• Nenhum resultado encontrado

Improving bioactive compounds extractability of Amorphophallus paeoniifolius (Dennst.) Nicolson

N/A
N/A
Protected

Academic year: 2021

Share "Improving bioactive compounds extractability of Amorphophallus paeoniifolius (Dennst.) Nicolson"

Copied!
8
0
0

Texto

(1)

ContentslistsavailableatScienceDirect

Industrial

Crops

and

Products

j ourna l h o m e pa g e : w w w . e l s e v i e r . c o m / l o c a t e / i n d c r o p

Improving

bioactive

compounds

extractability

of

Amorphophallus

paeoniifolius

(Dennst.)

Nicolson

Anabela

S.G.

Costa

a

,

João

C.M.

Barreira

a,b

,

Adilson

Ruas

a

,

Ana

F.

Vinha

a,c

,

Filipa

B.

Pimentel

a

,

Rita

C.

Alves

a,d,∗

,

Isabel

C.F.R.

Ferreira

b

,

M.

Beatriz

P.P.

Oliveira

a

aREQUIMTE,LAQV/DepartamentodeCiênciasQuímicas,FaculdadedeFarmácia,UniversidadedoPorto,RuaJorgeViterboFerreira,228,4050-313Porto,

Portugal

bMountainResearchCenter(CIMO),ESA,PolytechnicInstituteofBraganc¸a,Apartado1172,5301-855Braganc¸a,Portugal cFCS-UFP/FaculdadedeCiênciasdaSaúde,UniversidadeFernandoPessoa,RuaCarlosdaMaia,296,4200-150Porto,Portugal

dREQUIMTE,LAQV/InstitutoSuperiordeEngenhariadoPorto,InstitutoPolitécnicodoPortoRuaDr.AntónioBernardinodeAlmeida,431,4200-072Porto,

Portugal

a

r

t

i

c

l

e

i

n

f

o

Articlehistory: Received24May2015

Receivedinrevisedform4November2015 Accepted6November2015

Availableonline21November2015 Keywords:

Elephantfootyamextracts Bioactivecompounds Phenolics

Antioxidantactivity

a

b

s

t

r

a

c

t

Elephantfootyam(Amorphophalluspaeoniifolius(Dennst.)Nicolson)isanunderground,unbranched deciduousplantthatproducesalargetubercle(rhizome)withrecognizedhealtheffects.Inthisstudy,the influenceofsolventnature(water,water/etanol(1:1)andabsoluteethanol)andprocessingtype(fresh, lyophilizedandboiled)ontheantioxidantactivityandbioactivecompoundsextractabilityofelephant footyamwasevaluated.Extractswerecomparedfortheircontentsintotalphenolics,flavonoidsand tan-nins.Moreover,theirantioxidantcapacitywasassessedbytheferricreducingantioxidantpower(FRAP) andthe2,2-diphenyl-1-picrylhydrazylradical(DPPH•)scavengingcapacityassays.Phenolics(154mg GAE/L)andtannins(109mgGAE/L)weremaximizedinlyophilizedsamplesextractedwiththe hydroal-coholicsolvent,whichattainedalsothehighestFRAPvalue(711mgFSE/L).Inturn,flavonoidsreached thehighestyieldsinlyophilizedsamples(95mgECE/L)extractedwithpureethanol,aswellasthehighest DPPH•scavengingactivity.Thesefindingsmighthavepracticalapplicationstodefinethebestprocessing methodologyregardingtheenhancementofelephantfootyam,eitherforpromptconsumption,aswell astodevelopfoodsupplementsorpharmaceuticalrelatedproducts.

©2015ElsevierB.V.Allrightsreserved.

1. Introduction

Oxidativestressis involved in theetiology ofvarious disor-dersanddiseases,beingreasonabletoexpectbeneficialeffectsof antioxidantsinmaintainingourhealthandloweringdiseaserisk (Kris-Ethertonetal.,2002;Niki,2010).Someantioxidantscanbe producedinthebody, buttheamountsmaybeinsufficient, par-ticularlyunder conditions where production of free radicals is increased.Plantsarenatural alternativesources ofantioxidants that mightcomplement the production of thesecompounds in livingorganisms.Theantioxidantactivityinplants isoften cor-relatedtotheirphenolic contents(Caiet al.,2004; Razalietal., 2012).Inaddition,therehasbeenalargevolumeofworkaimed

∗ Correspondingauthorat:REQUIMTE,LAQV/DepartamentodeCiênciasQuímicas, FaculdadedeFarmácia,UniversidadedoPorto,RuaJorgeViterboFerreira,228, 4050-313Porto,Portugal.Fax:+351220184958.

E-mailaddress:rita.c.alves@gmail.com(R.C.Alves).

at scientific validation of the efficacy of herbal drugs used in thetraditionalmedicine.Furthermore,thepreparationofdietary supplements/nutraceuticalsandsomepharmaceuticalproductsis increasinglybasedontheextractionofbioactivecompoundsfrom naturalmatrices(DaiandMumper,2010).

Amorphophallussp.areperennialherbaceousplants,growingin mountainorhillyareasinsubtropicalregions(Ishrudetal.,2001). Elephantfootyam(Amorphophalluspaeoniifolius(Dennst.) Nicol-son)isanunderground,unbranchedplantwithlargestoutmottled leaves.Theleafblade,whichsitsatopathickfleshystem,isdivided intohundredsofleaflets,varyingamong5and12.5cmlong,with highlyridgeovateoroblongshape.Theplantisdeciduous,dying backtoalargetubercle(rhizome),weighingupto8kgand reach-ingupto50cmindiameter(Sahaetal.,2013;UpretyandPoudel, 2010).Analgesic(Deyetal.,2010),antioxidant(Jayaramanetal., 2010),antibacterial,antifungal(Khanetal.,2008)andcytotoxic (Jayaraman etal., 2007;Khanet al., 2008)activities havebeen described.Therefore,itisassumablethatelephantfootyammight beanimportantsourceofbioactivecompoundssinceitisoften http://dx.doi.org/10.1016/j.indcrop.2015.11.019

(2)

A.S.G.Costaetal./IndustrialCropsandProducts79(2016)180–187 181

usedforthetreatmentofpiles,dyspnea,splenomegaly,andcough (RastogiandMehrotra,1995),beingalsorecognizedasanalgesic, livertonic,thermogenic,anthelminticanddiuretic(Arya,1994).

The effectiveness of bioactive compounds extraction from plants,as wellastheircorrespondingactivity,is highly depen-dentonfactorssuchasdifferenttypesofsolvent,solvent-to-solid ratios, extraction times and temperatures(Pinelo et al., 2005), and specially the solventpolarity (Razali et al., 2012). Accord-ingly,this workwasdesignedtoverifytheinfluenceofsolvent nature(water,water:ethanol (1:1)and ethanol)and processing type(fresh,lyophilizedandboiled)ontheantioxidantactivityand bioactivecompoundsextractabilityofelephantfootyam.Extracts werecomparedregardingtheirtotalphenolics,flavonoidsand tan-ninscontents.Moreover,theirantioxidantcapacitywasassessed bytwo complementaryprocedures:theferricreducing antioxi-dantpower(FRAP)methodandthe2,2-diphenyl-1-picrylhydrazyl radical (DPPH) scavenging capacity assay. The obtained results mighthavepracticalapplicationswhendecidingthebest process-ingmethodologyregardingtheenhancementofelephantfootyam extracts,eitherforpromptconsumptionaswellastodevelopfood supplementsorpharmaceuticsrelatedproducts.

2. Materialsandmethods 2.1. Reagentsandstandards

Gallic acid, epicatechin, Folin–Ciocalteu’s phenol reagent, DPPH•(2,2-diphenyl-1-picrylhydrazylradical),sodiumnitrite, fer-ricchloride,aluminumchloride,TPTZ(2,4,6-tripyridyl-s-triazine) solution,andferroussulfateheptahydratewereallobtainedfrom Sigma–Aldrich (St. Louis, U.S.A). Anhydrous sodium carbonate, sodium hydroxide and absolute ethanol were purchased from Merck(Darmstadt, Germany).Ultrapure water wastreatedin a Milli-Qwaterpurificationsystem(Millipore,Bedford,MA,USA)and usedtoprepareallaqueoussolutions.

2.2. Samplesandsamplespreparation

Elephantfootyam(A.paeoniifolius(Dennst.)Nicholsonwas col-lectedfromBaucau,adistrictofEastTimor,ontheNortherncoastin theEasternpartofthecountry.Voucherspecimenswerenumbered anddepositedinthelocalherbarium.Samplesweresubmittedto differentconservationprocesses(fresh,boiledandlyophilized).For thepreparationofthecookedsample,cubesofpeeledtuberswere boiledat100◦Cforabout40min,simulatingthedomesticcooking process.Afterwards,allvisiblewaterwasdrainedout.Toobtain lyophilizedsamples,fine-cutpeeledtuberswerefrozen(−20◦C) and lyophilized (Telstar Cryodos-80 Terrassa, Barcelona). Sam-plesobtainedfromdifferentconservationprocesseswereground (GrindomixGM200,Retsch,Haan,Germany)andusedtoprepare theextractsdescribedinthenextsection.

2.3. Extractspreparation

Extracts were prepared using three different solvents: (i) ethanol,(ii)waterand(iii)ethanol:water50:50(v/v).Three indi-vidualsamples of fresh,boiled and lyophilizedfoot yam were testedwitheachsolvent.Eachsample(≈1g)wasextractedby stir-ringwith50mlofthecorrespondingsolvent,at40◦C, 600rpm, for1handfilteredthroughWhatmanNo.4paper.Theresidues werethenextractedwithadditionalportionsofthecorresponding solvents.Thecombinedextractsofeachsolventwereevaporated (ethanol)underreducedpressure(Rotavapor®R-210,Büchi,Flawil, Switzerland)orfrozenand lyophilized(water)and re-dissolved inthecorrespondingextractatanadequateconcentration.Stock solutionswerestoredat4◦Cforfurtheruse;alltheassayswere

carriedoutintriplicateandtheresultswereexpressedasmean values±standarddeviations(SD).

2.4. Totalphenolics

Totalphenoliccontentsofdilutedextracts(1:10v/v)were deter-minedaccordingtoAlvesetal.(2010).Briefly,500␮lofeachextract weremixedwith2.5mloftheFolin–Ciocalteaureagent(1:10)and 2mlofasodiumcarbonatesolution(7.5%m/v).Themixturewas firstincubatedat45◦C,during15min,followedby30min incuba-tionatroomtemperaturebeforeabsorbancereadingsat765nm. Totalphenoliccontentswerecalculatedfromacalibrationcurve preparedwithgallicacid(10–100mg/L;r=0.9997)andexpressed asmgofgallicacidequivalents(GAE)/Lofextract.

2.5. Totalflavonoids

TotalflavonoidcontentsweredeterminedaccordingtoSoares et al. (2013). Aliquotsof 1ml of extract weremixed with4ml ofdistilledwaterand300␮lof5%sodiumnitrite.After5minat roomtemperature,300␮lof10%AlCl3wereadded,followed(after 1min)by2mlofsodiumhydroxide(1M)and2.4mlofultrapure water. Theabsorbancewasrecorded at510nm. Totalflavonoid contentswerecalculatedthroughacalibrationcurveof epicate-chin(50–450mg/L;r=0.9998)andexpressedasmgofepicatechin equivalents(ECE)/Lofextract.

2.6. Totaltannins

Total tannins contents were determined according to Shad etal.(2012),withslightmodifications.Briefly,500␮lofextract (dilutedat1:10whennecessary)weremixedwith2.5mlofthe Folin–Ciocalteureagent(1:10).After3min,2mlofsodium carbon-ate(7.5%m/v)wereadded.Themixturewaskeptinthedarkfor 2h.Absorbancereadingswerecarriedoutat725nm.Tannins con-tentwascalculatedfromacalibrationcurvepreparedwithgallic acid(10–100mg/L;r=0.9997)andexpressedasmgofgallicacid equivalents(GAE)/Lofextract.

2.7. Antioxidantactivity 2.7.1. DPPHscavengingactivity

Theradicalscavengingabilityofextractswasanalyzed accord-ing tothemethoddescribed byHariniet al.(2012) withsome modifications.Briefly,14␮lofdilutedextract(1:10v/v)weremixed with186␮lofafreshlypreparedDPPH•solution(6.0×10−5mol/L inethanol).Theabsorbancedecreaseat525minwasmeasuredin timeintervalsof2min,inordertoobservethereactionkinetics. Thereactionendpointwasattainedin40min.Theradical scaveng-ingactivity(RSA)wasexpressedaspercentageofinhibitionand calculatedusingthefollowingequation:

%RSA=Acontrol−Asample Acontrol ×100

2.7.2. Ferricreducingantioxidantpower(FRAP)assay

TheFRAPassaywasperformedaccordingtoBenzieandStrain (1996)withslightmodifications.Briefly,90␮lofdilutedextract (1:10v/v)weremixedwith270␮lof distilledwaterand 2.7ml oftheFRAPsolution(containing0.3Macetatebuffer,10mMTPTZ solution, and 20mM of ferric chloride). After homogenization, themixture waskeptfor 30minat 37◦C protected fromlight. Absorbance was measured at 595nm. A calibration curve was preparedwithferroussulfate(50–450mg/L,r=0.9998)andferric

(3)

Fig.1.Interactionsbetweensolventtype(ST)andprocessingtype(PT)effectsonthebioactivecompoundsofA.paeoniifoliussamples.Totalphenolics(A),totaltannins(B), totalflavonoids(C).

(4)

A.S.G.Costaetal./IndustrialCropsandProducts79(2016)180–187 183

Table1

Bioactivecompoundscontentsobtainedforthepolarextractsoffootyamsubmittedtodifferentprocessingtypesa.

Totalphenolics(mgGAE/L) Totaltannins(mgGAE/L) Totalflavonoids(mgECE/L)

Solvent type (ST) Water 43±17 41±16 18±7 Water:ethanol(1:1) 132±79 129±78 58±32 Ethanol 69±71 29±9 41±39 pvalue(n=54) <0.001 <0.001 <0.001 Processing type (PT) Fresh 24±11 26±7 10±5 Lyophilized 154±68 109±83 70±33 Boiled 67±47 64±46 37±23 pvalue(n=54) <0.001 <0.001 <0.001 ST×PT pvalue(n=162) <0.001 <0.001 <0.001

aTheresultsarepresentedasmean±SD.GAE,gallicacidequivalents;ECE,epicatechinequivalents.

reducingantioxidantpowerwasexpressedasmgofferroussulfate

equivalents(FSE)/Lofextract.

2.8. Statisticalanalysis

Allstatisticaltestswereperformedata5%significancelevel,

usingSPSSv.22.0program(IBMCorp.,Armonk,NY,USA).Foreach

processingtype(PT)andsolventtype(ST),threesampleswere

ana-lyzed,withalltheassaysbeingalsocarriedoutintriplicate.The

resultsareexpressedasmeanvalue±standarddeviation(SD).

Ananalysisofvariance(ANOVA)withtypeIIIsumsofsquares

wasperformedusingtheGLM(GeneralLinearModel)procedure

oftheSPSSsoftware.Thedependentvariableswereanalyzedusing

2-wayANOVA,withthefactorsPTandST.Inthiscase,whena

sta-tisticallysignificantinteraction(PT×ST)isdetected,themultiple

comparisonsclassificationresultscannotbeconsidered,andthe

twofactorsshouldbeevaluatedsimultaneouslybytheestimated

marginal meansplots for alllevels of each singlefactor.

Alter-natively,ifnostatisticalsignificantinteractionisverified,means

mightbecomparedusingTukey’shonestlysignificantdifference

(HSD)multiplecomparisontest.

Further,alineardiscriminantanalysis(LDA)wasusedto

com-paretheeffectofthePTandSTonantioxidantactivityandextracted

bioactivecompounds. Astepwisetechnique, usingtheWilks’

methodwiththeusualprobabilitiesofF(3.84toenterand2.71

to remove), was applied for variable selection. This procedure

usesacombinationof forwardselection andbackward

elimina-tionprocesses,wheretheinclusionofanewvariableispreceded

byensuringthatallvariablesselectedpreviouslyremain

signifi-cant(Maroco,2003;Lópezetal.,2008).Withthisapproach,itis possibletoidentifythesignificantvariablesobtainedforeach sam-ple.Toverifythesignificanceofcanonicaldiscriminantfunctions, theWilks’testwasapplied.Aleaving-one-outcross-validation procedurewascarriedouttoassessthemodelperformance.

3. Resultsanddiscussion

Inwhatregardstoantioxidantactivity,twoassayswere per-formedtoevaluatedifferentmechanismsofaction:ferricreducing antioxidantpower(FRAP),anelectrontransfermethod,which can-notdetectcompoundsthatactbyradicalquenching,butdetects compounds with redox potentials lower than 0.7V (the redox potentialofFe3+-TPTZ);andtheDPPHscavengingassay,wherethe radicalsmaybeneutralizedeitherbydirectreductionviaelectron transfers,orbyradicalquenchingviaHatomtransfer(Prioretal., 2005).Also,threegroupsofcompoundswerequantified,namely totalphenolics,totaltanninsandtotalflavonoids.Besidesstudying theeffectsofphysicalvariablesrelatedwithmasstransfer kinet-ics(specificallythesolventtype),itwasalsointendedtoverifyif thewayinwhichthestudiedmatriceswereprocessedexerteda significanteffect.

Theeffects ofsolventand processingwereevaluatedby fix-ingoneofthefactors,i.e.,theresultsarepresentedasthemean valueofeachST,includingallthePT,andasthemeanvalueofeach PT,withthecontributionofallST.Hence,thestandarddeviation valuesshouldnotbelookedupasameasureofassays repeatabil-ity.AsitcanbeconcludedfromTables1andTable2,eachfactor showedasignificanteffectpersi,buttheinteractionamong fac-tors(ST×PT)wasalsoasignificant(p<0.001)sourceofvariation forallparameters, indicatinga strongdependence betweenthe solventusedandthewayinwhichsampleswereprocessed.This significantinteractionmightbeeasilyobservedintheestimated marginalmeans(EMM),wherethevariationintotalphenols, tan-ninsandflavonoids(Fig.1A–C)amongfresh,lyophilizedandboiled sampleswereclearlydependentonthesolventtype.Forinstance, tanninlevelsaresimilarforfresh,lyophilizedandboiledsamples whenextractedwithwaterorethanol, butcompletelydifferent when extractedwiththe hydroalcoholicsolvent(Fig.1B). Like-wise, whileDPPH• wasmaximal in boiledsampleswhenusing water orwater:ethanol,thehighestactivityinlyophilized sam-pleswasreachedwhenthesampleswereextractedwithethanol

Table2

Antioxidantpropertiesobtainedfortheextractsoffootyamsubmittedtodifferentprocessingtypesa.

DPPH•scavengingactivity(%ofinhibition)b FRAPassay(mgFSE/L)

Solvent type (ST) Water 26±9 116±20 Water:etanol(1:1) 57±21 505±248 Ethanol 49±35 287±273 pvalue(n=54) <0.001 <0.001 Processing type (PT) Fresh 18±8 97±53 Lyophilized 61±29 506±259 Boiled 53±18 306±244 pvalue(n=54) <0.001 <0.001 ST×PT pvalue(n=162) <0.001 <0.001

aTheresultsarepresentedasmean±SD.FSE,ferroussulphateequivalents. bDilutedextracts(1:10)weretestedagainstaDPPHsolutionof6×10−5mol/L.

(5)

Fig.2.Interactionsbetweensolventtype(ST)andprocessingtype(PT)effectsontheantioxidantactivityofA.paeoniifoliussamples.DPPH•scavengingassay(A),FRAPassay

(B).

(Fig.2A).Ontheotherhand,theferricreducingpowerremained nearlythesamefor fresh,lyophilizedandboiledsampleswhen thesewereextractedwithwater,butthesamesamplesgave sig-nificantdifferencesifextractedwithethanolorthewater:ethanol (Fig.2B).Besidestheindividualvariations,somegeneral conclu-sionsmightalsobedrawnfromtheEMM:forinstance,thehighest amountsoftotalphenolics(132mgGAE/Lextract)andtotaltannins (129mgGAE/Lextract),aswellasthemostpowerfulFRAP(505mg FSE/L)wereachieved withthehydroalcoholic solvent;aqueous extractsrevealedthe lowestcontents in total phenolics (43mg GAE/Lextract),totalflavonoids(18mgECE/Lextract)andalsothe weakestDPPH•scavengingactivity(26%)andFRAP(116mgFSE/L extract);total tanninscontentpresented theleast value(29mg GAE/Lextract) in ethanol extracts.In previousstudies,ethanol extractswerereportedashavingthehighestantioxidantefficiency alongwiththehighcontentofphenoliccompounds(Angayarkanni etal., 2010; Jayaprakashaet al., 2008). Herein,thebestresults wereobtainedwithwater:ethanol(1:1),potentiallyindicatingthe presenceofphenolicacids(whicharereadilysolubleinwater)or ahighpercentageof glycosylatedphenolics(it isawell-known factthatglycosylationincreasesthewatersolubilityofphenolic compounds).Besidesthepolarityofextractionsolventsandthe sol-ubilityofphenoliccompounds,differencesmightalsobeexplained bychangesintherateofmasstransfer(Bietal.,2009).Regarding thetypeofprocessing,lyophilizedsamplesallowedthebestresults forallassays,exceptforDPPH•scavengingactivity,whereitwasnot possibletodifferentiatefromlyophilizedandboiledsamples.The

detectedamountsofbioactivecompoundsaregenerallyin agree-mentwithpreviousresultsinalcoholicextractsofelephantfoot yam(Angayarkannietal.,2010;Natarajetal.,2009).

Sincetheantioxidantactivityisoftencorrelatedwiththe con-tents in total phenolics of a determined matrix (Razali et al., 2012),thecorrelationcoefficientsamongbioactivecompoundsand antioxidantactivitywerealsocalculated.Despitethefactthatthe DPPHassayisrepresentativeofthecapacity oftestcompounds toscavengefreeradicalsindependentlyfromanyenzymatic activ-ity,thedetectedcorrelationswerehigherforFRAPassay,especially withtotalphenolics(y=18.01+3.49x,R2=0.91)andtotalflavonoids (y=3.71+7.69x,R2=0.95).

Inthefollowingsectiontheresultsobtainedfromthe conju-gatedanalysisofallparametersarecomprehensivelyanalyzed.This approachwasfollowedusinglineardiscriminantanalysisinorder tohaveanintegratedperspectiveabouttheeffectofsolventand processingontheantioxidantactivityandbioactivecompounds amounts.Thesignificantindependentvariables(evaluated param-eters) were selectedusing the stepwise procedureof the LDA, accordingtotheWilks’test.Onlyvariableswithastatistically significantclassificationperformance (p<0.05)werekeptinthe analysis.

Starting with the ST effect, two significant functions were defined(plottedinFig.3),whichintegrated100.0%oftheobserved variance(first,80.3%;second,19.7%).Asitcanbeobserved,the naturally occurring groups (each used solvent) were not com-pletely individualized. However, the classification performance

(6)

A.S.G.Costaetal./IndustrialCropsandProducts79(2016)180–187 185

water

water:etanol (1:1) ethanol group centroid

Fig.3.Discriminantscoresscatterplotofthecanonicalfunctionsdefinedforbioactivecompoundscontentsandantioxidantactivityresultsaccordingwithsolventtype(ST).

fresh lyophilized boiled group centroid

Fig.4. Discriminantscoresscatterplotofthecanonicalfunctionsdefinedforbioactivecompoundscontentsandantioxidantactivityresultsaccordingwiththeprocessing type(PT).

(7)

Table3

ContingencymatrixobtainedusingLDAbasedonantioxidantactivityandbioactive compoundscontentsofelephantyamextracts.

Predictedgroupmembership Total Sensitivity(%)

Water Water:etanol(1:1) Ethanol

Water 54 0 0 54 100

Water:etanol(1:1) 18 36 0 54 67

Ethanol 18 0 36 54 67

Total 90 36 36 162 78

Specificity(%) 60 100 100 87

wassatisfactory,resultingin78% ofcorrectlyclassifiedsamples

(sensitivity)and87%ofoverallspecificitywithintheleave-one-out

cross-validationprocedure(Table3).Theanalysiskeptallvariables

inthefinaldiscriminantmodel,beingverifiedthattotaltanninsand DPPH•scavengingactivity(bothhigherinhydroalcoholicsamples) werethevariableswiththehighestcorrelationwithfunction1and 2,respectively.Thediscriminantpowerproportionofthenth func-tionmaybeestimatedbytheratioamongitsownvalueandthe sumofalldiscriminantfunctionsvalues.Thecanonical discrimi-nantfunctioncoefficientsallowedobtainingthefollowingmodel:

D1 =−1.20+0.003×phenolics+0.02×tannins−0.14 ×flavonoids−0.002×DPPH+0.02×FRAP

Regarding classification function coefficients, the following functionswereobtained:

water=−5.08+0.14×phenolics+0.04×tannins−0.32 ×flavonoids+0.42×DPPH−0.04×FRAP

water;ethanol=−9.76+0.06×phenolics+0.10×tannins −0.52×fla

v

onoids+0.34×DPPH−0.02×FRAP

ethanol=−4.70−0.01×phenolics+0.04×tannins−0.05 ×flavonoids+0.31×DPPH−0.04×FRAP

ForPT,thediscriminantmodelselectedalso2significant func-tions(Fig. 4), which included 100.0% of the observed variance (function1:75.1%,function2:24.9%).Intheobtainedmodel,all sampleswerecorrectlyclassified(sensitivityandspecificitywere obviously100.0%).Allvariableswereincludedinthefinalmodel, withDPPH•scavengingactivityandtotalphenolics(bothhigherin lyophilizedsamples)asthevariableswiththehighestcorrelation withfunction1and2,respectively.

The canonical discriminant function coefficients allowed obtainingthefollowingmodel:

D1 =−6.63−0.14×phenolics+0.11×tannins−0.12×flavonoids +0.36×DPPH−0.03×FRAP

Regarding classification function coefficients, the following functionswereobtained:

fresh=−10.59−0.40×phenolics+0.44×tannins+0.27 ×flavonoids+1.66×DPPH−0.16×FRAP

4. Conclusions

Thestatisticalinteractionamongthetypeofsolventandtype ofprocessingwassignificantinallcases,showingthattheeffects causedbyeachselectedsolventmightdependontheforminwhich thesamplewasprocessed.Inaddition,theresultsobtainedwith LDA indicatethat type ofprocessing had a higherinfluence on theantioxidantactivityandbioactivecompoundscontentofthe extractsthantheextractionsolvent.Phenolsandtannins concen-trationsweremaximizedinhydroalcoholicextractsoflyophilized samples(which presentedalso thehighest FRAP values),while flavonoids reachthe highest yieldsin ethanolic extracts ofthe lyophilizedsamples(whichalsoshowedthehighestDPPH scav-engingactivity).Thesefindingsmighthavepracticalapplications todefinethebestprocessingmethodologyregardingthe enhance-mentofelephantfootyam,eitherforpromptconsumptionaswell astodevelopfoodsupplementsorpharmaceuticsrelatedproducts.

Acknowledgments

J.C.M.BarreiraandR.C.AlvesthanktoFCT,POPH-QRENandFSE fortheirgrants(SFRH/BD/76019/2011andSFRH/BPD/68883/2010, respectively).Thisworkreceivedfinancialsupportfromthe Euro-peanUnion(FEDERfundsthroughCOMPETE)andNationalFunds (FCT)throughprojectLAQVUID/QUI/50006/2013.Thisworkalso receivedfinancialsupportfromtheEuropeanUnion(FEDERfunds) undertheframeworkofQRENthroughProject NORTE-07-0124-FEDER-000069.

References

Alves,R.C.,Costa,A.S.G.,Jerez,M.,Casal,S.,Sineiro,J.,Nú ˜nez,M.J.,Oliveira,M.B.P.P., 2010.Antiradicalactivity,phenolicsprofileandhydroxymethylfurfuralin expressocoffee:influenceoftechnologicalfactors.J.Agric.FoodChem.58, 12221–12229.

Angayarkanni,J.,Ramkumar,K.M.,Priyadharshini,U.,Ravendran,P.,2010.

AntioxidantpotentialofAmorphophalluspaeoniifoliusinrelationtotheir phenoliccontent.Pharm.Biol.48,659–665.

Arya,V.S.,1994.IndianMedicinalplants—ACompendiumof500Species.Orient LongmanLtd,Madras,pp.132–134.

Benzie,I.F.F.,Strain,J.J.,1996.Theferricreducingabilityofplasma(FRAP)asa measureofantioxidantpower:theFRAPassay.Anal.Biochem.239,70–76.

Bi,H.M.,Zhang,S.,Liu,C.,Wang,C.Z.,2009.Highhydrostaticpressureextractionof salidrosidefromRhodiolasachalinensis.J.FoodProcessEng.32,53–63.

Cai,Y.,Luo,Q.,Sun,M.,Corke,H.,2004.Antioxidantactivityandphenolic compoundsof112traditionalChinesemedicinalplantsassociatedwith anticancer.LifeSci.74,2157–2184.

Dai,J.,Mumper,R.J.,2010.Plantphenolics:extraction,analysisandtheir antioxidantandanticancerproperties.Molecules15,7313–7352.

Dey,Y.N.,De,S.,Ghosh,A.K.,2010.Evaluationofanalgesicactivityofmethanolic extractofAmorphophalluspaeoniifoliustuberbytailflickandacetic acid-inducedwrithingresponsemethod.Int.J.Pharm.BioSci.1,662–668.

Harini,R.,Sindhu,S.,Gurumoorthi,P.,Sagadevan,E.,Arumugam,P.,2012.

CharacterizationofinvitroantioxidantpotentialofAzadirachtaindicaand Abutilonindicumbydifferentassaymethods.J.Pharm.Res.5,3227–3231.

Ishrud,O.,Zahid,M.,Viqar,U.-A.,Pan,Y.-J.,2001.Isolationandstructureanalysisof aglucomannanfromtheseedsofLibiandates.J.Agric.FoodChem.49, 3772–3774.

Jayaprakasha,G.K.,Girennavar,B.,Patil,B.S.,2008.Radicalscavengingactivitiesof RioRedgrapefruitsandSourorangefruitextractsindifferentinvitromodel systems.Biores.Technol.99,4484–4494.

Jayaraman,A.,Kunga,M.R.,Ulaganathan,P.,Poornima,R.,2010.Antioxidant potentialofAmorphophalluspaeoniifoliusinrelationtotheirphenoliccontent. Pharmac.Biol.48,659–665.

Jayaraman,A.,Kunga,M.R.,Ulaganathan,P.,Poornima,R.,2007.Cytotoxicactivity ofAmorphophalluspaeoniifoliustuberextractsinvitro.Am.-Eur.J.Agric. Environ.Sci.2,395–398.

Khan,A.,Moizer,R.,Islam,M.S.,2008.Antibacterial,antifungalandcytotoxic activitiesofamblyoneisolatedfromAmorphophalluscampanulatus.IndianJ. Pharmacol.40,41–44.

Kris-Etherton,P.M.,Hecker,K.D.,Bonanome,A.,Coval,S.M.,Binkoski,A.E.,Hilpert, K.F.,Griel,A.E.,Etherton,T.D.,2002.Bioactivecompoundsinfoods:theirrolein thepreventionofcardiovasculardiseaseandcancer.Am.J.Med.113,71S–88S.

López,A.,García,P.,Garrido,A.,2008.Multivariatecharacterizationoftableolives accordingtotheirmineralnutrientcomposition.FoodChem.106,369–378.

(8)

A.S.G.Costaetal./IndustrialCropsandProducts79(2016)180–187 187 Maroco,J.,2003.AnáliseEstatística,ComUtilizac¸ãoDoSPSS.Edic¸õesSílabo,Lisboa,

Portugal.

Nataraj,H.N.,Murthy,R.L.N.,Setty,D.S.R.,2009.Invitroquantificationofflavonoids andphenoliccontentofsuran.Int.J.Chem.Tech.Res.1,1063–1067.

Niki,E.,2010.Assessmentofantioxidantcapacityinvitroandinvivo.FreeRad. Biol.Med.49,503–515.

Pinelo,M.,Rubilar,M.,Jerez,M.,Sineiro,J.,Nú ˜nez,M.J.,2005.Effectofsolvent, temperature,andsolvent-to-solidratioonthetotalphenoliccontentand antiradicalactivityofextractsfromdifferentcomponentsofgrapepomace.J. Agric.FoodChem.53,2111–2117.

Prior,R.L.,Wu,X.,Schaich,K.,2005.Standardizedmethodsforthedetermination ofantioxidantcapacityandphenolicsinfoodsanddietarysupplements.J. Agric.FoodChem.53,4290–4302.

Rastogi,R.P.,Mehrotra,B.N.,1995.CompendiumofIndianMedicinalPlants. CentralDrugResearchInstitute,Lucknow,India,pp.40–41.

Razali,N.,Mat-Junit,S.,Abdul-Muthalib,A.F.,Subramaniam,S.,Abdul-Aziz,A., 2012.Effectsofvarioussolventsontheextractionofantioxidantphenolics fromtheleaves,seeds,veinsandskinsofTamarindusindicaL.FoodChem.131, 441–448.

Saha,A.,Bose,S.,Banerjee,S.,2013.Anti-anxietyactivityofAmorphophallus paeoniifoliustuberinmice.J.Pharm.Res.6,748–752.

Shad,M.A.,Nawaz,H.,Rehman,T.,Ahmad,H.B.,Hussain,M.,2012.Optimizationof extractionefficiencyoftanninsfromCichoriumintybusL.:applicationof responsesurfacemethodology.J.Med.PlantsRes.6,4467–4474.

Soares,M.O.,Alves,R.C.,Pires,P.C.,Oliveira,M.B.P.P.,Vinha,A.F.,2013.Angolan Cymbopogoncitratususedfortherapeuticbenefits:nutritionalcomposition andinfluenceofsolventsinphytochemicalscontentandantioxidantactivityof leafextracts.FoodChem.Toxicol.60,413–418.

Uprety,Y.,Poudel,R.C.,2010.MedicinalPlantsofNepal.LambertAcademic Publishing,Saarbruken,Germany,pp.124,pp.

Referências

Documentos relacionados

Neste trabalho de investigação foi analisado o papel do Ministério da Ciência e Tecnologia como orgão de coordenação da política de desenvolvimento

Este estudo teve como objetivos descrever o atendimento Pré-Hospitalar (APH) das motolâncias em Manaus/AM; identificar os benefícios do atendimento Pré-Hospitalar (APH) das

Inseridas nesse contexto, através de sua participação no mercado de trabalho do pólo fruticultor de Petrolina, as mulheres migrantes, oriundas das áreas rurais de sequeiro,

The probability of attending school four our group of interest in this region increased by 6.5 percentage points after the expansion of the Bolsa Família program in 2007 and

Antioxidant activity evaluated by the Ferric reduction activity power (FRAP), 2,2-diphenyl-1-picrylhydrazyl radical scavenging activity (DPPH-RSA) and anti-hemolytic activity assays

The concentration of total phenolic compounds in the plant extracts was expressed as mg of gallic acid equivalents.. (GAE) per gram of extract using the equation obtained

Ousasse apontar algumas hipóteses para a solução desse problema público a partir do exposto dos autores usados como base para fundamentação teórica, da análise dos dados

Sob orientação: Profª Drª. está sendo convidado a participar do projeto de pesquisa “PROTOCOLO DE ENFERMAGEM PARA DOR ONCOLÓGICA ”. Essa pesquisa tem por objetivo: 1)Propor