• Nenhum resultado encontrado

Tolerance mechanisms of three potted ornamental plants grown under moderate salinity

N/A
N/A
Protected

Academic year: 2021

Share "Tolerance mechanisms of three potted ornamental plants grown under moderate salinity"

Copied!
8
0
0

Texto

(1)

ContentslistsavailableatScienceDirect

Scientia

Horticulturae

j o u r n a l ho me p ag e :w w w . e l s e v i e r . c o m / l o c a t e / s c i h o r t i

Tolerance

mechanisms

of

three

potted

ornamental

plants

grown

under

moderate

salinity

Pedro

García-Caparrós

a

,

Alfonso

Llanderal

a

,

Maribela

Pestana

b

,

Pedro

José

Correia

b

,

María

Teresa

Lao

a,∗

aHigherPolytechnicSchoolandExperimentalScienceCollege,DepartmentofAgronomyoftheUniversityofAlmeria,AgrifoodCampusofInternational

ExcellenceceiA3.Ctra.Sacramentos/n,LaCa˜nadadeSanUrbano,04120Almería,Spain

bUniversidadedoAlgarve,MeditBio,FCT,Edifício8,CampusdeGambelas,8005-139Faro,Portugal

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received27October2015

Receivedinrevisedform14January2016 Accepted20January2016

Availableonline4February2016 Keywords: Biomass Electricalconductivity Mineralcomposition Proline Salttolerance Sugars

a

b

s

t

r

a

c

t

ThescarcityofwaterintheMediterraneanareahasfrequentlyledtotheuseofsalinewaterinorder toirrigateornamentalplantsinmanynurseries.However,beforethelarge-scaleuseofsuchwaters,the waysinwhichtheplantsdealwiththesalinityneedtobeevaluated.PlantsofAloeveraL.Burm,Kalanchoe blossfeldianaPoellnandGazaniasplendensLemsp.weregrowninpotswithamixtureofsphagnum peat-mossandPerlite.Inordertoevaluatetheeffectsofdifferentlevelsofsalinity,threetreatmentsusing differentNaClconcentrations(Electricalconductivity=2.0(control),4.5and7.5dSm−1)wereapplied overaperiodof60days.Attheendoftheexperiment,thegrowth,physiologicalparametersandmineral contentoftherootsandleaveswereassessedforeachsalinitytreatment.After60daysofexposureto salinity,thetotalbiomassofallspeciesdecreasedsimilarly.Themineralcompositionofrootsandleaves wasclearlyaffected.Osmolytes,suchasproline,playedanimportantroleintheosmoticadjustmentin allspeciesincreasingintherootsandleavesatthehigherECi.Differentmechanismsofthesalttolerance

weretriggeredineachspecies.AveraplantsshowedNa+accumulationattherootlevelandadecrease

insucculenceindexofleaves.K.blossfeldianaplantsshedleavestoreleaseNa+andG.splendensplants

accumulatedCl−andNa+attherootlevel,secretedsaltfromleaves,lostsaltbysheddingofoldleaves

andincreasedthesucculenceindexofremainingleaves.Weconcludedthattheuseofsalinewatersis feasibleforgrowingtheseornamentalplants,andG.splendensseemstobeparticularlywelladaptedto salinity,aconsiderationthatisparticularlyrelevantinaridsalineareas.

©2016ElsevierB.V.Allrightsreserved.

1. Introduction

Theworldwideproductionvalueofornamentalpottedplants

andcutflowersisabout50billionD,correspondingtoanestimated

globalconsumptionofbetween100and150billionD(Lütkenetal.,

2012).However,nowadaysthereisadecreaseinproductionaround

Abbreviations:ANOVA,analysisofvariance;DW,dryweight;ECi,electrical

con-ductivityoftheirrigationwater;FW,freshweight;H2O2,hydrogenperoxide;HPLC,

highperformanceliquidcromatography;LWR,leafweightratio;LSD,least signif-icantdifference;L,leaves;PAR,photosyntheticallyactiveradiation;RH,relative humidity;RWR,relativerootweightratio;Yr,relativeyield;R,roots;SI, succu-lenceindex;H2SO4,sulphuricacid;TDW,totaldryweight;TSS,totalsolublesugars;

UL,unwashedleaves;WL,washedleaves;WCl,watercontentinleaves;WCr,water

contentinroots;Y,yield. ∗ Correspondingauthor.

E-mailaddresses:pedrogar123@hotmail.com(P.García-Caparrós),

mtlao@ual.es,mtlaoa@yahoo.es(M.T.Lao).

theworldpartlyduetosoilandwatersalinization(Cassanitietal.,

2013)ashappensinthesouth-easterncoastalregionofSpainwith

highsalinity levelsin thewater due tothe overexploitationof

groundwaterandseawaterintrusioninsomeaquifers(Consejería

deMedioAmbienteyOrdenacióndelTerritorio(CMAOT),2012).

Therearethreemajorconstraintsforplantgrowthundersaline

conditions:(1)thewaterstress,arisingfromlowerwaterpotential

ofthegrowingmedium,(2)iontoxicityassociatedwiththe

exces-siveuptakemainlyofClandNa,and(3)anutrientimbalancecaused

bydepression in theuptake of othernutrient ions(Marschner,

1995).Tocopewiththeeffectsofsaltstress,plantshaveevolved

manybiochemicalandmolecularmechanismstoreduce

detrimen-taleffectsofionsfromthosepartsoftheplantswheretheymaybe

harmful;thesemechanismsincludeaccumulationattherootlevel,

thesheddingofdryleaves,saltsecretionandsucculence(Aslam

etal.,2011).Thecellosmoticadjustmentnecessaryforgrowthin

salineenvironmentsmaybeaccomplishedbytheaccumulationof

inorganicandorganicsolutes.Theinorganicionsarebelievedto

http://dx.doi.org/10.1016/j.scienta.2016.01.031

(2)

besequesteredinthevacuoles,whiletheorganicsolutessuchas

sugarsand prolinemaybecompartmentalized inthecytoplasm

tobalancethelowosmoticpotentialinthevacuole(Munnsand

Tester,2008).

Duetothegreateconomicimportanceoftheproductionof

pot-tedplantsinsouth-easterncoastofSpainintherecentyears,and

thechallengestothecontinuedsupplyofnon-salinewater

men-tionedabove,furtherinvestigationisnecessaryontheeffectsof

differentirrigationwatersalinity(electricalconductivity,ECi)in

horticulturalspecies.Theadjustmentofthenutrientsolutionin

termsofelectricalconductivity(EC)iscrucialfortheoptimization

ofthewaterandnutrientavailability(KangandIersel,2004).

Weinvestigatedthreespecies.AloeveraL.Burm,amemberof

theAsphodelaceaefamily,isasucculentplantwithgreenleaves,

widelycultivatedandvaluedduetoitsshortgrowthperiodandthe

higheconomicvalue(Moghbelietal.,2012).Kalanchoeblossfeldiana

Poelln,originatingfromMadagascar,isamemberofCrassulaceae

(Abdel-Raouf,2012)anditisoneofthemostfinancially

impor-tantflowering,pottedplantspeciesinEurope,withaproductionof

morethan150millionplantsperyear(Mibusetal.,2014).Gazania

splendensLemasp.,withinCompositae,tribeArctotideae,subtribe

Gorteriinae(Karis,2007),isanornamentalshrubwidelycultivated

ingardensacrosstheworld,beingendemicfromsouthernAfrica

(Mageeetal.,2011).Nevertheless,veryfewstudiesontheeffects

ofdifferentECoftheirrigationwateronthenutritionand

phys-iologyhavebeenreportedforK.blossfeldiana(Taybietal.,1995;

Mariauxetal.,1997)andG.splendens.InthecaseofA.vera,there

aremanyinvestigationsontheeffectsofhighNaClconcentration

suchas100and200mMNaCl(Xuetal.,2006;Zhengetal.,2009)

or100%seawater(Liuetal.,2007),butverylittleisknown

regard-ingtheeffectsunderlowNaClstress.Therefore,inthistrial,apot

experimentwithA.vera,K.blossfeldianaandG.splendensplantswas

establishedinordertodeterminetheeffectsofdifferentsalinity

levelsoftheirrigationwaterontheplants’drymassandallocation,

mineralnutrientcontent,mechanismsofsalttoleranceandtheir

physiologicalchanges.Suchinformationcanbeusedfor

optimiz-ingthecropmanagementwithsalinewatersandalsoforevaluating

whichofthesespeciesmightbesuitablefortheuseofsalinewaters.

2. Materialandmethods

2.1. Plantmaterialandexperimentalconditions

ThepresentstudywascarriedoutattheUniversityof

Alme-ria(36◦49N,2◦24W).Rootedcuttings(plants)ofA.veraL.Burm,

K.blossfeldianaPoellnandG.splendensLemwereobtainedfrom

alocalnurseryandtransplantedinto1.5Lpolyethylenepots

con-tainingamixtureofsphagnumpeat-mossandPerlite80:20(v/v).

Duringthetrial(60days),thepotswereplacedinagreenhouseof

150m2.Themicroclimaticconditionsinsidethegreenhouseforthe

experimentalperiod,monitoredcontinuouslywithHOBOSHUTTLE

sensors(modelH08-004-02)showedadailyaveragetemperature

of25.4±2.5◦C,relativehumidity(RH)of65.6±2.1%and

photosyn-theticallyactiveradiation(PAR)of225±9.4␮molm−2s−1.

2.2. Experimentaldesignandtreatments

Thisexperimenthadbeenperformedpreviouslywithawider

rangeofsalinities.Theexperimentconsistedofthreetreatments

usingdifferentsalinitiesinastandardsolutionwiththefollowing

composition(inmmolL−1):0.70H2PO4−,6.00NO3−,2.00SO42−,

3.00K+,2.00Ca2+and1.40Mg2+amendedwithdifferent

concen-trationsofNaCl(solesalinizingagent)toachieveEClevelsofthe

irrigationwater(ECi)ofeither2.0(T1orcontrol,3mmolL−1NaCl),

4.5(T2,30mmolL−1NaCl)or7.5(T3,60mmolL−1 NaCl)dSm−1.

Theplantswereirrigatedmanuallyeveryday.TheECiandpHwere

measureddailyusingaconductivitymeterandpHmeters(models

MilwaukeeC66andpH52),respectively.Thetreatments(EC

lev-els)werechoseninaccordancewithpreviousresearchreportedby

WuandDodge(2005)regardingthesalinitytolerancewitharange

from2toover6dSm−1toavoidsaltstresssymptoms,considering

theirrigationwiththenutrientsolutionof2.0dSm−1asacontrol

intheexperiment.Thevolumeofsalinewateraddedtoeachpot

duringtheexperimentalgrowingperiodwas4.2Lforeachsaline

treatmentandthesameforallspecies.Theexperimentaldesign

consistedofthreesalinitytreatments,fourblocks,andfourplants

(oneplantperpot)perblockgivingatotalof12plantsperspecies

plusborderplants.

2.3. Plantparameters

Attheendofthesalineperiod,theplantswereharvestedandthe

substrategentlywashedfromtherootsoffourplantspertreatment

forallthestudiedspecies.Theplantsweredividedintoroots(R)

andleaves(L) andtherespectivefreshweights(FW)measured;

rootsandleaveswerethenoven-driedat60◦Cuntiltheyreached

aconstant weighttomeasuretherespectivedryweights(DW).

Thesedryweightswereusedtocalculateseveralplantparameters

asindicatedbyRyserandLambers(1995)andCorreiaetal.(2010):

theleafweightratio(LWR;leafDWperunitplantDW)andthe

relativerootweightratio(RWR;rootDWperunitplantDW).The

totaldryweight(TDW)wascalculatedasthesumofleavesand

rootsDW.Thefreshanddryweightofrootsandleaveswereused

tocalculatethewatercontent(WC)(−)asindicatedbyBenAmor

etal.(2005):

WC=(FW−DW)

FW (1)

2.4. Yieldresponsesalinitymodels

TomodeltheyieldresponsetothedifferentECivaluesinthe

threespecies,regressionanalysesweretestedandthebestfitted

modelswereselectedbasedonthedeterminationcoefficient(R2)

inaccordancewithSteppuhnetal.(2005)andCorreiaetal.(2010).

Inthisexperiment,thetotalplantDW(rootsandleaves)wasused

asyield(Y),beingassessed60daysfromsalinization.Theabsolute

yield(Y)wasconvertedintorelativeyield(Yr)byemployinga

scal-ingdivisor(Ym)basedonthemaximumvalueoftotalplantbiomass

(DW)obtainedincontrolplants(MaasandHoffman,1977).TheYr

valueforeach salttreatmentwasdeterminedattheend ofthe

experimentaccordingtothefollowingequation:

Yr= YmY (2)

2.5. Physiologicalmeasurements

Fourplantspertreatmentwererandomlyselectedattheendof

theexperimentineachspeciestodeterminetheNaandCl

accu-mulationbyroots,calculatedastheratiobetweenthequantityof

ClandNaintheroot(R)relativetototalquantityintheplant(Cl−

andNa+extractionperplantinmmol/rootDWingram);(ii)the

Cl−andNa+secretionbyleaves(L)wasassessedbythedifference

betweenthecontentofthiselementsinwashedleaves(WL)and

inunwashedleaves(UL)(mmolg−1DW);(iii)thelossofNaandCl

wasevaluatedbycollectingandquantifyingthecontentsofthese

elements(mmolg−1DW)inshedoldleaves,and(iv)thesucculence

index(SI)ofleaveswasdeterminedastheratiobetweenleafFW

(3)

Fig.1.Relationshipbetweentherelativeyield(Yr:expressedasTDW)andtheECiinA.vera(A),K.blossfeldiana(B)andG.splendens(C)plantsattheendoftheexperiment.

2.6. Analysisofmineralelements

Theoven-driedsamplesweregroundinamillanddividedin

twosubsamples.Theanalysisofmineralelementsoftherootsand

leaveswasdeterminedinonesubsamplefollowingwater

extrac-tionbyHPLC(HighPerformanceLiquidChromatography;model

Metrohm883BasicICPlus).Thesolubleionicforms(NO3−andCl−)

werequantifiedusingacolumnmodelMetrosepASUPP4(IC

con-ductivitydetectorrange0–15000␮Scm−1)asdescribedbyCsáky

andMartínez-Grau(1998).Themobilephasewaspreparedby

mix-ing190.6mgofCO32−and142.8mgofHCO3−andthendilutingin

1Lofdeionizedwater,acidifywithH2SO4(50mM).Theother

sub-samplewasmineralizedwithsulphuricacid(H2SO4,96%)inthe

presenceofhydrogenperoxide(H2O2,P-free)at300◦Candused

forthedeterminationoforganicN,totalP,K+ and Na+

concen-tration.TodeterminetheorganicNconcentration(Krom,1980),

1mLofreagentA(8.5gofsodiumsalicylateand0.06gofsodium

nitroprussidein100mLofdeionizedwater)and1mLofreagent

B(4gofsodichydroxidand0.625gofsodicdicloroisocinuratein

100mLofdeionizedwater)wereaddedto0.1mLofmineralized,

shakingafterwards.Passed45min,theabsorbanceat630nmwas

quantifiedcolorimetrically(modelShimadzuUV-1201)

compar-ingwithastandardcurveof(NH4)2SO4.Forthedeterminationof

totalP(Hogueetal.,1970),thephosphorusreagentwasprepared

asfollows:10gofammoniummolybdateand5gofammonium

vanadatewereaddedto800mLofboilingdeionizedwater.Then,

thesolutionwascoolediniceand4mLofnitricacidwereadded

dropbydrop.Afterwards,134mLofnitricacidweretransferred

byburette,dilutingwithdeionizedwatertothemarkina1L

vol-umetricflaskandmixing.Finally,0.5mLofmineralized,1.5mLof

deionizedwaterand3mLofphosphorusreagentwereadded,

mix-ingandallowingtostandfor1hafterwards.Theabsorbancewas

quantifiedcolorimetricallyat430nm(modelShimadzuUV-1201)

usingacalibrationcurvepreparedwithK2HPO4standardsolution.

ThetotalNwascalculatedasthesumoftheorganicNandNO3−

concentration.ThetotalK+andNa+concentrationsweredirectly

measuredinthemineralizedbyflamespectrophotometry(model

JenwayPFP7)(Lachicaetal.,1973).

2.7. Organicsolutesdeterminations

Todeterminetheconcentrationsof prolineandtotal soluble

sugars(TSS)in therootsand leaves,fourplants wererandomly

selectedper treatment in each species at harvest. Fresh

mate-rial (0.5g for each type of organ) wascrushed in 5mL of 95%

(v/v)ethanolandcentrifuged(modelDigicen21R)at3500×gfor

10min.Thepelletwaswashedtwicewith5mLof70%(v/v)ethanol

andrecentrifuged.ThefreeprolineandTSSconcentrationswere

determinedinthealcoholicextractsupernatant.Thefreeproline

concentrationwasdeterminedbytheninhydrinreagentmethod.

Avolumeof2.5mLofninhydrinreagent(25gofninhydrinmixed

with400mLofphosphoricacid6Mand600mLof60%(v/v)glacial

aceticacidshakenat75◦C)plus4mLofdistilledwaterand2.5mL

ofglacialaceticacidwereaddedto2mLofalcoholicextract

super-natant,shakenandheatedinaboilingwater-bathfor45min.The

reactionwasstoppedbyplacingthetesttubesinanicebath.Then

5mLofbenzenewereaddedtothesamples,beingvigorouslymixed

inavortexshakerfor1minafterwards.Aftertheextractionwith

benzene,thefreeprolineconcentrationwasquantified

colorimetri-callyat515nmusingL-proline(SigmaChemicals)asstandard.Free

prolineconcentrationwasexpressedas␮molg−1FW.Thetotal

sol-ublesugarsconcentrationwasdeterminedbytheanthronereagent

method.FourmLofanthronereagent(300mgofanthronemixed

with300mLof70%(v/v)sulphuricacid)wasaddedto100␮Lof

alcoholicextractsupernatantandthenthemixturewasshaken,

heatedinaboilingwater-bathfor10minandcooledat4◦C.Lastly,

thetotalsolublesugarsconcentrationwasquantified

colorimetri-callyat650nmusingglucose(SigmaChemicals)asstandard.The

totalsolublesugarsconcentrationwasexpressedas␮molglucose

g−1FW(Irigoyenetal.,1992).

2.8. Statisticalanalysis

The experiment had a completely randomizedblock design,

and thevalues obtainedfor each plantand each variablewere

consideredasindependentreplicates.Eachspecieswasanalysed

independently.Thedatawereanalysedthroughone-way

analy-sisofvariance(ANOVA)andleastsignificantdifference(LSD)tests

(P<0.05)in ordertoassess thedifferencesbetweentreatments

usingStatgraphicPlusforWindows(version5.1.).

3. Results

3.1. Plantparameters

Throughouttheexperiment,therewerenomortalitiesinany

ofthespeciesinresponsetosalinitytreatments(Table1).

Salin-itydecreasedthetotaldryweight(TDW)inallthespecies(root

dryweight(RDW)wasunaffectedbyECiwhereasleafdryweight

(LDW) decreased significantly bysalinity).The leafweigh ratio

(LWR)wasnotaffectedduetosalinitybutthevaluesofrelativeroot

(4)

Fig.2. EffectofECi(2.0,4.5and7.5dSm−1)onchloride(A)andsodium(B)accumulationinroots(Cl−andNa+extractionperplantinmmol/rootDWing)ofA.vera(A),K.

blossfeldiana(K)andG.splendens(G)attheendoftheexperiment.Valuesarethemeans±standarddeviation(errorbars)offourplantspertreatment.Meanswithoutthe sameletterinbarsaresignificantlydifferentatP<0.05(ANOVAandLSDtest).

Table1

EffectofECi(2.0,4.5and7.5dSm−1)onleaf(LDW),root(RDW)andtotalplantdryweight(TDW)(expressedingram),leafweightratio(LWR),relativerootweightratio(RWR),

watercontentinleaves(WCl)androots(WCr)inA.vera(A),K.blossfeldiana(K)andG.splendens(G)plantsattheendoftheexperiment.Valuesarethemeans±standard

deviationoffourplantspertreatment.MeanswithinacolumnwithinaspecieswithoutthesameletteraresignificantlydifferentatP<0.05(ANOVAandLSDtest).

ECi(dSm−1) RDW LDW TDW LWR RWR WCl WCr A 2.0 7.73±0.63a 54.27±3.34a 64.50±4.34a 0.82±0.05a 0.10±0.02c 0.96±0.01a 0.87±0.02a 4.5 8.39±1.02a 44.33±3.17b 55.21±2.59b 0.80±0.08a 0.14±0.02b 0.95±0.01a 0.87±0.01a 7.5 7.99±1.14a 35.69±3.41c 45.68±3.19c 0.82±0.04a 0.18±0.01a 0.95±0.01a 0.85±0.01a K 2.0 1.64±0.11a 7.51±0.62a 9.15±0.64a 0.82±0.01a 0.14±0.01c 0.94±0.01a 0.86±0.02a 4.5 1.48±0.29a 6.06±0.42b 7.53±0.31b 0.80±0.09a 0.18±0.02b 0.94±0.01a 0.87±0.01a 7.5 1.33±0.37a 5.19±0.39c 6.90±0.19c 0.80±0.09a 0.23±0.01a 0.92±0.03a 0.87±0.01a G 2.0 2.49±0.47a 22.72±0.80a 25.01±0.38a 0.87±0.05a 0.09±0.02c 0.80±0.02a 0.86±0.01a 4.5 2.74±0.51a 17.99±0.87b 20.93±0.41b 0.86±0.02a 0.14±0.01b 0.83±0.02a 0.86±0.01a 7.5 2.83±0.43a 14.46±0.45c 17.29±0.29c 0.85±0.04a 0.17±0.01a 0.84±0.03a 0.86±0.02a

plantsinallthespeciesattheendoftheexperiment.Thewater

con-tent(WC)wasunaffectedbyECiirrespectiveoftheanalysedorgan

(rootsorleaves)inallspecies.

3.2. Yieldresponsesalinitymodels

Therelativeyield(Yr)wasrelatedtotheelectricalconductivity

ofirrigationwater(ECi)inallspeciesattheendoftheexperiment

throughthebestmodelswiththelargestR2 value,theYrbeing

inverselyproportionaltotheECi(Fig.1).

3.3. Physiologicalmeasurements

UnderdifferentECi,theCl−andNa+rootaccumulationwas

dif-ferentbetweenthespecies(Fig.2).TheA.veraplantsremainedwith

nosignificantdifferencesonCl−accumulationbetweenthesaline

treatments,whereastheNa+accumulationincreasedsignificantly

athigherECicomparingtothecontrolattheendofthe

experi-ment.Contrastingly,theK.blossfeldianaplantsirrigatedwith4.5

and7.5dSm−1decreasedtheCl−accumulationwithrespecttothe

control,whilenosignificanteffectfortheNa+accumulationwas

found60daysfromsalinizationforallthetreatments.InG.

splen-densplants,theCl−andNa+accumulationat4.5and7.5dSm−1

weregreaterthanthoseforthecontroltreatment(2.0dSm−1).

TheleavesofA.veraandK.blossfeldianadidnotsecreteCl−and

Na+whereasintheG.splendensplants,theClandNa+secretionby

theleavesincreasedwithincreasingsalinitytreatments(Table2).

TheeffectsofdifferentECionCl−andNa+concentrationinthe

shedleavesweredifferentinallthespeciesattheendofthe

exper-iment(Fig.3).A.veradidnotshedleavesinanytreatment.

InshedleavesofK.blossfeldiana,Cl−concentrationwassimilar

betweentreatments, while Na+ concentrationincreased

signifi-cantlywithrespecttothecontroltreatment.G.splendensshowed

aclearincreaseofCl−andNa+concentrationsintheshedleavesat

greaterECi(4.5and7.5dSm−1)attheendofthesalineperiod.K.

blossfeldianalost1.5–3.0%ofleavesDWinrelationtoTDW,whereas

G.splendensshedsleavesinapercentagefrom15to21%ofTDW

(datanotshown).

Theplantsshoweddifferenttrendsinleafsucculenceindex(SI)

(Fig.4).InK.blossfeldianaplants,SIremainedunchangedacrossthe

treatments.TheSIofA.veraplantsdecreasedsignificantlyat4.5

and7.5dSm−1comparedwiththecontroltreatment(2.0dSm−1),

whereasinG.splendens,SIincreasedsignificantlyathigherECi.

3.4. Ionconcentrationsintissues

Themineralcompositionoftherootsandleavesofallthespecies

wasaffectedbythesalinitytreatments(Table3).InA.veraplants,

leafNdecreasedwithhigherECi,whiletherewasnoclearresponse

intheroots.TherootPwassimilarinalltreatments,whereasinthe

leavesoftheplantsirrigatedwith4.5dSm−1showedthegreatest

concentration.TheKconcentrationintherootsandleavesofthe

plantsirrigatedwithhigherECi(4.5and7.5dSm−1)werelower

(5)

Table2

EffectofECi(2.0,4.5and7.5dSm−1)onCl(A)andNa(B)inwashedleaves(WL)andinunwashedleaves(UL).DW:dryweight.Foreachtreatment,Cl−andNa+concentration

inWLandULinthesamecolumnwiththesamelettersarenotsignificantlydifferentatP<0.05(ANOVAandLSDtest).Foreachtreatment,thedifferencebetweenULandWL inthesamerowwiththesamelettersarenotsignificantlydifferentatP<0.05(ANOVAandLSDtest).Dataarethemeans±standarddeviationoffourplantspertreatment.

Species Elementconcentration(mmolg−1DW) ECi(dSm−1)

2.0 4.5 7.5 A Cl− WL 1.36±0.03a 1.38±0.02a 1.36±0.01a UL 1.40±0.03a 1.40±0.01a 1.38±0.02a Cl− (UL-WL) 0.03±0.01a 0.03±0.01a 0.02±0.01a Na+ WL 0.81±0.05a 1.24±0.03a 1.49±0.05a UL 0.83±0.03a 1.23±0.05a 1.50±0.04a Na+ (UL-WL) 0.01±0.001a 0.01±0.001a 0.01±0.001a K Cl− WL 1.31±0.06a 1.45±0.02a 1.46±0.03a UL 1.35±0.04a 1.49±0.03a 1.49±0.04a Cl− (UL-WL) 0.03±0.01a 0.04±0.01a 0.03±0.01a Na+ WL 0.30±0.01a 0.74±0.01a 0.67±0.01a UL 0.31±0.01a 0.75±0.01a 0.69±0.02a Na+ (UL-WL) 0.01±0.001a 0.01±0.001a 0.01±0.002a G Cl− WL 1.43±0.02b 2.51±0.04b 2.67±0.04b UL 1.62±0.04a 2.73±0.04a 2.98±0.05a Cl− (UL-WL) 0.18±0.01c 0.21±0.01b 0.26±0.01a Na+ WL 1.19±0.02b 3.68±0.08b 4.05±0.09b UL 1.46±0.05a 4.01±0.06a 4.53±0.08a Na+ (UL-WL) 0.27±0.01c 0.34±0.01b 0.46±0.02a

Fig.3.EffectofECi(2.0,4.5and7.5dSm−1)onchloride(A)andsodium(B)concentrationintheshedleavesinA.vera(A)K.blossfeldiana(K)andG.splendens(G)plantsatthe

endoftheexperiment.Valuesarethemeans±standarddeviation(errorbars)offourplantspertreatment.Meanswithoutthesameletterinbarsaresignificantlydifferent atP<0.05(ANOVAandLSDtest).

Table3

Mineralcomposition(expressedinmmolg−1DW)inroots(R)andleaves(L)ofA.vera(A),K.blossfeldiana(K)andG.splendens(G)attheendoftheexperiment.Valuesare

themeans±standarddeviationoffourplantspertreatment.MeanswithinacolumnwithoutthesameletteraresignificantlydifferentatP<0.05(ANOVAandLSDtest). ECi (dSm−1) N P K L R L R L R A 2.0 2.02±0.16a 1.27±0.15a 0.06±0.01b 0.10±0.01a 1.15±0.03a 0.44±0.01a 4.5 0.84±0.23b 0.81±0.08b 0.09±0.01a 0.11±0.01a 1.09±0.01b 0.37±0.03b 7.5 1.08±0.16b 1.28±0.08a 0.03±0.01c 0.11±0.01a 1.01±0.03c 0.32±0.01b K 2.0 1.18±0.08b 1.11±0.09ab 0.08±0.01a 0.05±0.01b 0.97±0.01a 0.48±0.02a 4.5 1.49±0.11a 1.31±0.11a 0.08±0.01a 0.07±0.01a 0.94±0.04a 0.31±0.04b 7.5 1.43±0.16a 1.02±0.09b 0.07±0.01a 0.03±0.01c 0.96±0.03a 0.25±0.03b G 2.0 2.03±0.10a 2.26±0.07a 0.12±0.01a 0.10±0.02b 1.30±0.03a 0.47±0.04a 4.5 1.49±0.07b 1.20±0.04c 0.12±0.01a 0.25±0.01a 1.19±0.04b 0.48±0.04a 7.5 1.87±0.10a 1.60±0.07b 0.04±0.01b 0.10±0.01b 1.11±0.02c 0.45±0.03a

IncontrolplantsofK.blossfeldiana,theleafNlevelwaslower

thanintheothersalttreatments,whilsttherootNshowedthe

highestconcentrationat4.5dSm−1.TheleafPwasnotaffectedby

thesalttreatments,whileintherootsPwashighestintheplants

subjectedto4.5dSm−1.TheleafKwassimilarinalltreatments,

whereasthehighestvalueintherootswasobservedinthecontrol

plants(2.0dSm−1).

InG.splendensplants,leafNwaslowestat4.5dSm−1,whilein

therootsthecontrolplantsshowedthehighestconcentration.The

(6)

Fig.4. EffectofECi(2.0,4.5and7.5dSm−1)onsucculenceindex(SI)inleavesofA.

vera(A),K.blossfeldiana(K)andG.splendens(G)attheendoftheexperiment.Values arethemeans±standarddeviation(errorbars)offourplantspertreatment.Means withoutthesameletterinbarswiththesamecolouraresignificantlydifferentat P<0.05(ANOVAandLSDtest).

intheroots,thehighestconcentrationwasobservedat4.5dSm−1.

TheleafKdecreasedsignificantlywiththeECiincrease,whilstin

therootsitremainedconstantinalltreatments.

3.5. Biochemicalanalysis

InA.veraplants,thesugarconcentrationintherootswashigher

thanintheleaves.Theleafsugarincreasedsignificantlywiththe

highestECi(7.5dSm−1),whileintherootthehighestconcentration

wasfoundinplantsgrownin4.5dSm−1 (Table4).Intheplants

treatedwith4.5and7.5dSm−1,theprolineconcentrationinthe

rootsandleaveswerehigherthaninthecontrolplants.

InK.blossfeldianaplants,thesugarconcentrationintheroots

waslowerthanin theleaves. Salinityledtoareduction ofthe

sugar concentration in the leaves, whereas in the roots sugar

remainedunchanged.Theprolineconcentrationintherootsand

leavesincreasedwiththeECiandthehighestvalueswereobserved

at7.5dSm−1.

InG.splendensplants,thesugarconcentrationintherootswas

higherthanintheleaves.Inthecontrolplants (2.0dSm−1),the

leafsugarconcentrationwashigherthanintheothertreatments,

while the sugar concentration in the roots showed no

differ-encesbetweentreatments.Theleafandrootprolineconcentration

increasedwiththehigherECi.

4. Discussion

Theirrigationwatersalinityhaddifferenteffectsonthebiomass

and biochemical parameters according to the species. Under

increasingECi,theproportionofbiomassallocatedtoleaves(LWR)

wasnotaffectedinanyofthethreespeciestested,thereby

allow-ingtheproductionof marketableplants withmoderatesalinity.

Thesame resultswerealsoobservedin A. veraplants irrigated

withdilutedseawater(Jiangetal.,2014),whileLWRincreasedin

otherpottedplantsasAsteriscusmaritimus(Rodríguezetal.,2005)

irrigatedwith140mMNaClandCistusalbidusandC.

monspelien-sis(Torrecillasetal.,2003)irrigatedwith70and 140mMNaCl.

After60daysofexposure,theincreaseinRWRinthethreespecies

weinvestigatedsuggeststhatthesepottedplantsalteredthe

pat-ternofdrymatterdistributionfavouringrootgrowthovershoot

growthasreportedbyCordovillaetal.(2014)inThymusvulgaris.

Incontrast,Jiangetal.(2014)reporteda decreasein RWRinA.

veraplants.ChangesinTDWwasattributedtoLDWand notto

RDW.Inourexperiment,watercontentwasnotaffectedby

salin-ity.TheseresultsdisagreeingwithJinetal.(2007)andZhengetal.

(2009)whoreportedadecreaseinwatercontentinthedifferent

organsofA.veraplantsassessedwith60%seawaterand200mM

NaCl(highersalinitytreatments),respectively;andwiththedata

obtainedbyNiuandRodríguez(2006)inotherornamental

pot-tedplantsasPenstemoneatonii,Delospermacooperi andGazania

rigensirrigatedathigherEClevels(12dSm−1)whichalsoshowed

adeclineinthewatercontentintherootsandleaves.These

appar-entlycontradictoryresultsmaybeexplainedbythelowerECilevels

imposedinourstreatments.Althoughsomedifferencesdidoccur

inleavesbiomass,theywerenotexpressedinthewatercontent

of thetissues. It is alsopossiblethat ifthe experiment had be

extendedforalongerperiod(>60days)watercontentwillprobably

beaffected.

SalineconditionsinducesanincreaseinCl−andNa+

concen-trationsintherootsandleavesinornamentalpottedspeciesas

reportedby Cassanitiet al. (2009).Under theseconditions, the

tolerancetosalinityineachspeciesistriggeredthroughdifferent

strategiessuchasionsaccumulationatrootlevel,sheddingofdry

leaves,saltsecretionandsucculenceinthedifferentorgans(Aslam

etal.,2011).Inourexperiment,A.veraplantswereableto

accu-mulateonlyNa+inrootswhileG.splendensaccumulatedCland

Na+whichagreesverywellwiththeconclusionreportedbySykes

(1993)explainingthattheabilitybetweenspeciestoaccumulate

Cl− ionsintheroots isindependentofitsability toaccumulate

Na+ions;a goodClionexcluderisnotnecessarily agoodNa+

excluder,andviceversa.Thesheddingoftheoldleaveswithhigh

amountsofNaandCl,asamechanismtoovercomethesalinity

proposedbyKoyroetal.(2011)wasonlyperformedinK.

bloss-feldianaandG.splendensplants eventhoughthesheddingleda

slightreductioninTDWandthereforealowerqualityofsaleable

plants.

A.veraandK.blossfeldianaarecharacterizedbythelackofsalt

glands whereas G. splendens hassalt glands. A histoanatomical

studyofleavesinK.blossfeldiana(S¸ipos¸andBunta,2011)reported

thelackoftrichomeswhichexplainstheabsenceofsaltontheleaf

surfaceandtheabsenceofanydifferencesinthelossofCl−and

Na+byleavesinthisspeciesobservedinourexperiment.Wuetal.

(2001)alsodidnotfindsaltsecretioninotherornamentalpotted

plantsasCeanothussp.andNandinadomestica,treatedwith

salin-ity,presumablybecauseoftheabsenceofglandsontheleafsurface.

Furthermore,inthecaseofG.splendens,themechanismofNaand

Clexcretionbyleavesthroughtrichomesisalsoobservedinother

plantswelladaptedtosalinity,suchasAtriplexsp.(Wahid,2003).

Saltstressaltersthesucculenceoftheleaveswhichis

consis-tentwithavacuolarcompartmentationofions.Inourexperiment,

eachspeciesshowedadifferentpatternunderincreasingNaCl

con-centration. Thedecrease of succulencein A. veraplants can be

interpretedasamechanismofsoluteconcentrationinthecellsap

thuscontributingtotheosmoticadjustment(Matohetal.,1988).

Incontrast,itispossiblethatG.splendenshadpromotedagreater

uptakeofwaterinordertodilutetheexcessofsalts(Munnsetal.,

1983)thusleadingtoahigherSIinleaves.InthecaseofK.

blossfel-dianaplants,thesucculenceindexwasnotaffectedandthiscanbe

duetothelowerlevelsofsalinityappliedtopromotethesucculence

inthisplant.

Theexcessiveaccumulationofsaltsmaycauseachangeonthe

uptakeofmineralnutrientsaswellasinducephytotoxicity(Hu

andSchmidhalter,2005).ThepresentresultsshowedthattheN

andPconcentrationsintherootsandleavesinallthespeciesdid

notshowaclearresponsetosalinity,whereastheK

concentra-tiontendedtoremainwithoutchangesortodecreasewiththesalt

stress:K.blossfeldianawasthebestspeciesmaintainingits

(7)

Table4

Osmolyteconcentration(totalsolublesugars(TSS)andproline)expressedin␮molg−1FWinroots(R)andleaves(L)ofA.vera(A),K.blossfeldiana(K)andG.splendens

(G)plantstreatedoveraperiodof60dayswithdifferentelectricalconductivityoftheirrigationwater(ECi).Valuesarethemeans±standarddeviationoffourplantsper

treatment.MeanswithinarowwithoutthesameletteraresignificantlydifferentatP<0.05(ANOVAandLSDtest). ECi(dSm−1) 2.0 4.5 7.5 A TSS L 17.11±0.28b 16.44±0.94b 35.11±4.38a R 97.22±16.39ab 115.11±10.88a 74.39±14.78b Proline L 0.09±0.01c 0.19±0.03b 0.29±0.03a R 0.13±0.01c 0.16±0.01b 0.28±0.03a K TSS L 19.33±0.77a 11.28±0.89b 12.06±0.72b R 9.17±1.00a 8.67±0.88a 9.83±0.61a Proline L 0.75±0.10c 1.15±0.11b 1.58±0.17a R 0.63±0.04c 0.77±0.08b 1.55±0.16a G TSS L 27.50±0.78a 18.83±1.17b 18.67±1.00b R 48.72±2.61a 50.33±0.83a 50.94±2.33a Proline L 2.56±0.19c 3.35±0.16b 3.82±0.17a R 1.51±0.50c 2.47±0.30b 4.93±0.39a

literature.SeveralstudiesreportedthatthereductionoftheN

con-centrationattributedtotheCl−andNO3−antagonism(Abdelgadir

etal.,2005),whereasothersreportedanincreasemainlydueto

theaccumulationofN-containingcompounds,suchasaminoacids

includingprolineinresponsetosaltstress(Paridaetal.,2002).On

theotherhand,thePconcentrationinplantscanshowdifferent

trendsundersalinity.Someresearchersfoundadeclinedueto

com-petitionbetweenCl−andH2PO4−(Kayaetal.,2001),whileothers

reportedariseduetotheenergy(ATP)requiredtotransportthe

excessofionsintothevacuoles(MengelandKirkby,2001).The

decreaseofK+concentrationinorgansofsalinizedplantsinour

experimentindicatestheexistenceofcompetitioneffectsbetween

Na+andK+ionswhichmostlikelysharethesametransport

sys-tem(Blumwald,2000;TesterandDavenport,2003;ParidaandDas,

2005).Inaccordance,Cassanitietal.(2009)reportedadecreaseon

K+concentrationinotherornamentalpottedplantsasBougainvillea

glabra,GrevilleajuniperinaandLeptospermumscopariumsubjected

tosalinity.

Osmoticadjustmentinplantscanbeperformedthrough

accu-mulation of osmolytes which are compatible with the cells

metabolism(Hasegawaetal.,2000).Inourexperiment,thechanges

inrootsandleavesinsugarconcentrationsdidnotshowadefined

patterninresponsetodifferentNaClconcentrations,exceptforthe

decreaseinleavesofK.blossfeldianaandG.splendens.Conversely

withtheseresults,otherresearchersreportedanincreaseofsugar

concentrationinrootsandleavesundersaltstressinother

orna-mentalplantsasMelissaofficinalis(KhalidandCai,2011).Onthe

otherhand,fromtheresultsofthis experiment, prolineis

con-firmedtobeagoodstressindexforsalinityinallthespeciesdue

totheincrement togetherwiththeincrease inNaCl

concentra-tion.Theprolineconcentrationincreaseintherootandleafinall

speciesundersalinitymaybetheresultofadecreaseinthe

pro-linedegradation(Hareetal.,1999)orofanincreaseintheproline

biosynthesis(Luttset al.,1999).In accordancewithourresults,

Murillo-Amadoretal.(2014)reportedanincreaseoftheproline

concentrationintheleavesofA.veraplantsandotherresearchers

alsonotedthisincreaseinotherornamentalpottedplantsas

Ger-berajamesoniiL.(Donetal.,2010)andDelonixregia(Pateletal.,

2009)subjectedtothesaltstress.

Finally,theresultsforbiomassproduction,expressedasTDW

whichisoneofthebasicrequisitesforthenurseryindustry,showed

asimilardecreaseabout30%inallthespeciesundersalinty.These

valuesarefarfromtheacceptablepercentageofdecrease(45%)

pro-posedbylocalornamentalgrowerstoproducemarketableplants,

thereforetheuseofmoderateECilevelsasstudiedinourtrialare

feasibleforthecultivationoftheseornamentalspeciesina

con-trolledenvironment.

5. Conclusions

Salinitytriggereddifferentresponsesineachspecies.Attheend

ofthesalineperiod,allspeciesshowedasimilardecreaseonthe

totalbiomassandthemineralcontentsintherootsandleaveswere

clearlyaffected.Highersalinityledtoanincrease intheproline

concentration,whichmaybeproposedasasalinitystress

indica-tor,whereasthesugarconcentrationdidnotshowacleartrend.

Thedifferentmechanismofsalttoleranceevolvedineachspecie

were:(1)A.veraplantsaccumulatedNa+atrootlevelanddecreased

thesucculenceinleaves, (2)K.blossfeldianaplantsavoided Na+

accumulationbysheddingleavesand(3)G.splendensplants

trig-geredCl−andNa+accumulationatrootlevel,saltsecretionthrough

leaves,sheddingofoldleavesandsucculenceincreaseinleaves.

Theseresultssuggesttheimportanceofstudyingthesaltresponse

ofornamentalpottedplantstohelpthegrowersandgardenersto

selectthespecieswhicharemoretoleranttosaltstress.G.splendens

seemstobethemosttolerantbecauseevolvedmoremechanisms

ofsalttolerancewiththesamereductioninthebiomassthanthe

othersspeciesstudied.

Acknowledgment

TheauthorsthankProfessorTimothyFlowersforhissuggestions

andEnglishstylecorrections.

References

Abdelgadir,E.M.,Oka,M.,Fujiyama,H.,2005.CharacteristicsofNitrateof VegetablesandOrnamentals.In:Savvas,D.,Passam,H.(Eds.).Embryo Publications,Athens,Greece,pp.211–261.

Abdel-Raouf,H.S.,2012.AnatomicaltraitsofsomespeciesofKalanchoe (Crassulaceae)andtheirtaxonomicvalue.Ann.Agric.Sci.57,73–79.

Aslam,R.,Bostan,N.,Nabgha-e-AmenMaria,Safdar,M.,Safdar,W.,2011.Acritical reviewonhalophytes:salttolerantplants.J.Med.PlantsRes.5,7108–7118.

BenAmor,N.,BenHamed,K.,Debez,A.,Grignon,C.,Abdelly,C.,2005.Physiological andantioxidantresponsesoftheperennialhalophyteCrithmummaritimumto salinity.PlantSci.168,889–899.

Blumwald,E.,2000.Sodiumtransportandsalttoleranceinplants.Curr.Opin.Cell. Biol.12,431–434.

Cassaniti,C.,Leonardi,C.,Flowers,T.J.,2009.Theeffectofsodiumchlorideon ornamentalshrubs.Sci.Hortic.(Amsterdam)122,586–593.

Cassaniti,C.,Romano,D.,Hop,M.E.C.M.,Flowers,T.J.,2013.Growingfloricultural cropswithbrackishwater.Environ.Exp.Bot.92,165–175.

ConsejeríadeMedioAmbienteyOrdenacióndelTerritorio(CMAOT),2012. DemarcaciónHidrográficadelasCuencasMediterráneasAndaluzas. Documentosplanhidrológicodelademarcaciónhidrográficadelascuencas mediterráneasandaluzas.ConsejeríadeMedioAmbienteyOrdenacióndel Territorio.JuntadeAndalucía.

Cordovilla,M.P.,Bueno,M.,Aparicio,C.,Urrestarazu,M.,2014.Effectsofsalinity andtheinteractionbetweenThymusvulgarisandLavandulaAngustifoliaon growth,ethyleneproductionandessentialoilcontents.J.PlantNutr.37, 875–888.

(8)

Correia,P.J.,Gama,F.,Pestana,M.,Martins-Louc¸ão,M.A.,2010.Toleranceofyoung (CeratoniasiliquaL.)carobrootstocktoNaCl.Agric.WaterManag.97,910–916.

Csáky,A.G.,Martínez-Grau,M.A.,1998.TécnicasExperimentalesenSíntesis Orgánica.Ed.Síntesis.Madrid,pp.255.

Don,K.K.G.,Xia,Y.P.,Zhu,Z.,Le,C.,Wijeratne,A.W.,2010.Somedeleteriouseffects oflong-termsaltstressongrowthnutrition,andphysiologyofGerbera (GerberajamesoniiL.)andpotentialindicatorsofitssalttolerance.J.PlantNutr. 33,2010–2027.

Hare,P.D.,Cress,W.A.,vanStaden,J.,1999.Prolinesynthesisanddegradation:a modelforelucidatingstress-relatedsignaltransduction.J.Exp.Bot.50, 413–434.

Hasegawa,P.M.,Bressan,R.A.,Zhu,J.K.,Bohnert,H.J.,2000.Plantcellularand molecularresponsestohighsalinity.Ann.Rev.PlantPhysiol.PlantMol.Biol. 51,463–499.

Hogue,E.,Wilcow,G.E.,Cantliffe,D.J.,1970.EffectofsoilPonphosphatefractionin tomatoleaves.J.Am.Soc.Hort.Sci.95,174–176.

Hoolbrook,N.M.,Putz,F.E.,1996.Fromepiphytetotree:differencestransitionin growthformsineightspeciesofhemiepiphytes.PlantCellEnv.19,631–642.

Hu,Y.,Schmidhalter,U.,2005.Droughtandsalinity:acomparisonoftheireffects onmineralnutritionofplants.J.PlantNutr.SoilSci.168,541–549.

Irigoyen,J.J.,Emerich,D.W.,Sánchez-Díaz,M.,1992.Waterstressinducedchanges inconcentrationsofprolineandtotalsolublesugarsinnodulatedalfalfa (Medicagosativa)plants.Physiol.Plant.84,55–60.

Jiang,C.Q.,Quan,L.T.,Shi,F.,Yang,N.,Wang,C.H.,Yin,X.M.,Zheng,Q.S.,2014.

DistributionofmineralnutrientsandactiveingredientsinAloeverairrigated withdilutedseawater.Pedosphere24,722–730.

Jin,Z.M.,Wang,C.H.,Liu,Z.P.,Gong,W.J.,2007.Physiologicalandecological charactersstudiesonAloeveraundersoilsalinityandseawaterirrigation.Proc. Biochem.42,710–714.

Kang,J.,Iersel,M.W.,2004.Nutrientsolutionconcentrationaffectsshoot:root ratioleafarearatio,andgrowthofsubirrigatedSalvia(Salviasplendens). HortScience39,49–54.

Karis,P.O.,2007.TribeArctotideae.In:Kadereit,J.W.,Jeffrey,C.(Eds.),TheFamilies andGeneraofVascularPlantsVIII:Asterales.Springer-Verlag,Berlin,pp. 200–207.

Kaya,C.,Kirnak,H.,Higgs,D.,2001.Enhancementofgrowthandnormalgrowth parametersbyfoliarapplicationofpotassiumandphosphorusintomato cultivarsgrownathigh(NaCl)salinity.J.PlantNutr.24,357–367.

Khalid,K.A.,Cai,W.,2011.Theeffectsofmannitolandsalinitystressesongrowth andbiochemicalaccumulationsinlemonbalm.ActaEcol.Sin.31,112–120.

Koyro,H.W.,Khan,M.A.,Lieth,H.,2011.Halophyticcrops:aresourceforthefuture toreducethewatercrisis?Emir.J.FoodAgric.23,1–16.

Krom,M.D.,1980.Spectrophotometricdeterminationofammonia:studyofa modifiedBerthelotreactionusingsalicylateanddicholoroisocyanurate. Analyst105,305–316.

Lachica,M.,Aguilar,A.,Yanez,J.,1973.Análisisfoliar:métodosutilizadosenla estaciónexperimentaldelzaidín.Anal.Edafol.Agrobiol.32,1033–1047.

Liu,C.,Wang,C.,Xu,Z.,Wang,Y.,2007.Isolation:chemicalcharacterizationand antioxidantactivitiesoftwopolysaccharidesfromthegelandtheskinofAloe barbadensisMillerirrigatedwithseawater.Proc.Biochem.42,961–970.

Lütken,H.,Clarke,J.L.,Müller,R.,2012.Geneticengineeringandsustainable productionofornamentals:currentstatusandfuturedirections.PlantCellRep. 31,1141–1157.

Lutts,S.,Majerus,V.,Kinet,J.M.,1999.NaCleffectsonprolinemetabolisminrice (Oryzasativa)seedlings.Physiol.Plant.105,450–458.

Maas,E.V.,Hoffman,G.J.,1977.Cropsalttolerance-currentassessment.J.Irrig. Drain.Div.ASCE103,115–134.

Magee,A.R.,Boatwright,J.S.,Mucina,L.,2011.GazanialanataandG.splendidissima: twonewspeciesofAsteraceae(tribeArctotideae)fromtheGreaterCapensis, withanupdatedkeyforthegenus.SouthAfr.J.Bot.77,86–93.

Marschner,H.,1995.TheMineralNutritionofHigherPlants,2ndedition.Academic Press,London,pp.889.

Mariaux,J.B.,FischerSchliebs,E.,Luttge,U.,Ratajczak,R.,1997.Dynamicsof activityandstructureofthetonoplastvacuolar-typeH+-ATPaseinplantswith

differingCAMexpressionandinaC-3plantundersaltstress.Protoplasma196, 181–189.

Matoh,T.,Matsushita,N.,Takahashi,E.,1988.Salttoleranceofthereedplant Phragmitescommunis.Physiol.Plant.72,8–14.

Mengel,K.,Kirkby,E.A.,2001.PrinciplesofPlantNutrition.KluwerAcademic Publishers,DordrechtTheNetherlands,pp.849.

Mibus,H.,Hoff,K.,Serek,M.,2014.Ethanoltreatmentinducescompactgrowthin Kalanchoë.Sci.Hortic.(Amsterdam)168,234–239.

Moghbeli,E.,Fathollahi,S.,Salari,H.,Ahmadi,G.,Saliqehdar,F.,Safari,A.,Sadat,M., 2012.EffectsofsalinitystressongrowthandyieldofAloeveraL.J.Med.Plants Res.6,3272–3277.

Munns,R.,Greenway,H.,Kirst,G.O.,1983.Halotoleranteukaryotes.In:Lange,O.L., Nobel,P.S.,Osmond,C.B.,Ziegler,H.H.(Eds.),EncyclopediaofPlantPhysiology. Springer-Verlag,Berlin,pp.59–135.

Munns,R.,Tester,M.,2008.Mechanismsofsalinitytolerance.Ann.Rev.PlantBiol. 59,651–681.

Murillo-Amador,B.,Córdoba-Matson,M.V.,Villegas-Espinoza,J.A., Hernández-Montiel,L.G.,Troyo-Diéguez,E.,García-Hernández,J.L.,2014.

MineralcontentandbiochemicalvariablesofAloeveraL.undersaltstress. PLoSOne9,1–9.

Niu,G.,Rodríguez,D.S.,2006.Relativesalttoleranceofselectedherbaceous perennialsandgroundcovers.Sci.Hortic.(Amsterdam)110,352–358.

Parida,A.K.,Das,A.B.,Das,P.,2002.NaClstresscauseschangesinphotosynthetic pigments,proteinsandothermetaboliccomponentsintheleavesofatrue mangrove,Bruguieraparviflora,inhydroponiccultures.J.PlantBiol.45,28–36.

Parida,A.K.,Das,A.B.,2005.Salttoleranceandsalinityeffectsonplants:areview. Ecotox.Env.Saf.60,324–349.

Patel,A.D.,Bhensdadia,H.,Pandey,A.N.,2009.Effectofsalinisationofsoilon growth:waterstatusandgeneralnutrientaccumulationinseedlingsofDelonix regia(Fabaceae).ActaEcol.Sín.29,109–115.

Rodríguez,P.,Torrecillas,A.,Morales,M.,Ortu ˜no,M.,Sánchez-Blanco,M.J.,2005.

EffectsofNaClsalinityandwaterstressongrowthandleafwaterrelationsof Asteriscusmaritimusplants.Environ.Exp.Bot.53,113–123.

Ryser,P.,Lambers,H.,1995.Rootandleafattributesaccountingforthe performanceoffast-andslow-growinggrassesatdifferentnutrientsupply. PlantSoil170,251–265.

S¸ipos¸,M.,Bunta,D.,2011.Histo-anatomyofvegetativeorgansatKalanchoe blossfeldianaPoellnitz,UniversityofCraiova,16,380-393.

Steppuhn,H.,vanGenuchten,M.T.,Grieve,C.M.,2005.Root-zonesalinity:I. Selectingaproduct-yieldindexandresponsefunctionforcroptolerance.Crop Sci.45,209–220.

Sykes,S.R.,1993.Theinheritanceofsaltexclusioninwoodyperennialfruitspecies. Dev.PlantSoilSci.(Dordrecht)50,165–171.

Taybi,T.,Sotta,B.,Gehrig,H.,Guclu,S.,Kluge,M.,Brulfert,J.,1995.Differential effectsofabscisicacidonphosphoenolpyruvatecarboxylaseandCAM operationinKalanchoeblossfeldiana.Bot.Acta108,240–246.

Tester,M.,Davenport,R.,2003.Na+toleranceandNa+transportinhigherplants.

Ann.Bot.91,503–527.

Torrecillas,A.,Rodríguez,P.,SánchezBlanco,M.J.,2003.Comparisonofgrowth: leafwaterrelationsandgasexchangeofCistusalbidusandC.monspeliensis plantsirrigatedwithwaterofdifferentNaClsalinitylevels.Sci.Hortic. (Amsterdam)97,353–368.

Wahid,A.,2003.Physiologicalsignificanceofmorpho-anatomicalfeaturesof halophyteswithparticularreferencetoCholistanflora.Int.J.Agri.Biol.2, 207–212.

Wu,L.,Guo,X.,Harivandi,A.,2001.Salttoleranceandsaltaccumulationof landscapeplantsirrigatedbysprinkleranddripirrigationsystems.J.Plant Nutr.24,1473–1490.

Wu,L.,Dodge,L.,2005.LandscapeSaltToleranceSelectionGuideforRecycled WaterIrrigation.UniversityofCalifornia,Davis,CA.

Xu,C.X.,Liu,Y.L.,Zheng,Q.S.,Liu,Z.P.,2006.Silicateimprovesgrowthandion absorptionanddistributioninAloeveraundersaltstress.J.PlantPhysiol.Mol. Biol.32,73–78.

Zheng,Q.,Liu,L.,Zhaopu,Z.,Chen,J.,Zhao,G.,2009.Comparisonoftheresponseof iondistributioninthetissuesandcellsofthesucculentplantsAloeveraand Salicorniaeuropaeatosalinestress.J.PlantNutr.SoilSci.172,875–883.

Imagem

Fig. 1. Relationship between the relative yield (Yr: expressed as TDW) and the EC i in A
Fig. 2. Effect of EC i (2.0, 4.5 and 7.5 dS m −1 ) on chloride (A) and sodium (B) accumulation in roots (Cl − and Na + extraction per plant in mmol/root DW in g) of A
Fig. 3. Effect of EC i (2.0, 4.5 and 7.5 dS m −1 ) on chloride (A) and sodium (B) concentration in the shed leaves in A
Fig. 4. Effect of EC i (2.0, 4.5 and 7.5 dS m −1 ) on succulence index (SI) in leaves of A.

Referências

Documentos relacionados

This log must identify the roles of any sub-investigator and the person(s) who will be delegated other study- related tasks; such as CRF/EDC entry. Any changes to

Além disso, o Facebook também disponibiliza várias ferramentas exclusivas como a criação de eventos, de publici- dade, fornece aos seus utilizadores milhares de jogos que podem

É nesta mudança, abruptamente solicitada e muitas das vezes legislada, que nos vão impondo, neste contexto de sociedades sem emprego; a ordem para a flexibilização como

informação ...95 Gráfico 10 – Sociograma 10: Informação e Memória ...96 Gráfico 11 – Sociograma 11: Informação Tecnológica e Informação para Negócios

O produto da análise de similaridade genética com marcadores ISSR mostrou que os genótipos foram agrupados por espécies, sendo HB115 e HC58 os mais divergentes, O polimorfismo

The probability of attending school four our group of interest in this region increased by 6.5 percentage points after the expansion of the Bolsa Família program in 2007 and

Treatments were applied when the plants were 60 days old, and at 85 days the plants were assessed for the following parameters: plant height, stem diameter, number of leaves,