• Nenhum resultado encontrado

Effect of the presence of brood and fungus on the nest architecture and digging activity of Acromyrmex subterraneus Forel (Hymenoptera, Formicidae)

N/A
N/A
Protected

Academic year: 2021

Share "Effect of the presence of brood and fungus on the nest architecture and digging activity of Acromyrmex subterraneus Forel (Hymenoptera, Formicidae)"

Copied!
6
0
0

Texto

(1)

REVISTA

BRASILEIRA

DE

Entomologia

AJournalonInsectDiversityandEvolution

w w w . r b e n t o m o l o g i a . c o m

Biology,

Ecology

and

Diversity

Effect

of

the

presence

of

brood

and

fungus

on

the

nest

architecture

and

digging

activity

of

Acromyrmex

subterraneus

Forel

(Hymenoptera,

Formicidae)

Carlos

Magno

dos

Santos

a

,

Roberto

da

Silva

Camargo

a,b,∗

,

Mariana

Brugger

b

,

Luiz

Carlos

Forti

b

,

Juliane

Floriano

Santos

Lopes

a,c

aUniversidadeFederaldeJuizdeFora,InstitutodeCiênciasBiológicas,ProgramadePós-graduac¸ãoemComportamentoeBiologiaAnimal,JuizdeFora,MG,Brazil bUniversidadeEstadualPaulista,FaculdadedeCiênciasAgronômicas,DepartamentodeProduc¸ãoVegetal,Botucatu,SP,Brazil

cUniversidadeFederaldeJuizdeFora,InstitutodeCiênciasBiológicas,ProgramadePós-graduac¸ãoemEcologia,JuizdeFora,MG,Brazil

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received29August2016 Accepted2December2016 Availableonline22December2016 Associateeditor:RodrigoFeitosa Keywords: Acromyrmexsubterraneus Diggingbehavior Leaf-cuttingants Nestbuilding Socialinsect

a

b

s

t

r

a

c

t

ThisstudyinvestigatedthestimulithattriggerdiggingbehaviorinAcromyrmexsubterraneusduringnest building.Thehypothesiswasthatthepresenceofthefungusgardenand/orbroodtriggerstheexcavation oftunnelsandchambers.Fortheexperiment,theexcavationrateofindividuallymarkedworkerskept inplasticcylindersfilledwithsoilwasrecorded.Fourtreatmentswereapplied:(1)30medium-sized workers,5gfungusgardenand30brooditems(larvaeandpupae);(2)30medium-sizedworkersand 5gfungusgarden;(3)30medium-sizedworkersand30brooditems;(4)30medium-sizedworkers withoutfungusandbrood.After24h,morphologicalparametersofneststructure(lengthandwidthof thechambersandtunnelsincm)andthevolumeofexcavatedsoilwererecorded.Incontrasttothe expectedfindings,nochangeinmorphologicalstructure,rateofexcavationbyworkers,orvolumeof excavatedsoilwasobservedbetweentreatments,exceptfortunnelwidth,whichwasgreater,whenno broodorfungusgardenwaspresent.Thus,theresultsdonotsupportthehypothesisthatthefungus gardenand/orbroodarelocalstimulifornestexcavationorthattheymoldtheinternalarchitectureof thenest.AlthoughthishypothesiswasconfirmedforAcromyrmexlundiiandAttasexdensrubropilosa, thesamedoesnotapplytoA.subterraneus.Thediggingbehaviorofworkersisprobablytheresultof adaptationduringnestbuildingindifferenthabitats.

©2016SociedadeBrasileiradeEntomologia.PublishedbyElsevierEditoraLtda.Thisisanopen accessarticleundertheCCBY-NC-NDlicense(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

Theabilityofworkersofleaf-cuttingantstobuildnestsof com-plexarchitectureisanimportantecologicalaspecttobeconsidered (KleineidamandRoces,2000;Moreiraetal.,2004).Theadultnests ofleaf-cuttingantsofthegenusAcromyrmex,insteadofthoseofthe genusAttawhichconsistofthousandsofundergroundchambers (Camargoetal.,2013),areoftensmallerwithhighlyvariable num-beroffunguschamber.InA.molestansSantschi,1925forexample ithasbeenfoundruralnestswithjust1chamberwhereasinthe urbanareatheyhaveuptofourchambers(Lopesetal.,2011).InA. rugosus(Smith,1858)thenumberofchambersrangesfrom1to26 (Verzaetal.,2007)andinA.landolti(Forel,1885)from1to11(Silva Junioretal.,2013).ForallAcromyrmexandAttaspecieschambers

∗ Correspondingauthor.

E-mail:camargobotucatu@yahoo.com.br(R.S.Camargo).

areconnectedtoeachotherandtosurfacebytunnels(Camargo etal.,2013;SilvaJunioretal.,2013;Lopesetal.,2011;Verzaetal., 2007).

Thecompletestructureoftheundergroundnestfromboth gen-eraisobtainedbythesimplediggingbehaviorofworkers,which remove soilparticleswiththeirmandibles(Cassillet al.,2002). Thusnestsofleaf-cuttingantsaretheresultofthecoordinated andself-organizedactivityofspecializedworkers.Nestbuilding representsabehavioral evolutioninanattempttooptimizethe protectionagainstpredatorsandvitalmaintenanceofthecolony, regulatingtheentryandexitofgases,temperatureandhumidity insidethenestandthusensuringgooddevelopmentofthebrood andsymbionticfungus(Bollazzietal.,2008;BollazziandRoces, 2010a,b,c).

Duringexcavation,workersshouldbeinvolvedintheactivity inacoordinatedmannerandshouldrespondactivelytostimuli. Aftercommencementoftheexcavationprocess,nestmatesshould be recruited to the digging site. This recruitment is probably

http://dx.doi.org/10.1016/j.rbe.2016.12.002

0085-5626/©2016SociedadeBrasileiradeEntomologia.PublishedbyElsevierEditoraLtda.Thisis anopenaccessarticleundertheCCBY-NC-NDlicense(http:// creativecommons.org/licenses/by-nc-nd/4.0/).

(2)

controlledbyapositivefeedbackmechanism,whichisactivated bypheromones(PielströmandRoces,2012;CamargoandForti, 2014).Thephysicalcontactbetweennestmatesalsoincreasesat diggingsitesbecauseofthehigherdensityofantsatthesesites,a factorthatseemstoinfluenceandtriggertheexcavationprocess withahighdensityofants(Römerand Roces,2015).Thesocial organizationofleaf-cuttingantsitselfproducesacontextinwhich workersshouldrespondnotonlytotheirindividualnecessities, butalsototheneedsofthewholecolony.Inthisrespect, work-ersadjustthesizeoftheirnestsaccordingtothepopulationsize ofthecolony(RasséandDeneubourg,2001),aswellastothe vol-umeofthesymbionticfungus(FröhleandRoces,2009;Camargo etal.,2013).Alsoclimaticvariables,assoiltemperatureand inter-nalnesthumidity,actasshort-termregulatorybuildingstimulifor Acromyrmex(BollazziandRoces,2010c).

Theinvestigationoftheexcavationprocessprovidesan under-standingofthebehavioralpatternsthatarefundamentalforthe social organization of leaf-cuttingants. Thesepatterns forman importantbasisforecologicalstudiesonthebehavioraldynamics thatregulatestheorganizationofcollectiveactivitiesineusocial insects.

CamargoandForti(2014)determinedthestimuliforexcavation inAttasexdensrubropilosa(Linnaeus,1758)andconcludedthatthe presenceofbroodandsymbionticfungusisanimportantstimulus forworkerstoimplementtasksinvolvedinnestbuilding,i.e.,tasks associatedwiththeprotectionofthebroodandsymbionticfungus. Furthermore,Camargoetal.(2013)concludedthatthesymbiontic fungusisablueprint fortheconstructionoftunnelsand cham-bers.However,itremainsunknownwhetherandhowmuchthese factorsactasstimulusforotherleaf-cuttingantspecies.

Theinternalcomplexityanddepthofnestsvarywidelyin leaf-cuttingants.Somenestsareshallowandothersaredeeper,andthe numberofchamberscontainingfungusvaries(Gonc¸alves,1961; Lopesetal.,2011).ThethreesubspeciesofA.subterraneus(Forel, 1893)buildneststhatareundergroundorpartiallyunderground inmostcasesandlocatedneartherootsystemofplants(Bondar, 1923apudDellaLucia,2011;Gonc¸alves,1961;Andrade,2002). Fur-thermore,there are descriptions ofyoungnests ofAcromyrmex subterraneusbrunneus (Forel, 1912), whichconsist externallyof loosesoilandinternallyofasinglechambercontainingthefungus (Camargoetal.,2004).

Toinvestigatethestimulithatdeterminenestarchitectureand thediggingactivityofworkers,thepresentstudyevaluatedthe physicalparametersofA.subterraneusnestsbuiltunderlaboratory conditionsinwhichthepresenceofthefungusand/orbroodwas manipulated.Thepremisewasthatthefungusgardenand/orbrood arestimuliforexcavationanddirectlyinfluencenestmorphometry andworkeractivity.

Materialandmethods

Studiedspecies

SixteenA.subterraneuscoloniesmaintainedsince2012inthe LaboratoryofMyrmecology,UniversidadeFederaldeJuizdeFora (UFJF),JuizdeFora,MinasGerais,Brazil,wereused.Antspecies identificationwasmadeaccordingtoFortietal.(2006).Thecolonies aremaintainedina closedsystemconsistingofthree compart-mentsinterconnectedbyclearplastic tubing,whichcorrespond tothefunguschamber,foraging arena,and wastechamber.The coloniesaremaintainedundercontrolledconditionsof tempera-ture(26◦C)andhumidity(70%)andreceivedAcalyphawilkesiana (Euphorbiaceae)leavesdaily.

Fortheexperiments,30workerswererandomlyselectedfrom eachcolony.Allworkersselectedfortheexperimentbelongedto

themedium size class, witha head width rangingfrom 1.2 to 1.6mm.

Allindividualsweremarkedwithauniquecolorcombinationon thepronotumtoidentifyeachworker.Edding®markerswereused forthispurposebecauseoftheirexcellentadhesion,rapiddrying, andgoodvisibility(Camargoetal.,2007).Workerswereplacedin plasticcontainerswhoseborderswerecoveredwithneutraltalcto preventescapeuntildryingoftheink,andafter24htransferred toanothercontainerputovertheexcavationcylinderwherethey remaineduntilthetimeoffilming.

Portionsofthesymbionticfunguswerealsoremovedfromthe samecoloniesusingafungalmassof5gperexcavationcylinder. Unmarkedworkers,whichmayhavebeenremovedtogetherwith thefungalportion,werereturnedtothecolony.Thelarvaeand pupaeusedintheexperimentwereremovedfromthesamecolony. Hence,theexcavationcylinderscontainedelements(workers, sym-bionticfungus,andbrood)fromthesamecolony.

Observationcylinders

Excavationcylinders,eachmeasuring25cminheightand10cm indiameter,werefilledwithlatosolcollectedatthecampusofUFJF. Thesoilwasremovedfromadepthof60cmandpreviouslysieved. Consideringthevolumeoftheexcavationcylinder,thesoilwas weighedtoobtainadensityof1.6/cm3accordingtoCamargoetal.

(2011).

A250-mLplasticcontainerwasplacedaboveeachcylinderfor observation.Thecontainerhadaholeatthebottomtopermitdirect contactwiththesoiltobeexcavated.Amonitoringcamerawas positionedperpendiculartothecontainertorecordtheactivities ofworkersfor24h.

Stimuliforexcavationbyworkers

Fourtreatments,eachconsistingoffourrepetitionsappliedto differentcolonies,whichvariedintermsofthestimulifor excava-tion,wereapplied:

TreatmentFB:30workers,5gfungusgardenand30brooditems (larvaeorpupae);

TreatmentFG:30workersand5gfungusgarden;

TreatmentLP:30workersand30brooditems(larvaeorpupae); TreatmentWK:30workerswithoutfungusgardenandbrood. Afterfilming,theexcavatedsoilfoundabovetheexcavation cylin-derwasweighedforthedeterminationofwetweightandthen driedinanoven(70◦C)for72hforthedeterminationofdryweight (g).

Diggingratebyworkers

Thefirst10minofeachhourwereevaluatedperrepetitions, recordingtheindividualrateofdiggingactivity(transportofthe soilpellet).

Tunnelarchitecture

Themethodofmodelingantnestswithcementusedbysome authorsfacilitatesvisualizationoftheshapeofchambersand tun-nels and permits toobtainan overall idea of nest architecture (Moreira,2001).Thus,attheendoftheexcavationperiodand film-ing,thetunnelsandchamberswerefilledwithliquidplasterata plaster–waterproportionof3:2(Fig.1).Aftertheplasterhaddried, theexcavationcylinderswerecutwithastylusandthesoilwas removed,thusobtainingplastermoldsofthestructureofthe exca-vatednest.Thesemoldswereusedtomeasurethelengthandwidth

(3)

Fig.1.PlastermoldofanestexcavatedbyAcromyrmexsubterraneusworkers.(A)Plastermoldoftunnels;(B)amoldedanddriednestreadytoberemoved;(C)labeledand measuredstructure.

ofthetunnelsandchambersandtoquantifythenumberofentrance holes.

Statisticalanalysis

Theeffectsofthetreatmentsonthearchitectureofemerging structuresanddiggingactivitywereevaluatedusinggeneralized linearmodels(GLM).The responsevariables were wetand dry weightof excavatedsoil, length and width of the tunnels and chamber,numberoftunnels,chambersandentranceholes, and excavationrate.Treatmentwasconsideredtheexplanatory vari-able.TheanalyseswereperformedusingtheRi3863.1.1program (RCoreTeam,2015).

Results

Architectureofemergingstructures

Nests composed of up to four tunnels were observed, but thenumberoftunnelsdidnotdiffersignificantlybetween treat-ments(GLM:F=1.41;d.f.=3;p=0.19).Theneststhatpossessed fourtunnels wereobserved intreatment WK,which contained only workers. There was also no significant difference in the numberofentranceholes(GLM:F=35.04;d.f.=3;p=0.69).Only

oneoftherepetitionssubmittedtotreatmentLPhadsevenentrance holes.Thelengthofthetunnelsdidnotdiffersignificantlybetween treatments(GLM:F=28.30;d.f.=3;p=0.44).However,the treat-mentsexertedasignificanteffectontunnelwidth(GLM:F=539.02; d.f.=3;p=0.04),withtheobservationofwidertunnelsintreatment WK(Table1).

No significant difference in the number of chambers was observed between treatments (GLM: F=68.17; GL=3;p=0.22), highlightingtheoccurrenceofsevenchambersinonerepetitionof treatmentLP.Therewasalsonosignificantdifferenceinthelength (GLM:F=52.65;d.f.=3;p=0.42)orwidthofthechambers(GLM: F=117.73;d.f.=3;p=0.43).

Diggingactivity

Thedryweightofexcavatedsoildidnotdifferbetween treat-ments(GLM:F=31.86;d.f.=3;p=0.35).Thesamewasobservedfor thewetweightofexcavatedsoil(GLM:F=74.14;d.f.=3;p=0.26) (Fig.2AandB).

Diggingactivityalsodidnotvarysignificantlyasafunctionof treatment(GLM:F=0.40;d.f.=3;p=0.74)ortime(GLM:F=1.07; d.f.=3;p=0.37).Thisactivityappearedtobehigher inthefirst 12h.Peakactivitywasobservedbetweenthe8thand12thhour intreatmentLP(Fig.3).

(4)

Table1

Rangeofthenumberofentranceholes,numberandsizeoftunnelsandchambersexcavatedbyAcromyrmexsubterraneusworkers.

Treatment Entrancehole(n) Tunnels(n) Chambers(n) Tunnellength(cm) Tunnelwidth(cm) Chamberlength(cm) Chamberwidth(cm)

FP 1–3 1–3 1–5 6.0–23.0 0.8–1.0 1.0–2.0 1.0–5.0 FG 1–3 1–3 1–3 2.5–6.0 0.7–2.0 0.7–3.0 0.7–3.0 LP 1–7 1–2 1–7 3.0–20.0 0.5–1.0 0.5–3.0 0.5–4.5 WK 1–4 1–4 1–3 1.0–1.5 1.0–1.5 1.5–2.0 1.5–3.3 FB FG LP WK 01 0 2 0 3 0 4 0 Dr y s o il (g ) FB FG LP WK 01 0 2 0 3 0 4 0 We t so il (g )

Fig.2.Dryandwetmass(g)ofexcavatedsoilaccordingtothetreatment.

Discussion

Theresultsshowedthatthefungusgardenorbrooddidnotact asastimulusforexcavationinA.subterraneus.Thisfindingisin

contrasttothestudyofCamargoandForti(2014)onAttasexdens rubropilosa,inwhichthefungusgardenandbroodservedasstimuli forworkerstoexcavatechambersandtunnels.

AlthoughRömerandRoces(2014,2015)hadreportedaneffect ofthesestimuliinAcromyrmexlundii,theyadditionallyobserved thattheworkersofthisspeciesareabletouseavailablespaceinthe nestsinsteadofexcavatingnewgalleries.Thesameseemstoapply toA.subterraneus,consideringthesimilarmeasurementsofnest structureandsimilardiggingactivity,regardlessofthepresenceof thefungusorbrood.Thisopportunisticbehaviorinnestbuilding, inwhichpreexistingemptyspacesareused,hasbeenreportedfor Acromyrmexsubterraneusmolestans(Lopesetal.,2011).

Inafirstinstance,onemayspeculatethatthefactofkeepingthe numberofindividualsconstantinalltreatmentsledtoasimilar rateofexcavationinalltreatments.Thesamenumberofworkers permitsthesamerateofcontactsbetweenindividuals,withthe contactrateactingasastimulusforworkers(RömerandRoces, 2015).Inthepresentstudy,thisfactorservedasasimilarstimulus inalltreatments.AccordingtoBuhletal.(2004),boththeincrease andthedecreaseinexcavationratearerelatedtotheperception ofsignalsbytheindividuals.Thisfacthasalsobeenanalyzedby

PielströmandRoces(2012)whosuggestedstridulationasatrigger torecruitnestmatesfordiggingactivity.

Thegroupof30individualsusedintheexperimentwas con-sidered sufficient to excavate the nest, with workers digging throughoutthe24-hperiod(Fig.3).Despitethelackofa signif-icantdifferenceover time,theexcavationrateexhibitedamore

(5)

lineardistributionintreatmentsFBandFG,whilethedistribution wasmoreexponentialintreatmentLP,withtheobservationofa markedincreasefollowedbyadecline.Thesamepatternhasbeen observedbyFröhleandRoces(2009)forAcromyrmexlundiiandby

Camargoetal.(2013)forAttasexdensrubropilosa.Incontrast,this variationwaslesspronouncedintreatmentWK.

Adifferencecouldalsobeobservedinthefirst12h(Fig.2).Ifthe excavationperiodwereshorter,i.e.,only12h,differencesin struc-tureandexcavationratecouldhavebeendetectedsinceahigher activityisobservedinthefirst12h.Itisthereforeassumedthat, duringaperiodof24h,thedifferencesbecamesimilarforall treat-ments,i.e.,associatingboth issues,30workerswereefficientin diggingduringtheobservationperiod.

Thearchitectureofemergingstructuresdidnotshowsignificant variationsbetweentreatments,withtheobservationofasimilarity ofthesestructures.AnexceptionwasobservedintreatmentWK, whichexhibitedwidertunnelsandcouldbeconsideredthecontrol oftheexperiment.Theabsenceofbroodandfungusseemstohave alteredthediggingbehaviorofworkers,whichbuiltwidertunnels intheabsenceofothertaskstobeperformed.Thisfactisclearly supportedbythe“foraging-for-work”theory(Tofts,1993),which proposesthatworkersofleaf-cuttingantstendtoactivelysearch forwork.Intheabsenceofstimuli,theantsmayhavesearchedfor work,intensifyingtheenlargementoftunnels.Fromthispointof view,itwouldthenbecomenecessarytodecidetoimplement dig-gingasataskduetotheabsenceofothertaskstobeperformed. Incontrasttotheproposalofthisstudy,inthesituationobserved specificallyinthecontroltreatment,itappearsthatthestimulus forexcavationwasexactlytheabsenceofbroodand fungus,in agreementwiththetheoryofTofts(1993).

Withrespecttotheassumption thatbrood andfungus trig-gerexcavationinA.subterraneus,nosignificantdifferencesinthe rateofexcavationwereobservedbetweentreatments.However,an increaseintheexcavationratewasseenintreatmentLP, suggest-ingaroleofthebroodasastimulusforexcavation.Thepresence ofbroodmayhaveexertedapositiveeffectonworkerdensityat thesite,stimulatingexcavation,sincetheaggregationofworkers atacertainlocationtriggerstheexcavationprocess(Römerand Roces,2015).Workersexerttheirfunctiontomaintainstabilityand toensurethesuccessofcolonygrowth.Larvaeandpupae repre-sentfutureworkersandanintimaterelationshipexistsbetween adultworkersandtheirimmaturesiblingsinsuchawaythatthe formerareresponsibleforthecareofthelatter,constantly seek-ingconditionsthatprovideprotectionandensuretheirintegrity andfulldevelopment.Theprioritywouldthusbetheexecutionof actionsthatensurethesuccessofthefuturegeneration.Bollazzi andRoces(2002)addthatthebroodisalwaysrelocatedfirst. Fol-lowingthislineofreasoning,RömerandRoces(2015)identifiedin abehavioralstudythatdiggingactivitywasmoreintenseatsites containingbroodcomparedtothosewherethebroodwasabsent. Analyzingtheissuefromaprioritypointofviewinnestbuilding, theprioritywouldbetheexecutionofactionsthatensurethe suc-cessofthefuturegeneration.Althoughthesymbionticfungusis theonlyfoodsourceofthecolony,inthiscaseitdoesnot repre-sentanimmediateprioritythatwouldjustifytheinvestmentof energyinnestbuilding,atleastduringthe24hevaluatedinthe presentexperiment.Afterbroodrelocation,thepossiblenext pri-oritystepcouldbethetransportofthefungustoguaranteefood resources.

Inconclusion,thepresenceofbroodorfungusdidnotserve asastimulusforexcavation,althoughthisbehavioralpatternhas beenobservedinotherleaf-cuttingantssuchasAcromyrmexlundii (RömerandRoces,2015)andAttasexdensrubropilosa(Camargoand Forti,2014).ThisobservationhighlightsthefactthatA.subterraneus workersdonotadheretothisbehavioralpattern,probablybecause diggingbehavioristheresultofadaptationduringnestbuildingin

differenthabitats.However,furtherstudiesareneededtoanswer thisquestion.

Conflictsofinterest

Theauthorsdeclarenoconflictsofinterest.

References

Andrade,A.P.P.,2002.BiologiaeTaxonomiadassubespéciesdeAcromyrmex sub-terraneusForel,1893(Hymenoptera,Formicidae)eacontaminac¸ãoporiscas tóxicas.Tese(DoutoradoemZoologia).InstitutodeBiociências,Universidade EstadualPaulista.

Bollazzi,M.,Kronenbitter,J.,Roces,F.,2008.Soiltemperature,diggingbehaviour, andtheadaptivevalueofnestdepthinSouthAmericanspeciesofAcromyrmex leaf-cuttingants.Oecologica158,165–175.

Bollazzi,M.,Roces,F.,2002.Thermalpreferenceforfungusculturingandbrood loca-tionbyworkersofthethatchinggrass-cuttingantAcromyrmexheyeri.Insectes Soc.49,153–157.

Bollazzi,M.,Roces,F.,2010a.Controlofnestwaterlossesthroughbuildingbehavior inleaf-cuttingants(Acromyrmexheyeri).InsectesSoc.57,267–273.

Bollazzi,M.,Roces,F.,2010b.Leaf-cuttingantworkers(Acromyrmexheyeri)tradeof nestthermoregulationforhumiditycontrol.J.Ethol.28,399–403.

Bollazzi,M.,Roces,F.,2010c.Thethermoregulatoryfunctionofthatchednestsinthe SouthAmericangrass-cuttingant,Acromyrmexheyeri.J.InsectSci.10,137–140. Bondar,G.,1923.Formiga“quem-quem”AcromymexsubterraneusFor.,pragados

cacaoeiros.CorreioAgricola1,251–254.

Buhl,J.,Gautrais,J.,Deneubourg,J.L.,Theraulaz,G.,2004.Nestexcavationinants: groupsizeeffectsonthesizeandstructureoftunnelingnetworks. Naturwis-senschaften91,602–606.

Camargo,R.S.,Forti,L.C.,Lopes,J.F.S.,Andrade,A.P.P.,2004.Characterizationof Acromyrmexsubterraneusbrunneus(Hymenoptera,Formicidae)youngnestsin fragmentoftheNeotropicalforest.Rev.Arvore28,309–312.

Camargo,R.S., Forti,L.C.,Lopes,J.F.S.,Andrade, A.P.P.,Ottati,A.L.T.,2007. Age polyethismintheleaf-cuttingantAcromyrmexsubterraneusbrunneusForel, 1911(Hymenoptera,Formicidae).J.Appl.Entomol.131,139–145.

Camargo,R.S.,Forti,L.C.,Fujihara,R.T.,Roces,F.,2011.Diggingeffortbyleaf-cutting antqueens(Attasexdensrubropilosa)anditseffectsonsurvivalandcolony growthduringtheclaustralphase.InsectesSoc.58,17–22.

Camargo,R.S.,Lopes,J.F.S.,Forti,L.C.,2013.Ojardimdefungoatuacomoum moldeparaaconstruc¸ãodascâmarasemformigascortadeiras?Cienc.Rural 43,565–570.

Camargo,R.S.,Forti,L.C.,2014.Whatisthestimulusfortheexcavationoffungus chamberinleaf-cuttingants?ActaEthol.18,31–35.

Cassill,D.,Tschinkel,W.,Vinson,S.,2002.Nestcomplexity,groupsizeandbrood rearinginthefireant,Solenopsisinvicta.InsectesSoc.49,158–163.

DellaLucia,T.M.C.,2011.Formigas-cortadeiras:dabiologiaaomanejo.Editora Uni-versidadeFederaldeVic¸osa,Vic¸osa.

Forti,L.C.,Andrade,M.L.,Andrade,A.P.P.,Lopes,J.F.S.,Ramos,V.M.,2006.Bionomics andidentificationofAcromyrmex(Hymenoptera:Formicidae)throughan illus-tratedkey.Sociobiology48,135–153.

Fröhle,K.,Roces,F.,2009.Undergroundagriculture:thecontrolofnestsizein fungus-growingants.In:Theraulaz,G.,Solé,R.,Kuntz,P.(Eds.),FromInsect NeststoHumanArchitecture–WorkshoponEngineeringPrinciplesof Inno-vationinSwarm-MadeArchitectures.EuropeanCentreforLivingTechnology, Venice,pp.95–104.

Gonc¸alves,C.R.,1961.OgêneroAcromyrmexnoBrasil(Hymenoptera:Formicidae). StudiaEnt.4,113–180.

Kleineidam,C.,Roces,F.,2000.Carbondioxideconcentrationsandnestventilation innestsoftheleaf-cuttingantAttavollenweideri.InsectesSoc.47,241–248. Lopes,J.F.S.,Ribeiroi, L.F.,Brugger,M.S.,Camargo,R.S., Forti,L.C., 2011.

Inter-nalarchitectureandpopulationsizeofAcromyrmexsubterraneusmolestans (Hymenoptera:Formicidae)nests:comparisonbetweenaruralandanurban area.Sociobiology58,45–50.

Moreira,A.A.,2001.AttabisphaericaForel,1908(Hym:Formicidae):arquiteturade ninhosedistribuic¸ãodeiscanascâmaras.Ph.D.Thesis.FaculdadedeCiências Agronômicas,UNESP,Botucatu,SP,Brazil,87p.

Moreira,A.A.,Forti,L.C.,Andrade,A.P.P.,Boaretto,M.A.C.,Lopes,J.F.S.,2004.Nest architectureofAttalaevigata(F,Smith,1858)(Hymenoptera:Formicidae).S. Neotrop.FaunaEnviron.39,109–116.

Pielström,S.,Roces,F.,2012.Vibrationalcommunicationinspatialorganizationof collectivediggingintheleaf-cuttingantAttavollenweideri.Anim.Behav.84, 743–752.

R CoreTeam, 2015. R: ALanguage and Environmentfor Statistical Comput-ing.RFoundationforStatisticalComputing,Vienna,Austria, http://www.R-project.org/.

Rassé,P.H.,Deneubourg,J.L.,2001.Dynamicsofnestexcavationandnestsize regu-lationofLasiusniger(Hymenoptera:Formicidae).J.InsectBehav.14,433–449. Römer,D.,Roces,F.,2014.Nestenlargementinleaf-cuttingants:relocatedbrood

andfungustriggertheexcavationofnewchambers.PLoSONE9(5),e97872, http://dx.doi.org/10.1371/journal.pone.0097872.

(6)

Römer,D.,Roces,F.,2015.Availablespace,symbioticfungusandcolonybrood influ-enceexcavationandleadtotheadjustmentofnestenlargementinleaf-cutting ants.InsectesSoc.62,401–413.

SilvaJunior,M.R.,Castellani,M.A.,Moreira,A.A.,Desquivel,M.S.,Lacau,S.,2013. Spa-tialDistributionandArchitectureofAcromyrmexlandoltiForel(Hymenoptera, Formicidae)NestsinPasturesofSouthwesternBahia,Brazil.Sociobiology60, 20–29.

Tofts, C., 1993. Algorithms for task allocation in ants (A study of temporal polyethism:theory).Bull.Math.Biol.55,891–918.

Verza, S.S., Forti, L.C., Lopes, J.F.S., Hughes, W.O.H., 2007. Nest architecture oftheleaf-cutting antAcromyrmexrugosusrugosus. InsectesSociaux 54, 303–309.

Referências

Documentos relacionados

Estes dados sugerem uma exigência maior do mercado de trabalho atual deixando os egressos que foram formados mais recentemente inseguros ao sair da faculdade, vale salientar que

Copepoda Nannocalanus minor (Claus, 1863) Oithona setigera (Dana, 1849) Neocalanus robustior (Giesbrecht, 1888) Oncaea media Giesbrecht, 1891 Undinula vulgaris (Dana, 1849)

Ousasse apontar algumas hipóteses para a solução desse problema público a partir do exposto dos autores usados como base para fundamentação teórica, da análise dos dados

(IME/2012) As raízes cúbicas da unidade, no conjunto dos números complexos, são representadas por 1, w e w é um número complexo.. Esta secção de escolas militares tem

§ 2 o No caso de morte do procurador de qualquer das partes, ainda que iniciada a audiência de instrução e julgamento, o juiz marcará, a fim de que

Na Tabela 3, são apresentados os parâmetros bioquímicos relacionados a função hepática, não houve diferença estatisticamente significativa entre os grupos, mostrando que a

A busca pelo corpo ideal imposto pela mídia credita no aumento dos transtornos alimentares no meio esportivo, os desportistas da amostra apresentam alta prevalência ao

Com o aumento da quantidade de ferramentas ligadas a web social, a ação de tagging vem sendo cada vez mais utilizada. Com isto surgiu a necessidade da criação de