chosenfor

thestudyhadonlyonedog.Acontrolgroupof44fecal

sam-plesfromindividualswhoclaimedhavenocontactwithdogs

wasalsoincludedinthestudy.Thesampleswerecollected

foroneyear(2010),andthehumananddogparticipantshad

notbeenusingantimicrobialsforatleastthreemonthsprior

tothe study.Bacterial strains were selectedusing a

proto-colforgrowthinselectivemediacontainingantibiotics.The

protocolofthisstudywassubmittedtotheResearchEthics

CommitteeofHUAP/UFF(CAAE0146.0.258.000-09)andthe

Ani-malEthicsCommitteeoftheNAL/UFF(NAL00126-09),andit

wasapprovedandcertifiedbybothcommittees.

Bacterialsamples

Fecalsamplesonswabsfromdogsandhumanswereobtained

andprocessedfortesting.TypicalE.colicolonieswereselected

andtestedforantimicrobialsusceptibility.Afterenrichment

growth inE. colibrothcontaininggentamicin(8␮g/mL) and

cephalothin (32␮g/mL),the sampleswere culturedon

Mac-Conkey agar (Himedia, Mumbai, India) supplementedwith

gentamicin(8␮g/mL)andcephalothin(32␮g/mL)topromote

thegrowthofpotentiallymultidrug-resistantE.colistrains.7

Samplesthatdidnotgrowwere discarded.Forquality

con-trolpurposes,eachsamplewasalsoinoculatedintomedium

withoutantibiotics.Threecolonies,believedtobeE.coli,were

chosenfromtheMacConkeyagarcontainingantibioticsand

identifiedbasedonstandardbiochemicaltests.8

Thecharacterizationportionofthisstudy includedonly

isolates that displayed multidrug resistance, which was

definedasresistancetotwoormoreclassesofdrugs.With

ourprotocolofselectiveisolationandsusceptibilitytesting,

onehundredandthreemultidrug-resistantE.coliisolateswere

identifiedfrom dogs(n=42),theirrespectiveowners(n=42)

andcontrolsubjects(n=19).

Antimicrobialsusceptibilitytesting

E.coliisolatesweretestedforantimicrobialsusceptibilityto

the drugsampicillin(AMP),amoxicillin+clavulanate(AMC),

cephalexin (CEF), chloramphenicol (CLO),

trimethoprim-sulfamethoxazole (SUT), streptomycin (EST)+gentamicin

(GEN), doxycycline (DOX)+tetracycline (TET), ciprofloxacin

(CIP),ceftazidime (CAZ),ceftriaxone (CRO),cefepime(CPM),

cefotaxime(CTX)andaztreonam(ATM)usingClinical

Labora-toryStandardsInstitute(CLSI)methodologiesandinterpretive

criteria.9,10

DiskapproximationtestsusingthedrugsAMC,CAZ,ATM,

CTXandCPMwereperformedonallisolatestoscreenforESBL

producersaspreviouslydescribed11andaccordingtoCLSI

rec-ommendations(2012 S22).ThebacterialstrainsE.coliATCC

25922andKlebsiellapneumoniae700603wereusedascontrol

strains.

Characterizationandidentificationofbeta-lactamase genes

Thepresenceofthebeta-lactamase(bla)genesblaTEM,blaCTX-M

and blaSHV was detected by polymerase chain reactions

(PCR)inthird-andfourth-generationcephalosporin-and

ATM-resistantstrainsclassifiedasthoseexceedingthebreakpoints

recommendedbytheCLSI(2012)andthosethattestedpositive

indiskapproximationexperiments.11Theprimersand

ampli-ficationconditionsusedinPCRassaysarelistedinTable1.The

bacterialstrainsusedaspositivecontrolsinPCRreactionsfor

thedetectionofblageneswere:E.coliH21,E. coliA41

(pre-viouslycharacterized12),andK.pneumonia(ATCC700603)for

genesblaTEM,blaCTX-MandblaSHV,respectively.E.coliDH5␣was

(3)

Table1–PrimersandamplificationconditionsusedinPCRreactionsforthedetectionofESBLgenesandphylogenetic characterization.

Geneortargetregion Primers Ampliconsize(bp) Annealingtemperature(◦C) Reference

blaTEM T1ATTCTTGAAGACGAAAGGGCCT 1100 55 Wiegandetal.14 T3TTGGTCTGACAGTTACCAATGC

blaSHV S1ATGAGTTATATTAGAATGGT 860 58 Fuetal.15

S2GTTAGCGTTGCCAGTGCTCG

blaCTX CTM-MACGCTTTGCGATGTGCAG 550 60 Bonnetetal.16

CTX-MBACCGCGATATCGTTGGT chuA GACGAACCAACGGTCAGGAT 279 55 Clermontetal.13 TGCCGCCAGTACCAAAGACA yjaA TGAAGTGTCAGGAGACGCTG 211 ATGGAGAATGCGTTCCTCAAC tspE4.C2 GAGTAATGTCGGGGCATTCA 152 CGCGCCAACAAAGTATTACG

Determinationofphylogeneticgroups

TheE. coli isolateswere subjected tophylogenetic

classifi-cationaccordingtothemethodologydescribedbyClermont

etal.13basedonstandardPCRamplificationofthegenesyjaA,

chuAandaDNAfragmentTspE4.C2.Theprimersand

amplifi-cationconditionsusedareshowninTable1.

PFGEassays

Paired isolates of E. coli from dogs and owners presenting

similarprofilesofresistanceandESBLresistancegeneswere

selected forpulsed field gel electrophoresis (PFGE) ofXbaI

digested total DNA according to a standardized

method-ology of the Centers for Disease Control and Prevention

(CDC) (http://www.cdc.gov/pulsenet/pathogens/index.html).

ThegeneratedPFGEprofilesofwithin-householdisolateswere

compared according criteria proposed by Tenover17:

indis-tinguishable(I) – nodistinct bands; closely related (CR)-2-3

distinct bands; possibly related (PR) – 4–6 distinct bands;

different(D)–morethansevendistinctbands.Restriction

frag-mentprofileswerealsocomparedbyusingtheBioNumerics®

software version6.6 (Applied Maths, Austin, TX), using the

DicesimilarityindexandtheUPGMA(UnweightedPairGroup

MethodwithArithmeticMean)clusteringmethodtoconstruct

the dendrograms. E. coliisolates with≥94% PFGE similarly

wereconsideredtobeclonal.5

Statisticalanalysis

Theprevalenceofresistancetoantimicrobials,thepresenceof

ESBLgenesandthedistributionofphylogeneticgroupsamong

canine,humanand control groupsamples were compared

usingtheChi-squaredtestwithp≤0.05usedasthecriterion

forstatisticalsignificance.

Results

and

discussion

Multiresistant E. coli strains were selectively isolated from

42 (31.3%)fecal sample pairs from dogs and their owners,

totaling84 isolates,andfrom 19(43.1%)controlgroup

sub-jects.Thefrequencyofmultiresistant E. coliobtainedfrom

fecalsamplescanreach89%,accordingtosomestudies,with

frequenciesthatvaryaccordingtotheselectioncriteria.18–21

To recover strains that exhibited potential resistance to

multiple antimicrobials, we used cephalothin. Cephalothin

resistance is clinically significant because it is frequently

found insituations without strong selectivity (water

reser-voirs and non-hospital locations). Cephalothin resistance

is alsoassociatedwithother resistancemarkers, including

markersforchloramphenicol,tetracycline,and

trimethoprim-sulfamethoxazole,whichareconsideredcommonmarkersin

ourcategorization.Gentamicinwasalsousedinour

identi-ficationofmultidrugresistance,duetothehighcorrelation

betweengentamicinresistanceandmultiresistance profiles

in nosocomial strains.7 Because of this selective isolation

protocol, some samples did not grow in the presence of

the antimicrobialsmentioned,and thus we may have lost

some multiresistant strains sensitive to the drugs used in

theselection.Alloftheisolatesincludedinourstudy,

how-ever,wereresistanttoatleasttwodrugclasses,presumably

becausetheywereallsubjectedtoaselectiveisolation

pro-cedure. When the same resistanceprofilewas observedin

a dogand ownerpair, adifferent methodofselectionwas

used toenhance the detection of lower prevalenceclones.

Thismethod,describedbyDamborgandcolleagues,22entails

selecting coloniesthatgrowinthe inhibitionzonesformed

bythedrugsamikacin,gentamicin,ampicillin,ciprofloxacin,

cefotaxime, and sulfamethoxazole-trimethoprim on

Mac-Conkey agar, and submitting these for identification. This

wasdonetoenhancetheidentificationofmultidrug-resistant

strainscommontobothdogsandownersofsubjectpairs.

Among the resistant E. coli fecal isolates, 74 patterns

were observed, each with resistance to at least two drug

classes (data not shown). Across all groups, the most

fre-quentresistancepatternswereAMP/EST(13.6%)followedby

AMP/EST/SUT (3.9%). There were no significant differences

intheresistancefrequenciesamongthetesteddrugsexcept

for sulfamethoxazole-trimethoprim for which the human

isolatesfromownersandcontrolgroupsubjectshad

statis-ticallyhigherresistancefrequenciesthanthecanineisolates

(p≤0.05).Otherstudiesshowedfewpatternscomparableto

our data.21–23 Inasimilar study,Skurniket al.24 compared

fecalE.colifromdifferentanimalspeciesandnotedthatthe

(4)

Table2–NumbersofresistantE.coliisolatesoffecalorigin(humansanddogs)forthedrugstested.

Antimicrobials Numberofresistantisolates(%) Dogs n=42 Humans(owners) n=42 Humans(control) n=19 AMP 36(85.7) 31(73.8) 17(89.4) AMC 15(35.7) 10(23.8) 4(21.1) CFE 14(33.3) 13(30.9) 8(42.1) CAZ 7(16.6) 3(7.1) 4(21.1) CPM 4(9.5) 3(7.1) 3(15.8) CTX 8(19.4) 6(14.3) 2(10.5) CRO 9(21.4) 6(14.3) 5(26.3) ATM 7(16.6) 6(14.3) 5(26.3) GEN 13(30.9) 17(40.5) 11(57.8) EST 28(66.6) 27(64.3) 11(57.8) CLO 10(23.8) 14(33.3) 5(26.3) CIP 5(11.9) 9(21.4) 2(10.5) SUT 13(30.9) 23(54.7) 12(63.2) TET 21(50.0) 22(52.3) 11(57.8) DOX 14(33.3) 11(26.2) 5(26.3)

AMP,ampicillin;AMC,amoxicillin+clavulanicacid;CFE,cephalexin;CAZ,ceftazidime;CPM,cefepime;CTX,cefotaxime;CRO,ceftriaxone; ATM,aztreonam;GEN,gentamicin;EST,streptomycin;CLO,chloramphenicol;CIP,ciprofloxacin;SUT,sulfamethoxazole+trimethoprim;TET, tetracycline;DOX,doxycycline.

thehighestlevelsofmultiresistantstrainslikethosefoundin humans.Thesedataaresimilartothoseobtainedinourstudy. In our study, the highest frequency of resistance was recorded for ampicillin, tetracycline, streptomycin, and trimethoprim-sulfamethoxazole (Table 2). Resistance

to streptomycin, ampicillin, tetracycline, chloramphenicol

and trimethoprim-sulfamethoxazole has been observed in

otherstudiesofdogfecalisolates18–21,23,25andhumanfecal

isolates.26,27 Aminopenicillins and aminoglycosides appear

most often among the three classes of drugs with high

frequencies of resistance in studies of samples of animal

origin.6,21,23,28–34Strainsresistanttothecarbapenemstested

inthisstudywerenotdetected.

Importantly, the strains analyzed in this study were

selected using media containing antibiotics, and although

resistancerates may havebeen higher than reported

else-where, the prevalence data, especially for ampicillin and

streptomycin,weresimilartothoseobservedinotherstudies.

Stenskeetal.5alsocomparedtheresistanceprofilesoffecal

strainsfromdogsandtheirowners,obtaininghigh

frequen-ciesofresistancetocephalothin,ampicillin,andstreptomycin

inbothgroups,aresultcomparabletoourcurrentfindings,

althoughourfrequencieswerehigherandweusedcephalexin

ratherthancephalothin.Haradaetal.35observedsimilarities

amongisolatesfromdogsandhumans;however,theyshowed

significantdifferencesbetweenthegroupsanalyzedinterms

ofwhichdrugscorrespondedtothehighestratesofresistance.

Comparisonsof strains of clinical origin has also been

afocus ofstudy oftheepidemiologyofantimicrobial

resis-tanceandhasshownthatthedrugsampicillin,streptomycin

andsulfamethoxazole-trimethoprimexhibithighfrequencies

ofresistancein strains ofbothhuman origin36–38 and dog

origin.6,28–33 With regard to isolates from dogs, resistance

tothefirst-generationcephalosporins,includingcephalothin

andcephalexin,wasalsoidentifiedinthestudiescited.

Dif-ferences in the proportions of resistancehave been noted

in relationtothe site ofinfection, forexample,in urinary

infection,pyometraandosteomyelitis,inwhichdifferent

lev-elsofresistancetothesamedrugswereencountered.18,39–41

Some studies characterizing resistance in strains

originat-ing from humanpatients haveanalyzed the prevalenceof

resistant infections in samples from hospital patients and

outpatients.42Thesestudiesshowmanydifferencesin

resis-tanceprevalence,relatednotonlytotheoriginofthesamples

but also to the site of infection, the continent and

coun-trywherethestudytookplaceaswellastheprofilesofthe

patientsfromwhichthesamplesoriginated.Differencesare

alsoattributedtotherepertoireofantibioticsusedinthestudy.

In the current study, 28.5% of the E. coli isolates from

dogs were resistant to atleast one antibiotic belongingto

thethird-orfourth-generationcephalosporinsandwere

posi-tiveforESBLbydisk-approximationtest.Thisprofileoccurred

in 16.6% and 36.8% of isolates from dog owners and

con-trol subjects,respectively.These differences,however,were

not significant. Resistance to third-and fourth-generation

cephalosporinsissuggestiveofbeta-lactamaseproductionby

theisolates.Inourtests,wedetectedbeta-lactamresistance

genesoftheblaTEM,blaCTX-MandblaSHVfamiliesinisolatesof

bothhumananddogorigin(Table3).

WedetectedatleastoneESBLencodinggenein26.2%of

theE.coliisolatesandallofthemwere alsopositiveinthe

phenotypictests.However,fiveisolates(8H,9H,57H,22F,38F),

despitepresentingphenotypessuggestiveofESBLproduction,

didnottestpositiveforanyofthethreeblagenessurveyedin

ourstudy.OtherESBLgenesmaybepresentinthesestrains

becausetheOXAandCMYgenefamiliesarealsocommonin

E.coli.43

The blaCTX-M gene was significantly more prevalent in

strainsfromthecontrolgroupthanintheothertwogroups;

furthermore,allESBLpositiveisolatesinthisgroupwere

pos-itiveforCTX-M.Indogisolates,theblaTEMgenewaspresent

(5)

Table3–PhylogeneticgroupsandESBLgenesamongfecalE.coliisolatesfromdogs,theirowners,andcontrolhuman subjects.

Class Type NumberofIsolates(%) Total(%)

Dogs(n=42) Owners(n=42) Controls(n=19)

Phylogeneticgroup A 21(50) 24(57.1) 10(52.6) 55(53.4) B1 09(21.4) 08(19.1) 02(10.5) 19(18.4)

B2 03(7.2) 04(9.5) 00(0) 07(6.9)

D 09(21.4) 06(14.3) 7(36.9) 22(21.3)

ESBLgenea blaTEM 3 4 0

blaTEM/blaCTX-M 4 1 3

blaCTX-M 4 2 4

blaTEM/blaCTX-M/blaSHV 1 1 0

Total 12(28.6) 8(19.0) 7(36.8) 27(26.2)

a AllisolatescarryinganESBLgenewerealsopositiveinphenotypictests.

theblaCTX-Mgenewasdetectedin75%oftheseisolates.Only

8.4%ofthedogisolateswerepositivefortheblaSHVgene.In

humanstrains,theprevalentESBLgenefamilywastheblaTEM

family.TheblaCTX-Mgenewaspresentinsimilarproportions

instrainsofhumananddogoriginfromthesamehousehold.

TheblaSHVgenewasdetectedin8.4%ofthehumanisolates.

ThedetectionofESBLgenesinisolatesofpetdogswasfirst

publishedin1988.43Otherstudieshavealsoreportedthe

pres-enceoftheblagenesinisolatesfromdogs,especiallyisolates

of clinical origin. Different subtypes of the bla gene

CTX-M are oftendetectedin extraintestinal clinical isolates44,45

andinfecalisolates.22,29,46Thebla

TEMgene,detectedin

clin-icalstrainsfromdogssince2002,6,28,44,45,47wasalsofoundin

intestinalisolates.19,21,29,46Forthegenebla

SHV,dataare

simi-lar,withdetectioninbothclinical29,44andfecalisolates.6,29,48

TheprevalenceofthesegenesindogE.colistrains,however,

isnotwellestablished.

The prevalenceof ESBL genes in human clinical

speci-mens varies considerably, depending on the origin of the

strains,whethertheinfection originatedinahospitalorin

acommunitysetting,andonthesiteofinfection.Generally,

isolatesfrom infections acquired inhospitalsexhibit more

complexprofileswithbroaderrepertoiresofresistance

com-paredtoisolatesofcommunity-acquired infections.Recent

data indicate a prevalence of ESBL blaCTX-M genes in the

bloodstream49,50andinotherinfectionsinhospitalsettings.51

Less than a decade ago,TEM and SHV ESBL isolates were

thoughttobelimitedtothehospitalenvironment,and

CTX-MESBLisolates weredetectedin urinarytract infections in

community settings.52 Currently, the most prevalent ESBL

geneidentifiedinisolatesacrossmanycountriesisthe

CTX-Mgene,particularlytheCTX-M-15gene,whichisassociated

withIncFvariantplasmids.53 Theepidemiologicalprofileof

highly mutable enterobacteria can be considered an

addi-tionalfactorinthisvariability,whichgreatlyinfluencedthe

spread of plasmids and other transposable elements

act-ing asmobile carriersof multipleresistancegenes against

drugs,includingaminoglycosides,chloramphenicol,

tetracy-cline,andtrimethoprim-sulfamethoxazole.54

Inourstudy,thedistributionofphylogeneticgroupsinthe

hostspeciesexaminedwassimilarinallgroups,withthe

phy-logeneticgroupAbeingthemostprevalent(Table3),occurring

in50%ofthecaninestrains,57.2%ofthehumanstrainsand

52.6% ofthecontrolgroup.For fecalstrains, this findingis

consistentwithliteraturethatdescribesthemajorityof

iso-latesfromcommensalstrains,regardlessoftheirrepertoireof

resistance,belongingtogroupsAorB1.55

Thedistributionofphylogroupsamongdogisolates,

how-ever, has been shown to differ in terms of prevalence

in extraintestinal, commensal and clinical samples. In the

caseofextraintestinalisolates,wherethepredominant

phy-logroupswereexpectedtobegroupsB2andD,Gibsonetal.32

foundno isolatesbelongingtogroupB2,whereasMaynard

et al.6 reported a 63% frequency of the B2 phylogroup in

extraintestinal samples.Moreover,commensalstrains from

animalsingeneralpredominantlyincludedthegroupsAand

B1.FecalstrainsfromdogsinastudybyHaradaetal.35showed

a highprevalenceofgroup B2.Daviset al.25 alsoobserved

a predominanceofB2(and D)intheirisolatesfrom

differ-entanatomicalregionsofhealthydogs,includingtherectal

area.

Studies comparing humanand canine isolatesin terms

ofantimicrobialresistanceprofiles usedsamplesofclinical

origin, whichhad ahigher prevalenceofgroups B2and D,

as expected. However, Harada et al.35 analyzed fecal

sam-plesfromdogsandtheirownerswithoutusingantimicrobial

agents for selective isolation, and they observed a higher

prevalenceofgroup B2,whereas Damborget al.22 reported

that intheir experiments,humanfecalisolatesmoreoften

belongedtogroupAandthedogisolatestogroupB1.Astudy

byClermont etal.4 showedthatextraintestinal infectionis

mostlycausedbyE.colistrainsofgroupB2.Anassessment

ofextraintestinalclinicalisolatesfromdogsrevealedthatthe

twomaingroupsofE.coliresistanttofluoroquinolonesareA

andD.56DatareportedinastudybySkurniketal.,57however,

suggestedthatclinicalisolatesfromgroupB2arelessresistant

toantimicrobialsthannon-B2isolates.

Inourtests,12ESBLisolatesbelongedtogroupAand10

togroupD,andnoESBLisolatescarryingthegenesblaTEM,

blaSHVandblaCTX-MwereincludedingroupB2.Ourdata

sug-gestthatresistantcommensalE.colistrainsdonotnecessarily

belongtothephylogroupsexpectedfromresistantpathogenic

strains.Theexplanationforthisobservationrequiresfurther

(6)

Table4–Resistance,ESBLgenesandgeneticrelatednessofpairsofE.coliisolatesoffecalorigin(dogsandhumans withinahousehold)withsimilarprofiles.

Isolatea Hostspecies Resistancephenotypeb ESBLgenes Phylogroup PFGEc

blaTEM blaCTX-M blaSHV

15F Dog AMPAMCCFECAZCTXATM − + − D −

15H Human AMPAMCCFECTXCRO − + − A −

23F Dog AMPESTCLOSUTTET − − − D I

23H Human AMPESTCLOSUTTET − − − A I

27F Dog AMPCFEEST − − − B1 D

27H Human AMPCFEEST − − − A D

48F Dog AMPCFECAZCTXCROGENESTCLOSUT + + − A I

48H Human AMPCFECTXCROGENESTCLOSUTTET + + − B1 I

49F Dog AMPAMCCFECPMCTXCROGENEST

CLOCIPSUTTET

− + − B1 D

49H Human AMPCFECPMCTXCROGENESTCLOSUT TET

+ − − B1 D

59F Dog AMPEST − − − B1 D

59H Human AMPEST − − − B1 D

61F Dog AMPAMCESTCLOSUTTETDOX − − − B2 I

61H Human AMPAMCESTCLOSUTTETDOX − − − B2 I

58F Dog AMPAMCESTCLO + − − B1 −

58H Human AMPESTCLO − − − B1 −

92F Dog AMPCAZATMGENESTCIPSUTTETDOX + + + B1 I

92H Human AMPATMGENESTCIPSUTTETDOX + − + B1 I

a TheletterFdesignatescaninefecalisolates;H,humanfecalisolates(dogowners).

b AMP,ampicilin;AMC,amoxicillin+clavulanicacid;CFE,cephalexin;CAZ,ceftazidime;CPM,cefepime;CTX,cefotaxime;CRO,ceftriaxone;

ATM,aztreonam;GEN,gentamicin;EST,streptomycin;CLO,chloramphenicol;CIP,ciprofloxacin;SUT,sulfametoxazol+trimethoprim;TET, tetracycline;DOX,doxycycline.

c Tenovercriteriaappliedforeachisolatepairfromthesamehousehold:I,indistinguishable;D,different;notpossibletocompareduethe

DNAdegradationofoneisolateduringthePFGErestriction.

ThepresenceofESBLgeneswassimilarinE.coliisolates

fromdogsandfromtheirowners,especiallyinsomehuman

anddog isolatesfromthe samehousehold. Thus,18E. coli

isolatescomprisingnineisolatepairsfromdogsandowners

thatpresentedsimilarantimicrobialresistance,ESBLgenes

andphylogeneticgroupprofileswereselectedforPFGEassays

(Table4).ByapplyingtheTenovercriteriatoeachisolatepair

fromthesamehousehold,wedetectedfourisolatepairswith

identicalpatterns.ThedendrogramconstructedwiththePFGE

profilesoftheseisolatesreinforcestherelatednessbetween

thesefourstrainpairs,anditshowsastrongsimilaritytoan

isolatepairwithanotherdogisolate(Fig.1).

Some strains recovered from dogs and owners showed

phenotypicandgenotypicsimilaritiessuggestingaclonal

rela-tionship.Indeed,wedemonstratedinthisstudythesharing

ofmultiresistantE.colistrainsin9.5%(4/42)ofthepairsof

isolatesfromthedogsandtheirownersthatwestudied.

IncomparisonsbetweenE.coliisolatesofhumananddog

origin, many similarities have been identified in the

vari-oustraitsstudied,especiallywithregardtotherepertoireof

Fig.1–DendrogramshowinggenomicPFGEfingerprintpatternsoffecalE.coliisolatesfromdogs(F)andowners(H)with

similarresistanceprofiles.ThedendrogramwasconstructedusingtheDicesimilaritycoefficientandUPGMAclustering

(7)

virulenceofthestrains.5,6,35,58,59 Ithasbeensuggestedthat

the hostspecificity of E. colistrains is determined by

spe-cificadhesions.4Studieshaveshownasimilaroccurrenceof

virulencefactorsassociatedwithextraintestinalpathogenic

E.coliinstrainsisolatedfromdogsandhumans.6,58,60Some

studiessuggestthaturopathogenicE.colistrainsareshared

betweendogsandhumans,58whereasothersshowa

signif-icantdiversityinthevirulencerepertoiresofstrainsisolated

fromdistinctspeciesorevenwithinthesamespecies.6,35

Regardingthegeneticsofresistance,the dataare

some-whatheterogeneousanddifferdependingonthepopulation

andthegeographicregionoforiginaswellasonwhetherthe

strainsarecommensal orpathogenic.5,35,48 Despitethefact

thatapositivecorrelationbetweenthepresenceofplasmids

andintegronswithamultiresistantphenotypeisdescribedin

severalstudies,24,61 additionalfactorsthatshapethegenetic

structureofthesestrainsareimportant.55,62Comparisonsof

resistanceprofilesarenotalwaysperformedonstrainsfrom

cohabitingindividuals,andsamplesarethereforenotalways

epidemiologicallyrelated.Thecharacterization,therefore,of

relatedhumanandcanineisolates,aswellasthepossibility

ofsharingmultiresistantstrainsbetweenhumansanddogs,

requiresfurtherstudyinBrazil.

Conclusion

We detected the simultaneous presence of

multidrug-resistantE.coliindogsandtheirowners,albeitwithdifferent

phenotypic profiles of antibiotic resistance, especially for

ESBLs.Furthermore,somestrainsfromdogsandhumansof

the same householdhad similar resistance patterns,ESBL

genes,identicalphylogeneticgroupsandidenticalorclosely

relatedPFGEprofiles.These datademonstratehigh degrees

ofhomologyandthereforethepossibilitythatresistantE.coli

clonesarecirculatingbetweenindividualsandanimalsinthe

sameenvironment.Indeedsomestrainsshowedclonal

rela-tionshipsindicatingwithin-householdsharing.

In addition, our data suggest that the prevalence of

antimicrobial-resistantcommensal E.coli isvery similar in

dogsandhumansandthatthereisnodifferenceamongthe

resistantE.coliisolatedfromdog-ownersandhumanswithout

petdogs.

Thisareaneedsmoreaccurateinvestigations andmany

uncertainties remain regarding how resistance arises and

spreadsintheenvironmentandamongcohabitinghumans

anddomesticanimals.

Conflicts

of

interest

Theauthorsdeclarenoconflictsofinterest.

Acknowledgements

Thisstudy was supportedbya Grantfrom State ofRiode

JaneiroResearchFoundation(FAPERJProcE-26/111.520/2010).

WealsothankDr.FelipeP.Gonc¸alvesNevesfortheirsupport

inthedendogramsconstructions.

r

e

f

e

r

e

n

c

e

s

1.AlekshunMN,LevySB.Molecularmechanismsof

antibacterialmultidrugresistance.Cell.2007;128:

1037–1050;

LeonardEK,PearlDL,FinleyRL,etal.Comparisonof

antimicrobialresistancepatternsofSalmonellaspp.and

Escherichiacolirecoveredfrompetdogsfromvolunteer

householdsinOntario(2005-06).JAntimicrobChemother.

2012;67:174–181.

2.CarattoliA.ResistanceplasmidfamiliesinEnterobacteriaceae.

AntimicrobAgentsChemother.2009;53:2227–2238.

3.TorresAG,Arenas-HernándezMM,LagunaIM.Overviewof

Escherichiacoli.In:TorresAG,ed.PathogenicEscherichiacoliin LatinAmerica.BenthamSciencePublishers;2010:1–7.

4.ClermontO,OlierM,HoedeC,etal.Animalandhuman

pathogenicEscherichiacolistrainssharecommongenetic

backgrounds.InfectGenetEvol.2011;11:654–662.

5.StenskeKA,BemisDA,GillespieBE,etal.Comparisonof

clonalrelatednessandantimicrobialsusceptibilityoffecal

Escherichiacolifromhealthydogsandtheirowners.AmJVet

Res.2009;70:1108–1116.

6.MaynardC,BekalS,SanschagrinF,etal.Heterogeneity

amongvirulenceandantimicrobialprofilesofextraintestinal

E.coliisolatesofanimalandhumanorigin.JClinMicrobiol.

2004;42:5444–5452.

7.Meirelles-PereiraF,deMeirellesSantosPereiraA,daSilva

MCG,etal.Ecologicalaspectsoftheantimicrobialresistance

inbacteriaofimportancetohumaninfections.BrazJ

Microbiol.2002;33:287–293.

8.EwingWH.EdwardsandEwing’sIdentificationof

Enterobacteriaceae.4thed.ElsevierSciencePublishingCo.; 1986.

9.ClinicalLaboratoryStandardsInstitute(CLSI).Performance

StandardsforAntimicrobialDiskSusceptibilityTests, Twenty-SecondInformationalSupplement.CSLIDocument M100-S22.Wayne,PA:ClinicalLaboratoryStandards

Institute;2012.

10.ClinicalLaboratoryStandardsInstitute(CLSI).Performance

StandardsforAntimicrobialDiskSusceptibilityTests,Approved Standard-EleventhEdition.CLSIDocumentM02-A11.Wayne,PA:

ClinicalLaboratoryStandardsInstitute;2012.

11.JarlierV,NicolasMH,FournierG,PhilipponA.Extended

broad-spectrumbeta-lactamasesconferringtransferable

resistancetonewerbeta-lactamagentsinEnterobacteriaceae:

hospitalprevalenceandsusceptibilitypatterns.RevInfectDis.

1988;10:867–878.

12.AlvesDP(MScDissertation)PhenotypicandGenotypic

CharacterizationofUropathogenicEscherichiacoliIsolatedfrom HumanandDogs.Niterói,Brasil:InstitutoBiomédico,

UniversidadeFederalFluminense;2009.

13.ClermontO,BonacorsiS,BingenE.Rapidandsimple

determinationoftheEscherichiacoliphylogeneticgroup.Appl

EnvironMicrobiol.2000;66:4555–4558.

14.WiegandI,GeissHK,MackD,StürenburgE,SeifertH.

Detectionofextended-spectrumbeta-lactamasesamong

Enterobacteriaceaebyuseofsemiautomatedmicrobiology

systemsandmanualdetectionprocedures.JClinMicrobiol.

2007;45:1167–1174.

15.FuY,ZhangF,ZhangW,etal.Differentialexpressionof

bla(SHV)relatedtosusceptibilitytoampicillininKlebsiella

pneumoniae.IntJAntimicrobAgents.2007;29:344–347.

16.BonnetR,ReculeC,BaraducR,etal.EffectofD240G

substitutioninanovelESBLCTX-M-27.JAntimicrob

Chemother.2003;52:29–35.

17.TenoverFC,ArbeitRD,GoeringRV,etal.Interpreting

(8)

pulsed-fieldgelelectrophoresis:criteriaforbacterialstrain

typing.JClinMicrobiol.1995;33:2233–2239.

18.PedersenK,PedersenK,JensenH,FinsterK,JensenVF,Heuer

OE.Occurrenceofantimicrobialresistanceinbacteriafrom

diagnosticsamplesfromdogs.JAntimicrobChemother.

2007;60:775–781.

19.CostaD,PoetaP,SáenzY,etal.Prevalenceofantimicrobial

resistanceandresistancegenesinfaecalEscherichiacoli

isolatesrecoveredfromhealthypets.VetMicrobiol.

2008;127:97–105.

20.HaradaK,MorimotoE,KataokaY,TakahashiT.Clonalspread

ofantimicrobial-resistantEscherichiacoliisolatesamong

pupsintwokennels.ActaVetScand.2011:11.Availableat:

http://www.actavetscand.com/content/53/1/.

21.WedleyAL,MaddoxTW,WestgarthC,etal.Prevalenceof

antimicrobial-resistantEscherichiacoliindogsina

cross-sectional,community-basedstudy.VetRec.

2011;168:354–359.

22.DamborgP,NielsenSS,GuardabassiL.Escherichiacoli

sheddingpatternsinhumansanddogs:insightsinto

within-householdtransmissionofphylotypesassociated

withurinarytractinfections.EpidemiolInfect.

2009;137:1457–1464.

23.NamHM,LeeHS,ByunJW,etal.Prevalenceofantimicrobial

resistanceinfecalEscherichiacoliisolatesfromstraypetdogs

andhospitalizedpetdogsinKorea.MicrobDrugResist.

2010;16:75–79.

24.SkurnikD,RuimyR,AndremontA,etal.Effectofhuman

vicinityonantimicrobialresistanceandintegronsinanimal

faecalEscherichiacoli.JAntimicrobChemother.

2006;57:1215–1219.

25.DavisJA,JacksonCR,Fedorka-CrayPJ,etal.Anatomical

distributionandgeneticrelatednessof

antimicrobial-resistantEscherichiacolifromhealthy

companionanimals.JApplMicrobiol.2011;110:597–604.

26.Jelesi ´cZ,GusmanV,UkropinaMM,KulauzovM,Medi ´cD.

ResistanceofEscherichiacolifromhealthydonorsandfrom

food−anindicatorofantimicrobialresistancelevelinthe

population.MedPregl.2011;64:397–402.

27.UnnoT,HanD,JangJ,etal.Genotypicandphenotypictrends

inantibioticresistantpathogenicEscherichiacoliisolated

fromhumansandfarmanimalsinSouthKorea.Microbes

Environ.2011;26:198–204.

28.FériaC,FerreiraE,CorreiaJD,Gonc¸alvesJ,Canic¸aM.Patterns

andmechanismsofresistanceto␤-lactamsand␤-lactamase

inhibitorsinuropathogenicEscherichiacoliisolatedfromdogs

inPortugal.JAntimicrobChemother.2002;49:77–85.

29.CarattoliA,LovariS,FrancoA,CordaroG,DiMatteoP,

BattistiA.Extended-spectrum␤-lactamasesinEscherichiacoli

isolatedfromdogsandcatsinRome,Italy,from2001to2003.

AntimicrobAgentsChemother.2005;49:833–835.

30.PoetaP,RodriguesJ.Detecc¸ãodaresistênciaaantibióticosde

bactériasisoladasdecasosclínicosocorridosemanimaisde

companhia.ArqBrasMedVetZootec.2008;60:506–508.

31.KadlecK,SchwarzS.Analysisanddistributionofclass1and

class2integronsandassociatedgenecassettesamong

Escherichiacoliisolatesfromswine,horses,catsanddogs

collectedintheBfT-GermVetmonitoringstudy.JAntimicrob

Chemother.2008;62:469–473.

32.GibsonJS,CobboldRN,TrottDJ.Characterizationof

multidrug-resistantEscherichiacoliisolatedfrom

extraintestinalclinicalinfectionsinanimals.JMedMicrobiol.

2010;59(Pt5):592–598.

33.ShaheenBW,BootheDM,OyarzabalOA,SmahaT.

Antimicrobialresistanceprofilesandclonalrelatednessof

canineandfelineEscherichiacolipathogensexpressing

multidrugresistanceintheUnitedStates.JVetInternMed.

2010;24:323–330.

34.AwjiEG,DamteD,LeeSJ,LeeJS,KimYH,ParkSC.The

invitroactivityof15antimicrobialagentsagainstbacterial

isolatesfromdogs.JVetMedSci.2012;74:1091–1094.

35.HaradaK,OkadaE,ShimizuT,KataokaY,SawadaT,

TakahashiT.Antimicrobialresistance,virulenceprofiles,and

phylogeneticgroupsoffecalEscherichiacoliisolates:a

comparativeanalysisbetweendogsandtheirownersin

Japan.CompImmunolMicrobiolInfectDis.2012;35:

139–144.

36.DiasRCS,MarangoniDV,SmithSP,etal.Clonalcomposition

ofEscherichiacolicausingcommunity-acquiredurinarytract

infectionsintheStateofRiodeJaneiro,Brazil.MicrobDrug

Resist.2009;15:303–308.

37.CagnacciS,GualcoL,DebbiaE,SchitoGC,MarcheseA.

Europeanemergenceofciprofloxacin-resistantEscherichia

coliclonalgroupsO25:H4-ST131andO15:K52:H1causing

community-acquireduncomplicatedcystitis.JClinMicrobiol.

2008;46:2605–2612.

38.BlattJM,MirandaMC.Perfildosmicrorganismoscausadores

deinfecc¸õesdotratourinárioempacientesinternados.Rev

PanamInfectol.2005;7:10–14.

39.HagmanR,GrekoC.Antimicrobialresistancein

Escherichiacoliisolatedfrombitcheswithpyometraandfrom

urinesamplesfromotherdogs.VetRec.2005;157:193–196.

40.LaraVM,DonadeliMP,CruzFSF,CarregaroAB.

MultirresistênciaantimicrobianaemcepasdeEscherichiacoli

isoladasdecadelascompiometra.ArqBrasMedVetZootec.

2008;60:1032–1034.

41.SimionatoAC,RamosMCC,CoutinhoSDA.Isolamentode

bactériasaeróbiasesuasensibilidadeaantimicrobianosem

processosdeosteomielitecanina.ArqBrasMedVetZootec.

2003;55:148–154.

42.PolettoKQ,ReisC.Suscetibilidadeantimicrobianade

uropatógenosempacientesambulatoriaisnaCidadede

Goiânia.GORevSocBrasMedTrop.2005;38:416–420.

43.LiXZ,MehrotraM,GhimireS,AdewoyeL.␤-Lactam

resistanceand␤-lactamasesinbacteriaofanimalorigin.Vet

Microbiol.2007;121:197–214.

44.O’KeefeA,HuttonTA,SchifferliDM,RankinSC.First

detectionofCTX-MandSHVextended-spectrum

␤-lactamasesinEscherichiacoliurinarytractisolatesfrom

dogsandcatsintheUnitedStates.AntimicrobAgents

Chemother.2010;54:3489–3492.

45.DierikxCM,vanDuijkerenE,SchoormansAHW,etal.

Occurrenceandcharacteristicsof

extended-spectrum-␤-lactamase-andAmpC-producing

clinicalisolatesderivedfromcompanionanimalsand

horses.JAntimicrobChemother.2012;67:1368–1374.

46.TamangMD,NamHM,JangGC,etal.Molecular

characterizationof

extended-spectrum-␤-lactamase-producingand

plasmid-mediatedAmpC␤-lactamase-producingEscherichia

coliisolatedfromstraydogsinSouthKorea.Antimicrob

AgentsChemother.2012;56:2705–2712.

47.CostaD,PoetaP,Bri ˜nasL,SáenzY,RodriguesJ,TorresC.

DetectionofCTX-M-1andTEM-52␤-lactamasesin

EscherichiacolistrainsfromhealthypetsinPortugal.J AntimicrobChemother.2004;54:960–961.

48.MartinsLRL,PinaSMR,SimõesRLR,deMatosAJ,RodriguesP,

daCostaPM.Commonphenotypicandgenotypic

antimicrobialresistancepatternsfoundinacasestudyof

multiresistantE.colifromcohabitantpets,humans,and

householdsurfaces.JEnvironHealth.2013;75:74–81.

49.Courpon-ClaudinonA,LefortA,PanhardX,etal.,COLIBAFI

Group.Bacteraemiacausedbythird-generation

cephalosporin-resistantEscherichiacoliinFrance:prevalence,

molecularepidemiologyandclinicalfeatures.ClinMicrobiol

(9)

50.NORM/NORM-VET2011.UsageofAntimicrobialAgentsand OccurrenceofAntimicrobialResistanceinNorway.Tromsø/Oslo;

2012.ISSN:1502-2307(print)/1890-9965(electronic).Available

atwww.vetinst.no.

51.PeiranoG,AsensiMD,Pitondo-SilvaA,PitoutJDD.Molecular

characteristicsofextended-spectrum

␤-lactamase-producingEscherichiacolifromRiodeJaneiro,

Brazil.ClinMicrobiolInfect.2011;17:1039–1043.

52.PatersonDL,DoiY.Astepclosertoextremedrugresistance

(XDR)inGram-negativebacilli.ClinInfectDis.

2007;45:1179–1181.

53.LivermoreDM.Fourteenyearsinresistance.IntJAntimicrob

Agents.2012;39:283–294.

54.CasellasJM.ResistenciaalosantibacterianosenAmérica

Latina:consecuenciasparalainfectología.RevPanamSalud

Publica.2011;30:519–528.

55.TenaillonO,SkurnikD,PicardB,DenamurE.Thepopulation

geneticsofcommensalEscherichiacoli.NatRevMicrobiol.

2010;8:207–217.

56.PlatellJL,CobboldRN,JohnsonJR,TrottDJ.Clonalgroup

distributionoffluoroquinolone-resistantEscherichiacoli

amonghumansandcompanionanimalsinAustralia.J

AntimicrobChemother.2010;65:1936–1938.

57.SkurnikD,LeMenac’hA,ZurakowskiD,etal.

Integron-associatedantibioticresistanceandphylogenetic

groupingofEscherichiacoliisolatesfromhealthysubjectsfree

ofrecentantibioticexposure.AntimicrobAgentsChemother.

2005;49:3062–3065.

58.JohnsonJR,StellAL,DelavariP.Caninefecesasareservoirof

extraintestinalpathogenicEscherichiacoli.InfectImmun.

2001;69:1306–1314.

59.VonSydowACMDG,CooganJA,MorenoAM,MelvillePA,

BenitesNR.Ocorrênciadefatoresdevirulênciaemestirpes

deEscherichiacoliisoladasdefezesdecãeserrantes.ArqInst Biol(SaoPaulo).2006;73:401–407.

60.JohnsonJR,JohnstonB,ClabotsCR,KuskowskiMA,Roberts

E,DebRoyC.Virulencegenotypesandphylogenetic

backgroundofEscherichiacoliserogroupO6isolatesfrom

humans,dogs,andcats.JClinMicrobiol.2008;46:417–422.

61.TalukdarPK,RahmanM,RahmanM,etal.Antimicrobial

resistance,virulencefactorsandgeneticdiversityof

Escherichiacoliisolatesfromhouseholdwatersupplyin

Dhaka,Bangladesh.PLoSONE.2013;8:e61090.

62.CarattoliA.Animalreservoirsforextendedspectrum

beta-lactamaseproducers.ClinMicrobiolInfect.2008;14(Suppl

Referências

Documentos relacionados

albicans cells upon exposure to a lethal concentration of the BCO, namely thickening of the cell wall and an increased cell size, which are the most striking features, were

Em relação à formação adquirida durante o CM para lidar com os problemas de SM com os quais os internos se deparam nos CSP (figura 6), uma minoria dos respondentes

ABSTRACT: This study identified the virulence genes, pathovars, and phylogenetic groups of Escherichia coli strains obtained from the feces of dogs with and without

Como ressalta Ribeiro, a coleção fundamenta seu discurso escrito e visual sobre a representação do outro, elemento importante na estruturação das qualidades que definiriam

This section seeks to present an employed notation (3.1) and a proposed formulation (3.2), the Facility Location Problem and the application and measurement of a heuristic model

strains isolated from tracheal wash (TW) and fecal samples (FS) obtained from mule foals of less than six months of age, with or without cytological evidence of

FIGURE 1: Distribution of ESBL genes and AmpC beta-lactamases among 163 ESBL-producing Escherichia coli isolates from urinary tract infections and..

[55] em uma coorte que incluiu 25 centros de diálise do Canadá, analisaram 558 pacientes que tiveram mais de um episódio de peritonite, sendo que a maioria apresentou 2