• Nenhum resultado encontrado

Object recognition impairment and rescue by a dopamine D2 antagonist in hyperdopaminergic mice

N/A
N/A
Protected

Academic year: 2021

Share "Object recognition impairment and rescue by a dopamine D2 antagonist in hyperdopaminergic mice"

Copied!
6
0
0

Texto

(1)

ContentslistsavailableatScienceDirect

Behavioural

Brain

Research

j o ur na l h o me p a g e :w w w . e l s e v i e r . c o m / l o c a t e / b b r

Short

communication

Object

recognition

impairment

and

rescue

by

a

dopamine

D2

antagonist

in

hyperdopaminergic

mice

Arthur

S.C.

Franc¸

a

a

,

Larissa

Muratori

b

,

George

Carlos

Nascimento

c

,

Catia

Mendes

Pereira

d

,

Sidarta

Ribeiro

a

,

Bruno

Lobão-Soares

e,∗

aBrainInstitute,FederalUniversityofRioGrandedoNorte,RN59056-450,Brazil

bBiochemistryDepartment,FederalUniversityofRioGrandedoNorte,Brazil

cMedicalEngineeringDepartment,FederalUniversityofRioGrandedoNorte,Brazil

dEdmond&LilySafraInternationalInstituteofNeuroscienceofNatal,Brazil

eBiophysicsandPharmacologyDepartment,FederalUniversityofRioGrandedoNorte,RN59078-970,Brazil

h

i

g

h

l

i

g

h

t

s

•Heterozygousmicefordopaminetransporter(DAT+/−)exhibithigherlevelsofsynapticdopamine.

•HereweconfirmedthatD2antagonismcaninterfereinobjectrecognition.

•WeobservedinDAT+/−anaturalphenotypeofimpairednovelobjectmemoryrecognition.

•Theinjectionofhaloperidolat0.05mgbeforeobjectexpositionrestoredobjectrecognition.

•ThiseffectcouldbeexplainedbyrestoringD2activitytooptimallevels,actingonmemoryacquisition.

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received4September2015

Receivedinrevisedform29March2016

Accepted4April2016

Availableonline6April2016

Keywords: DAT-KO Heterozygous Haloperidol Dopamine Objectrecognition

a

b

s

t

r

a

c

t

Genetically-modifiedmicewithoutthedopaminetransporter(DAT)arehyperdopaminergic,andserve

asmodelsforstudiesofaddiction,maniaandhyperactivedisorders.Hereweinvestigatedthecapacity

forobjectrecognitioninmildlyhyperdopaminergicmiceheterozygousforDAT(DAT+/−),with

synap-ticdopaminergiclevelssituatedbetweenthoseshownbyDAT−/−homozygousandwild-type(WT)

mice.WeusedaclassicaldopamineD2antagonist,haloperidol,tomodulatethelevelsofdopaminergic

transmissioninadose-dependentmanner,beforeorafterexploringnovelobjects.Incomparisonwith

WTmice,DAT+/−miceshowedadeficitinobjectrecognitionuponsubsequenttesting24hlater.This

deficitwascompensatedbyasingle0.05mg/kghaloperidolinjection30minbeforetraining.Inallmice,

a0.3mg/kghaloperidolinjectedimmediatelyaftertrainingimpairedobjectrecognition.Theresults

indi-catethatamildenhancementofdopaminergiclevelscanbedetrimentaltoobjectrecognition,andthat

thisdeficitcanberescuedbyalowdoseofaD2dopaminereceptorantagonist.Thissuggeststhatnovel

objectrecognitionisoptimalatintermediatelevelsofD2receptoractivity.

©2016ElsevierB.V.Allrightsreserved.

Dopamine(DA)isaneurotransmitterrelatedtocomplex

behav-iors,suchas:rewardperception,socialinteraction[1,2],andisalso

linkedtomemoryconsolidationbothinhumansandrodents[3].

AlterationsinDAsynapticregulationarerelatedtoalarge

vari-etyofmentaldiseases,suchasschizophrenia,hyperactivity,mood

disorders,andParkinsondisease[4,5].

∗ Correspondingauthor.

E-mailaddresses:brunolobaosoares@gmail.com,

brunolobaosoares@hotmail.com(B.Lobão-Soares).

DAhasmanyreceptorsubtypes,buttheyarebasicallydivided

inD1andD2families[3].DA,mainlythroughD1receptors,elicits

theonsetofthelatephaseoflongtermpotentiationinthe

hip-pocampus[6],controlplasticity-inducedproteinsynthesis[6],and

enhancethepersistenceofhippocampus-dependentmemories[7].

The involvement of both dopamine receptors families with

learningandmemoryiswidelyreportedforworkingmemory[3],

spatiallearning[3,6],aversivememory[7],reward-related

learn-ing[8]and cognitiveflexibility[9].In particular,impairmentin

objectrecognitionhasbeeninducedbyD2activitysuppressiondue

tohaloperidolIPinjection[10],byD1activitysuppressiontrough

http://dx.doi.org/10.1016/j.bbr.2016.04.009

(2)

SKF81297microinfusionintheprefrontalcortex[12].

Morespecifically,thelack ofD2receptorswasassociatedto

odordiscriminationinmice[13].TheimpairmentofD2activity

wasrelatedtosleepregulationandmemoryconsolidation,through

thedown-regulationof plasticityfactorsand reduction ofrapid

eyemovement(REM)sleepamount[10].TheantagonismofD2

receptorsalsoledtoelectrophysiologicalchanges duringobject

exploration[14].Furthermore,micelackingD2receptorsdoshow

memoryconsolidation deficits[15].Ontheotherhand,animals

withhighlevelsofsynapticDA,namelyknockoutmicefortheDA

transporter(DAT-KO),showimpairmentintheMorriswatermaze

task[9],and alsoimpairmentofspatial memoryin theY-maze

[16].Theseanimalspresented,however,lessimmobilitytimein

theforcedswimmingtask[17],andexhibitedanincreasein

loco-motion,reversedbyD2receptorblocking[17].

DAT-KOmicewereinitiallygenerated tostudytheinfluence

of hyperdopaminergia in physiological and behavioral

parame-ters,and inresponsetodopaminergicdrugadministration[13].

DAT—heterozygous (definedhereas DAT+/−)mice,expressing

onlyonecopyoftheDATgene,werealsoinvestigated[18].

Clear-anceofdopaminereleasedinthesynapsetakesthricemoretime

inDAT+/−micethaninwild-type(WT)mice[18].

Yet,inadditiontoneurochemicalalterationsleadingtoamild

DAincreaseatthesynapticlevel,onlyahandfulofstudieshave

describedmemoryalterationsinDAT+/−mice[19,20].Previous

studiesrevealedthatDAT+/−miceshowimpairmentinpattern

completioninapartialcueenvironment[19],andexhibitdecreased

anxiety-relatedbehaviors[20].ThemildhyperdopaminergicDAT

+/− micepresent biochemical changes [18] related tomemory

impairmentthatcouldbereversedbyD2downregulation[19].

ThepresentworkaimedtoinvestigatetherelationbetweenD2

activityandnovelobjectrecognitioninmildhyperdopaminergic

DAT+/−mice.Tothatend,weinvestigatedDAT+/−micetrained

intheobjectrecognition(OR)task,withassessmentatbasallevels

ofdopaminetransmissionaswellasundertheinfluenceof

differ-entdosesofhaloperidol,(0.05and0.3mg/Kg)beforeorafterthe

trainingsessionofthetask.

Atotalof75adult(2–5months)malemicewereused,

com-prising 39 WT (C57Bl-6 strain) and 36 heterozygous (DAT+/−

strain, on C57Bl/6J background). The animals were housed in

cages (2–4 animals/cage), under a 12h/12h light/dark cycle,

with lights on at 07:00, and food and water ad libitum.

Ani-malswere daily handledfor 5minfor 10 sessions prior tothe

experiments,in order todecrease stressresponses WTand KO

littermatesweregeneratedformC57BL/6J-129/SvJhybridDAT

het-erozygotes as previously described [18]. Mice were genotyped

byPCRusingsenseWT(5-CCCGTCTACCCATGAGTAAAA-3),sense

KO(5-TGACCGCTTCCTCGTGC-3)andacommonantisenseprimer

(5-CTCCACCTTCCTAGCACTAAC-3).Theproceduresappliedinthe

studyfollowedguidelinesoftheNationalInstitutesofHealthand

wereapprovedbytheEdmondandLilySafraInternational

Insti-tuteofNeuroscienceofNatalEthicsCommittee(protocolnumber

08/2010).

AnimalsweresubmittedtoanORtask,basedonthenovelty

explorationtendencyofrodents.Thetaskwasperformedina

cir-culararena(50cmdiameterand30cmhigh)inaroomwithdim

andwell-spread light,soastoavoid producingshadows inthe

apparatus.Animalswerenaïve totheapparatuswhen exposed.

We employed 6different objectspresented over 2 consecutive

days(twosessions);4 objects(A–D)werepresentedduringthe

initialexplorationsession(Firstsession,10min);and2unfamiliar

objects(EandF)replaced2familiarobjects(CandD)duringthe

secondsession,24hlater(testingsession,10min).Inorderto

eval-uatememoryrecognition,anobjectpreferenceratiowascalculated

(timespentwithEandF/AandBobjects).Noticethatiftheanimal

novelobjects[14,15](ratioEandF/AandB>1),iftheyhad

impair-mentinORtheywillexploresimilarlythefamiliarandthenovel

objects(ratioEandF/AandB=1).

Based onthe D2influence onlearning and memory [8–10],

weusedhaloperidoltoinduceORimpairment.Atthetimepoint

of 30min before exploration (B.E.) of the object, as well as

immediatelyafterexploration(I.A.E.),animalswereinjectedwith

haloperidol(0.3mg/Kgand0.05mg/Kg)orvehicle,andwerethen

allowedtobehavefreelyintheirhomecagesuntilthesecond

explo-rationsession.Inordertodifferentiatewhetherapossiblememory

deficitcouldbeduetomemoryacquisition,orspecificallyrelated

tothememoryconsolidationphase,weperformedinjectionsof

haloperidolatlowdosebothbeforeandafterobjectexploration.

Theinjectionof0.3mg/Kghaloperidolbeforetheexplorationphase

resultsinpartialdeficitofmovementthatimpairsobject

explo-ration [17,21].Therefore, we couldnot determinewhetherthe

decrease in object recognition was due to impaired

consolida-tion,ortoa deficitinlocomotoractivityduringtheexploration

phase. For this reason, we didnot investigateanimals injected

with0.3mg/Kghaloperidolbeforetheexploration.Incontrast,the

useof the0.3mg/Kgdoseaftertheexplorationcouldnotaffect

themobilityneitherduringtheacquisitionphasenorduringthe

test/evocationphase,andthereforewesetouttoinvestigatethis

condition.

Theparameterofobjectexplorationconsideredthetime

ani-malsspentwiththewhiskersorfrontpawsincontactwithone

oftheobjectsforatleast0.5s,witha0.5sasaminimum

inter-valbout.Ontestsession,bypresentinghalfofobjectsasnovelty,

animalsshouldspendmoretimewithnovelobjects,givingriseto

unequalexplorationtimebetweennovelandfamiliarobjects[22].

ByrecordingvideoswithaPanasoniccameraandAMcap9.21free

software,wedefinedthepreferenceratioastheexploration

dura-tionofnovelobjects(EandF)dividedbythetimespentexploring

theobjectsthatwerethesameasintraininginsessions(objectsA

andB).

First we measured the influence of haloperidol (0.3 and

0.05mg/Kg)intheWTmicestrainduringORtask(Fig.1).We

exe-cutedtwodifferentstatisticalanalyses;one-wayANOVAfollowed

byBonferronicorrectionwasperformedtoanalyzethedifference

amonggroupssubmittedtovehicleorhaloperidol.Wealso

per-formedthedifferencebetweenthegroup(vehicleorhaloperidol)

andtheratio=1(describedabove),ttestagainst1,tofindoutifthe

preferenceratiopresentedbyWTgroupswassignificantdifferent

ofthehypothesisofnon-recognitionofobjects.Toverifypossible

effectsofhaloperidolinthemotorandmotivationsystem[8,17]

wemeasuredthetotaldistancetraveledandthetotaltimespent

inobjectexploration.

2WeappliedShapiro-Wilknormalityteststoassessthe

dis-tributionofthedata.Forthecomparisonwithinstrains,inwhich

treatment is the only independent variable, we used one-way

ANOVAs of three dependent variables (Preference Ratio, Total

ExplorationTimeandTotalDistanceTraveled).Forthecomparison

betweenstrainsweusedaTwo-wayANOVAwithstrainand

treat-mentasindependentvariables,followedbyBonferronipost-hoc

tests.Thecomparisonagainstonewasperformedbyapairedt-test

(alpha=95%,alldatawithBonferronicorrection).Thedescriptive

statisticscomprisenormalitytestvalues(W),mean±SEM,F,p

val-uesanddegreesoffreedom(DF)

FirstweappliedtheShapiro-Wilknormalitytestswithalldata

set groups to verify if the data followed the normal

distribu-tionin order tochoosecorrectly parametricor non-parametric

tests.Wvalues for theWildTypegroups were:Vehicle 30min

B.E., W=0.94; Halo0,05mg/Kg 30min B.E. I.A.E. W=0.95; Halo

0,3mg/KgI.A.E,W=0.93;VehicleI.A.E.,W=0.97;Halo0,05mg/Kg

(3)

Fig.1.Behavioralandpharmacologicalprocedures.HandledC57BL-6andDAT+/−micewerepresentedto4novelobjectsatlightperiods(trainingsession).Haloperidol

orvehiclewasinjected30minbeforeoftheexploration(B.E.)orimmediatelyafterexploration(I.A.E.)ofnovelobjectsexploration.Onedayaftertraining,animalswere

exposedto2novelobjectsand2familiarobjects(testsession).

DAT +/− animals, Shapiro-Wilk normalitytest W values were:

Vehicle 30minB.E., W=0.89; Halo0,05mg/Kg 30min B.E. I.A.E.

W=0.81;Halo0,3mg/Kg I.A.E,W=0.90;Vehicle I.A.E.,W=0.86;

Halo0,05mg/KgI.A.E,W=0.77.(Shapiro-Wilkpsummaryvalues

p>0.05).Therefore,inthisweusedonlyparametricteststoanalyze

allcomparisonsFig.1.

WeappliedANOVAtocomparethepreferenceratioamongWT

groups.ANOVAcomparisonofpreferenceratiorevealeda

signif-icantdifferenceamonggroups(F=11.74,df=4,38andp<0.0001)

(Fig.2A).TheBonferroni’spost-hocshowedsignificantpreference

ratiodecreasesofhaloperidol0.3mg/Kgincomparisontotheother

groups(seedetailsinTable1).Thehigherdoseofhaloperidolwas

theonlytreatmentthatledtoimpairmentinOR,supportedbythe

t-testagainst1,t=1.74,p=0.6.Theothergroupsshowed

signif-icantpreferenceratiohigherthan1:VehicleI.A.E.(t=4.57df=6,

p=0.019);Haloperidol0.05mg/KgI.A.E.(t=4.14df=7,p=0.021);

Vehicle30minB.E.(t=11.13df=7,p<0.0001);and Haloperidol

0.05mg/Kg30minB.E.(t=11.05df=7,p<0.0001).

Thesecondpartofthestudytestedifthemilddisbalanceofthe

DAlevelsinDAT+/−micestrainhadinfluenceinORtask.Therefore,

weanalyzedtheeffectofhaloperidol(0.3and0.05mg/Kg)during

ORtask.

Weappliedone-wayANOVAtocompareallthegroupsofDAT

+/−(Fig.2B).TheANOVAcomparisonofpreferenceratiorevealed

a significant difference among groups (F=12.44, df=4,35 and

p<0.0001).Bonferroniposthocrevealedthatthetreatmentwith

haloperidol(0.05mg/Kg)injected30minbeforeexplorationledto

ahigherpreferenceratioincomparisontotheothergroups(see

detailsinTable1).Whenweperformedthecomparisonto1,DAT

+/−withhaloperidol0.05mg/Kg30minB.E.wastheonlygroupto

presentdifference(t=5.621,df=6,p=0.007),demonstratingtobe

theonlygroupwithapreferenceratiocompatiblewithnovelOR.

Theothercomparisonsbetween1andDAT+/−groupsrevealed

nodifference:VehicleI.A.E.(t=0.73 df=6,p>0.99); Haloperidol

0.05mg/Kg I.A.E.(t=0.39,df=7,p>0.99);Haloperidol0.3mg/Kg

I.A.E.(t=0.26 df=6, p>0.99); and Vehicle30minB.E. (t=2.095,

df=6,p=0.4).

WealsomeasuredtheinfluenceofhaloperidolinWTorDAT+/

byusingthestrainsandhaloperidoldosageasindependent

vari-ables.TheTwo-wayANOVA(Strain:F (1,65)=21.78,p<0.0001;

Treatment:F(4,65)=41.65,p<0.0001;Interaction:F(4,65)=4.39,

p=0.072)revealedthatbothtreatmentandstrainhasinfluencein

thepreference ratiooftheanimals(Fig.2C).Finally,weapplied

the Bonferroni post hocto be able to compare where in each

treatmentboth strainshavedifferent preferenceratios.

Bonfer-roniposthocshowedinhaloperidol0.3mg/KgI.A.E.groupsimilar

resultsconsideringWTandDAT+/−preferenceratios(p>0.05).

Both strains presented ratios similar to 1 indicating that both

strainshaveimpairmentinOR.Haloperidolat0.05mg/Kg30min

B.E.alsoinduceda similarpreferenceratioconsideringthetwo

strains(p>0.5).Nevertheless,inthiscasebothstrainsrevealeda

preferenceratiohigherthan1indicatingthattheyareableto

rec-ognizenovelobjects.RegardingthecomparisonofWTandDAT

Preference Ratio

Preference Ratio

Preference Ratio

A - Haloperidol Effects on WT Mice

B - Haloperidol Effects on DAT +/- Mice

C - WT vs DAT +/- Mice

Fig.2. Haloperidoldifferentially modulatesmemoryconsolidation inWTand

DAT+/−miceinanovelobjectrecognitiontask.A—Effectoftwodifferenthaloperidol

(halo)doses(0.05and0.3mg/Kg)wheninjectedimmediatelyafterexposition(I.A.E.)

and30minbeforeexposition(B.E.)inwildtype(WT)micenovelobjectpreference

ratio(unfamiliar/familiarobjectexplorationduration),usedasmemory

consolida-tion(M.C.)parameter.ComparisonthroughANOVArevealedthatinjectionofhalo

0.3mg/KgimmediatelyafterexplorationledtoadecreaseonM.Cwhencompared

tocontrolgroup(p<0.01)andothergroups.Also,thedoseof0.05mg/Kginjected

30minbeforetheexploration(B.E.)revealedanassociationwithincreasednovel

objectexplorationwhencomparedtoothergroupsexceptingitscontrolvehicle

group(p<0.001).B—EffectofdifferenthalodoseswheninjectedI.A.E.and30min

B.E.inheterozygousmiceinnovelobjectpreferenceratio.ANOVArevealedthat

injectionofhalo0.05mg/KgB.E.increasedpreferenceratiowhencomparedtoall

othergroups(p<0.01).C—DAT+/−andWTmicedisclosedifferentpreferenceratios

andspecificresponsestohaloinjection.WTandDAT+/−grouppairswerecompared

ineachtreatmentusingStudent’sTtest.DAT+/−groupsrevealednonovelty

recog-nitioninvehicleandhalo0.3and0.05I.A.E.,aswellasvehicleB.E.(ratioscloseto

1.0),anddecreasedratioscomparedtoWTinbothvehicletreatments(I.A.EandB.E.)

andinhalo0.05mg/kgI.A.E.TherewasnodifferenceconcerningWTandDAT+/−

inhalo0.05mg/kgB.I.*p<0.05;**p<0.01;***p<0.001.

+/−groups:vehicleI.A.E.,haloperidol0.05mg/KgI.A.E.andvehicle

30minB.E.revealedadifferenceinthepreferenceratio(seedetails

inTable1).Amongthosethreetreatments,WTanimalspresented

(4)

StatisticalsummaryofthesignificantresultsinthecomparisonsamongWTandDAT

+/−.ANOVAcomparisonsofpreferenceratiowereappliedamongWTandDAT+/−

separately.Two-wayANOVAcomparisonswereappliedtocomparetheWTandDAT

+/−groupsfollowedbyBonferronipost-hoctests.Comparisonswereperformed

consideringtwoindependentvariables:treatmentandstrainline.

Wild-TypeMice ANOVA

F PValue DF

11.74 0.0001 (4.38)

Bonferroni

Groups Mean±SEM;N PValue

VehicleI.A.E.xHalo0.3mg/KgI.A.E. 2.28±0.28;N=7 P<0.01 1.23±0.13;N=8

Halo0.05mg/KgB.E.xHalo0.05mg/KgI.A.E 2.73±0.15;N=8 P<0.001 1.66±0.16;N=8

VehicleB.E.xHalo0.3mg/KgI.A.E. 2.20±0.10;N=8 P<0.01 1.23±0.13;N=8

Halo0.05mg/KgB.E.xHalo0.3mg/KgI.A.E 2.73±0.15;N=8 P<0.001 1.23±0.13;N=8 DAT+/-Mice ANOVA F PValue DF 12.44 0.0001 (4.35) Bonferroni

Groups Mean±SEM;N PValue

Halo0.05mg/KgB.E.xVehicleI.A.E 2.25±0.22;N=7 P<0.001 1.07±0.10;N=7

Halo0.05mg/KgB.E.xHalo 0.05mg/KgI.A.E

2.25±0.22;N=7 P<0.001 0.96±0.10;N=8

Halo0.05mg/KgB.E.xHalo 0.3mg/KgI.A.E

2.25±0.22;N=7 P<0.001 0.97±0.12;N=7

Halo0.05mg/KgB.E.xVehicleB.E 2.25±0.22;N=7 P<0.01 1.38±0.18;N=7

Wild-TypevsDAT+/-Mice

Two-WayANOVA

Sourceofvariation F PValue DF

Interaction 4.39 0.0720 (4.65)

Strain 21.78 0.0001 (1.65)

Treatment 41.65 0.0001 (4.65)

Bonferroni

Groups Mean±SEM;N PValue

VehicleI.A.E(WTvsHz) 2.28±0.28;N=7 P<0.01 1.07±0.10;N=7 Halo0.05mg/KgI.A.E.(WTvsHz) 1.66±0.16;N=8 P<0.05 0.96±0.10;N=8 VehicleB.E 2.20±0.10;N=8 P<0.01 (WTvsHz) 1.38±0.18;N=7

TotestwhethertheinvolvementofD2receptorsinthe

motiva-tionalandmotorsystemsplayedaroleduringtheexplorationof

objectsinthetestsession,wemeasuredthetotalexplorationtime

andthetotal distancetraveled.WeappliedANOVAtocompare

thetotal explorationtime among WTgroups. ANOVA

compari-sonoftotal explorationrevealeda significantdifferenceamong

groups(F=17.59,df=4,39andp<0.0001),butthecomparisonof

thetotaldistancetraveledintheWTgroupsrevealedno

signifi-cantdifference(F=2.372,df=4,39andp=0.0712).Weappliedthe

samecomparisontotheDAT+/−groups.Thecomparisonoftotal

explorationtimerevealednodifference(F=1.805,df=4,35 and

p=0.153).Whenwecomparedthetotaldistancetraveled,a

signif-icantdifferencewasdetected(F=4.684,df=4,35andp=0.0045).

Finally,weappliedtheTwo-WayANOVAtocomparebothstrains.

We found a significant interaction regarding total exploration

(Strain:F (1.65)=11.27,p=0.0013; Treatment: F(4, 65)=8.398,

parisonof total distancetraveleddidnot revealany significant

interaction(Strain:F (1,65)=27.30,p<0.0001; Treatment:F(4,

65)=6.746,p<0.0001;Interaction:F(4,65)=1.236,p=0.304).

ThepresentstudyshowsthatDAD2antagonisthaloperidolwas

abletoboth decreaseandincrease memoryformation,

depend-ingonthemousestrain,andonthetimeofinjection.Specifically,

wereplicatedWTmicedata,inwhichhaloperidol0.3mg/Kgafter

explorationledtoanimpairmentinamemorytaskrelatedtoOR

[10,14].We alsoshowedthat mildhyperdopaminergicDAT+/−

micehaveabasalimpairmentinthisparameter.Thereafter,inDAT

+/−mice,wedemonstratedthathaloinjectionbefore(0.05mg/kg),

butnotafterexploration(0.05or0.3mg/kg),wasabletorecover

ORcapacitytosimilarlevelsoftheirWTcorrespondents.

Dopamine D1 and D2 receptors are linked toattention and

memoryconsolidationandtobothmesolimbicaland

mesocorti-caldopaminergicpathways[3,6].Rossatoetal.reportedthatD1

familyreceptormodulatesthelong-termmemorystorage

persis-tenceintheinhibitoryavoidancetask[7],aswellD1participatein

thespatialmemoryprocess[23].Similarly,thesystemicinjection

andintra-accumbensofD2antagonistimpairspatialmemory.Both

D1andD2suppressionresultsinimpairmenttorecognizechanges

intheenvironment[24].

TheuseofDAT-KOmiceasamodeltostudythebehaviors

asso-ciatedwithdopamineiswidelydescribed.DAT-KOmiceexhibit

hyper locomotion [18] and this phenotypecan be reversed by

haloperidolinjection[17,20].DAT-KOanimalsalsoexhibita

pref-erence fortheborders of anopenfield [20], and adecrease of

immobilitytimeintheforcedswimmingtask[17].When

main-tainedinisolation,DAT-KOmiceexhibitincreaseinreactivityand

aggressionwhensubmittedtosocialinteractions[2].DAT-KOmice

alsopresentdeficitsinodorrecognition[13]andimpairmentinthe

normalwake-sleepcycle[25].UsingDAT-KO,Moriceetal.showed

thattheseanimalshadimpairmentinthewater-mazeparadigm,

andlong-termdepression[9].Incontrast,onlyafewstudieshave

beenpublishedonDAT+/−mice,amildmodelof

hyperdopaminer-gia.Inthismodel,amilddisbalanceofdopamineresultsinseveral

cognitivechanges[17,19,20].DAT+/−miceexhibitlessimmobility

timeduringtheforcedswimmingtest[17],highertimespentinthe

centerofanopenfield[20],andmoretimespentintheopenarms

incomparisontoWTmiceinaplusmaze[19]orzeromaze[20].In

addition,theseheterozygousmiceshowedanincreaseinthe

explo-rationofobjectsplacedinanopenfield[17],andinthefrequency

ofobjectexploration[20].DAT+/−miceshowedimpairedpattern

completioninanenvironmentwithfewspatialcues,whichcould

bereversedbyhaloperidol[19].However,noimpairmentofORhas

beendescribed[19,20].

InthepresentworkwefoundbasalimpairmentinORinthe

DAT+/−mice(withoutpharmacologicalinterference),differently

frompreviousstudies[19,20],butourORprotocolwasquite

dif-ferentfromtheprotocolusedbyLietal.Weused50%lesstimeof

objectexplorationsessionsandtwicethenumberofnovelobjects

thantheprotocolofthatstudy[19].Theincreaseintheamountof

novelobjects,combinedwithlesstimetoexplorethem,likelyled

tothedifferencesbetweenthepreviouslypublishedresultsand

ourown.In thePogorolevprotocol,animalswere submittedto

7consecutivedaysofnovelexploration.Theanimalshad3daily

sessionstoexplorethesameobjects.Inthefourthdaythe

place-mentoftheobjectswaschanged,andinthesixthdayoneofthe

objectswasreplaced[20].Mostlikely,anymildimpairmentofOR

inDAT+/−miceshouldbereversedbyseveralconsecutivecontacts

withthesameobjects.Similarlytoourresults,patterncompletion

impairmentwasreversedbyhaloperidolinjectioninDAT+/−mice.

[19].

Secondly,regardingexplorationandoverallmobility,notethat

(5)

study,relatedtomemoryinDAT+/− orWTmice,areprobably

notinfluencedbyanalterationofthesetwovariables.Asshown

intheresultsabove,theWT0.3mg/KgI.A.E.groupexhibitedthe

samelevelsoftotalexplorationseeninthevehicleI.A.Egroup,but

theyexploreddifferentlythenewandfamiliarobjects(seeFig.2A).

Furthermore,weobservednodifferenceamonggroupscomparing

0.3mg/kgandtheirrespectivecontrolsinthemobilityparameter

(distancetraveled).Thesamebasicexplanationcanbeappliedto

theDAT+/−:thestatisticsindicatenodifferenceintotalexploration

timewhenwecompareDATwithvehicleandwithhalo0.05mg/kg

or0.5mg/kg,(andonlydifferencesbetweenI.A.EandB.E.

treat-ments,treatedinsequence)butthesegroupsexhibiteddifferential

explorationofthenewandfamiliarobjects(seeFig.2B).

Ausefulrationalein thiscase istoexplain theresultsasan

increaseinpotentiallystressfulstimulipresentedtotheDAT+/−

animals,sincemoreobjectswerepresentedandtheanimalshad

lesstimetobefamiliarizedwiththeenvironment.Thisincreasein

potentiallystressfulconditionsmaybesubtleforwildtypeanimals,

butnotforDAT+/−animalswithamilddopamineexcess.

Inagreementwiththishypothesis,ithasbeendemonstrated

thattheenhancedactivityregulationofDATreceptorinWTmice

occursasa synapticresponsetorestraintstress,and thiseffect

occurs even in haloperidol-treated animals [26]. Since DAT+/−

micehave less DATreceptors, theymight be more susceptible

tothis stress-associatedphenomenon.Despiteofthescarcityof

pharmacologicalandneuroanatomicaldatainDAT+/−mice,

DAT-KOlittermatemiceexhibita differentneurocircuitry[27]and a

non-dopaminergicacuteresponsetopsychostimulantdrugs[28].

FutureinvestigationoftheneurocircuitryofDAT+/−animalsshall

clarifywhataretheneuralcorrelatesofthedifferentialmodulation

ofitsrewardsystemimpliedbyourresults.

Interestingly,withregard tomotor parameters,weobserved

thatWTmicewithinjectionbeforeexplorationandDAT+/−mice

withB.E.injectionat0.05mg/Kgofhaloperidol,presented

locomo-tionalterationswhencomparedtobothcontrolandto0.3mg/kg

after exploration. The differences are more evident in DAT+/−

mice,whichpresented,antagonically,adecrease oftotal

explo-rationininjectionsB.E.aswellasanincreaseindistancetraveled

(0.05mg/kgB.E.).Thesefindings,togetherwithanincreaseinDAT

+/−(distancetraveled)at0.05mg/kgafterexposure,alsosuggest,

additionally,anincreasedsusceptibilityof motormodulationin

DAT-+/−animalsduetopreviousinjectionstress,andto

haloperi-dolactionatlowerdoses.

ObjectrecognitiondeficitsinDAT+/−were,infact,themain

findingsinthisstudy:thisfindingissupportedbyrelatedresearch.

Thereis involvement of D2 receptor activity in neuroplasticity

markersimpairmentassociated withORdeficits[10,14].A high

doseofhaloperidol(0.3mg/Kg)leadtoadecreaseinCAMKII,

ZIF-268and BDNF [10]after object exploration.In the samestudy

above,thehaloperidolinjectedanimalsthatpresentedimpairment

inORhadsignificantdecreaseintheREMsleepduration[10];they

alsorevealedastrongcorrelationbetweenREMsleepdecreaseand

ORimpairment[10].

Besidescorroboratingpreviousstudiesinthefield,datafrom

WTmicewereimportantforthecomparisonwithDAT+/−results

onmemoryimpairment.DAT+/−micedidnotreceivemajor

scien-tificattentionasdidtheirknockoutcounterparts,sincetheyonly

exhibitamildhyperdopaminergiaandexhibitlessphenotypic

dif-ferences[18].Nevertheless,inthepresentstudythesemiceshowed

aclearimpairmentinOR.Thesedataarerelevantsincethey

indi-catethatamildhyperdopaminergiacanbedetrimentalenoughto

causeattentionormemorydeficitsrelatedtonoveltyrecognition.

Itisimportanttonotethatthetwostrainsinvestigatedhere,

WTandDAT+/−,presentdifferentbasallevelsofdopamine[18].

Because of these different basal synaptic dopamine levels, we

expecteddifferentsensibilitytodopamineantagonistsinthesetwo

micestrains.AhighersensibilitywasobservedinDAT+/−miceata

lowhaloperidoldose(0.05mg/Kg,BEinjection),sincehaloperidol

revertedthenaturalORdeficitphenotype,andnotablyenhanced

object memoryformation in this strain. In contrast,in WT we

didnotdetectanydifferencebetweenhaloperidolandvehicleBE,

usingtheANOVAtest.In fact,inthiscasea trendwasrevealed

byStudent’sTtest(t=2.69,df=14andp=0.0176),indicatingthat

haloperidolBEata low0.05mg/kgdosecouldpossiblyenhance

objectrecognitioninWTmice.Weinterpretthesespecificstrain

variationsatlowhaloperidoldosesasdifferentsusceptibilitiestoa

minormodulationofdopaminereceptors.However,wheninjected

afterexploration,haloperidolatthesamelowdosedidnotincrease

ORinDAT+/−miceduringthetestsession.Together,bothresults

suggestthatthisimpairmentcouldmostprobablybeduetoDA

imbalance duringmemoryacquisitionin DAT+/− mice.

Conse-quently,sincetheacquisitionphaseseemstobedirectlyaffected,

nofurtherpharmacologicalinterventionaftermemoryacquisition

couldexertanyeffectonORinDAT+/−mice,asweobservedwith

haloperidolinjectionsafterobjectexploration.

Interestingly,thesamedrugthatcausedmemorydeficitsafter

explorationinWTmicealsocausedanincreaseinthisparameterin

DAT+/mice,whenusedbeforeexplorationandatalowerdose.An

invertedU-shapeactivity,inwhichoptimalactivitylevelsenhance

performance, is proposedfor DAD1 receptor activation,and is

relatedtogoal-orientedtasks,memoryconsolidationand

atten-tion[29,30].Inthisapproachmodel,bothloworhighDAreceptor

activationreducestheperformanceintheseactivities,andmedium

optimalactivationproducesthebestperformances.Aninteresting

studyconductedinhumansindicatestheinvertedU-shaped,D-2

receptor-basedneuroplasticityisalsoobserved[31].

SinceweusedadrugthatismainlyaD2receptorantagonist,

theresultscanindicatethatD2activationlevelsmayalsoinduce

aninvertedU-shapeperformanceinmicerelatedtoOR.TheD2

receptoractionmaymodulateORbothatacquisitionand

consoli-dationphases.Weinferthatinthepresentstudy,bothhighandlow

D2DAreceptoractivationlevelsledtoobjectmemoryimpairment.

ThehighD2activationcouldberelativetoDAT+/−atbasal

perfor-mance,whichwasrevertedbyhaloperidolinpre-exploration(at

0.05mg\kg).ThelowactivationcasecouldbethatofWT,impaired

byhaloperidolinjectionafterexploration(at0.3mg\kg).

These resultsindicate that optimalD2 activitylevelscan be

pharmacologically induced,andcan potentiallybeconsidereda

therapeutictargetfordopamine-relateddysfunctions.Indeed,the

useofD2/D3familyantagonistshasbeendescribedforreducingthe

impairmentofmemorydeficitsinducedbyamnesiccompounds

inrodents[32].ThisisalsosupportedbythetrendforOR

facili-tationinWTinjectedwith0.05mg/kghaloperidol.Altogether,the

resultsindicatethatD2familyantagonistsinlowdosescanproduce

memoryenhancement.

In summary,we reportherean ORdeficit inDAT +/− mice.

Importantly,injectionoftheD2DAantagonistbeforeobject

explo-rationrevertedthisphenotype.Theseresultsarecomplementedby

anhaloperidol-induceddecreaseofORinWTmicewheninjected

afterthetrainingsession.ThisindicatesthatD2DAreceptorscan

modulateORtasksbyactingbothinattentionalprocessesduring

acquisition,andduringsubsequentmemoryconsolidation.More

studiescouldbeperformedexaminingotherphenotypic

charac-teristicsofDAT+/− mice,inordertoassociatethesebehavioral

deficitstomolecularandelectrophysiologicalparameters.

Further-more, additionalpharmacologicalstudies involvingDAagonists

andantagonistsfordifferentreceptorsareinordertobuildamore

comprehensiveunderstandingofD2regulationofattentionand

(6)

None.Theauthorsdeclarenocompetinginterests.

Acknowledgments

We thank Marc Caron and Miguel Nicolelis for making the

DAT+/− mice available; Valéria Arboes for animal care. We

thank to the listo f grants: Grant (1) FAPERN-PPP (Dr.

Lobão-Soares:2013–2014). Grant(2) CNPQ-Universal;Grantnumber:

484408/2013-5(Dr.Lobão-Soares).Grant(3)CNPqUniversal;Grant

number:481351/2011-6(Dr.Ribeiro).Grant(4)FINEPGrant

num-ber01.06.1092.00(Dr.Ribeiro).Grant(5)FAPERN/CNPqPronem.

Grant Number: 003/2011 (Dr. Ribeiro). Grant (6) FAPESP

Cen-ter for NeuromathematicsGrant number: #2013/07699-08(Dr.

Ribeiro).Grant(7)UFRN.Grantnumber00001/2010(Dr.Ribeiro).

(8)ConselhoNacionaldeDesenvolvimentoCientíficoeTecnológico

(CNPQ)Researchproductivity306604/2012-4.

References

[1]M.LeMoal,H.Simon,Mesocorticolimbicdopaminergicnetwork:functional andregulatoryroles,Physiol.Rev.71(1991)155–234.

[2]R.M.Rodriguiz,R.Chu,M.G.Caron,W.C.Wetsel,Aberrantresponsesinsocial interactionofdopaminetransporterknockoutmice,Behav.BrainRes.148 (2004)185–198.

[3]M.El-Ghundi,B.F.O’Dowd,S.R.George,Insightsintotheroleofdopamine receptorsystemsinlearningandmemory,Rev.Neurosci.18(2007)37–66.

[4]I.Creese,S.D.Iversen,Theroleofforebraindopaminesystemsin

amphetamineinducedstereotypedbehaviorintherat,Psychopharmacologia 39(1974)345–357.

[5]J.M.Ryan,Pharmacologicapproachtoaggressioninneuropsychiatric disorders,Semin.Clin.Neuropsychiatry5(2000)238–249.

[6]N.Hansen,D.Manahan-Vaughan,DopamineD1/D5receptorsmediate informationalsaliencythatpromotespersistenthippocampallong-term plasticity,Cereb.Cortex362(2012).

[7]J.I.Rossato,L.R.M.Bevilaqua,I.Izquierdo,J.H.Medina,M.Cammarota, Dopaminecontrolspersistenceoflong-termmemorystorage,Science325 (2009)1017–1020.

[8]R.A.Wise,Dopamine,learningandmotivation,Nat.Rev.Neurosci.5(2004) 483–494.

[9]E.Morice,J.-M.Billard,C.Denis,F.Mathieu,C.Betancur,J.Epelbaum,etal., ParallellossofhippocampalLTDandcognitiveflexibilityinageneticmodelof hyperdopaminergia,Neuropsychopharmacology32(2007)2108–2116.

[10]A.S.C.Franc¸a,B.Lobão-Soares,L.Muratori,G.Nascimento,J.Winne,C.M. Pereira,etal.,D2dopaminereceptorregulationoflearning,sleepand plasticity,Eur.Neuropsychopharmacol.25(2015)493–504.

[11]J.Besheer,H.C.Jensen,R.A.Bevins,Dopamineantagonisminanovel-object recognitionandanovel-objectplaceconditioningpreparationwithrats, Behav.BrainRes.103(1999)35–44.

[12]M.A.Pezze,H.J.Marshall,K.C.F.Fone,H.J.Cassaday,DopamineD1receptor stimulationmodulatestheformationandretrievalofnovelobjectrecognition memory:roleoftheprelimbiccortex,Eur.Neuropsychopharmacol.25(2015) 2145–2156.

Olfactorydiscriminationdeficitsinmicelackingthedopaminetransporteror theD2dopaminereceptor,Behav.BrainRes.172(2006)97–105.

[14]A.S.C.Franc¸a,G.C.doNascimento,V.Lopes-dos-Santos,L.Muratori,S.Ribeiro, B.Lobão-Soares,etal.,Beta2oscillations(23–30Hz)inthemouse

hippocampusduringnovelobjectrecognition,Eur.J.Neurosci.40(2014) 3693–3703.

[15]S.B.Glickstein,P.R.Hof,C.Schmauss,MicelackingdopamineD2andD3 receptorshavespatialworkingmemorydeficits,J.Neurosci.22(2002) 5619–5629.

[16]B.Li,Y.Arime,F.S.Hall,G.R.Uhl,I.Sora,Impairedspatialworkingmemory anddecreasedfrontalcortexBDNFproteinlevelindopaminetransporter knockoutmice,Eur.J.Pharmacol.628(2010)104–107.

[17]C.Spielewoy,C.Roubert,M.Hamon,M.Nosten-Bertrand,C.Betancur,B. Giros,Behaviouraldisturbancesassociatedwithhyperdopaminergiain dopamine-transporterknockoutmice,Behav.Pharmacol.11(2000)279–290.

[18]B.Giros,M.Jaber,S.R.Jones,R.M.Wightman,M.G.Caron,Hyperlocomotion andindifferencetococaineandamphetamineinmicelackingthedopamine transporter,Nature379(1996)606–612.

[19]F.Li,L.P.Wang,X.Shen,J.Z.Tsien,Balanceddopamineiscriticalforpattern completionduringassociativememoryrecall,PLoSOne5(2010)e15401.

[20]V.M.Pogorelov,R.M.Rodriguiz,M.L.Insco,M.G.Caron,W.C.Wetsel,Novelty seekingandstereotypicactivationofbehaviorinmicewithdisruptionofthe Dat1gene,Neuropsychopharmacology30(2005)1818–1831.

[21]S.Mithani,M.T.Martin-Iverson,A.G.Phillips,H.C.Fibiger,Theeffectsof haloperidolonamphetamine-andmethylphenidate-inducedconditioned placepreferencesandlocomotoractivity,Psychopharmacology(Berl.)90 (1986)247–252.

[22]E.Dere,J.P.Huston,M.A.DeSouzaSilva,Thepharmacology,neuroanatomy andneurogeneticsofone-trialobjectrecognitioninrodents,Neurosci. Biobehav.Rev.31(2007)673–704.

[23]W.C.N.daSilva,C.C.Köhler,A.Radiske,M.Cammarota,D1/D5dopamine receptorsmodulatespatialmemoryformation,Neurobiol.Learn.Mem.97 (2012)271–275.

[24]A.Mele,M.Avena,P.Roullet,E.DeLeonibus,S.Mandillo,F.Sargolini,etal., Nucleusaccumbensdopaminereceptorsintheconsolidationofspatial memory,Behav.Pharmacol.15(2004)423–431.

[25]K.Dzirasa,S.Ribeiro,R.Costa,L.M.Santos,S.-C.Lin,A.Grosmark,etal., Dopaminergiccontrolofsleep-wakestates,J.Neurosci26(2006) 10577–10589.

[26]B.J.Copeland,N.H.Neff,M.Hadjiconstantinou,Enhanceddopamineuptakein thestriatumfollowingrepeatedrestraintstress,Synapse57(2005)167–174.

[27]X.Zhang,E.L.Bearer,B.Boulat,F.S.Hall,G.R.Uhl,R.E.Jacobs,Altered neurocircuitryinthedopaminetransporterknockoutmousebrain,PLoSOne 5(2010)e11506.

[28]J.V.Trinh,D.L.Nehrenberg,J.P.R.Jacobsen,M.G.Caron,W.C.Wetsel, Differentialpsychostimulant-inducedactivationofneuralcircuitsin dopaminetransporterknockoutandwildtypemice,Neuroscience118(2003) 297–310.

[29]G.V.Williams,S.A.Castner,Underthecurve:criticalissuesforelucidatingD1 receptorfunctioninworkingmemory,Neuroscience139(2006)263–276.

[30]S.Vijayraghavan,M.Wang,S.G.Birnbaum,G.V.Williams,A.F.T.Arnsten, Inverted-udopamineD1receptoractionsonprefrontalneuronsengagedin workingmemory,Nat.Neurosci.10(2007)376–384.

[31]S.Fresnoza,E.Stiksrud,F.Klinker,D.Liebetanz,W.Paulus,M.-F.Kuo,etal., Dosage-dependenteffectofdopamineD2receptoractivationonmotorcortex plasticityinhumans,J.Neurosci.34(2014)10701–10709.

[32]J.Laszy,I.Laszlovszky,I.Gyertyán,DopamineD3receptorantagonists improvethelearningperformanceinmemory-impairedrats, Psychopharmacology(Berl.)179(2005)567–575.

Referências

Documentos relacionados

2.1 Persistent activity and random drifts of a memory trace in a spiking network model for spatial working

The working, spatial, and recognition memory deficits were significantly improved with RA treatment (20 mg/kg). RA reduced infarct size and neurological deficits caused by

O continuísmo deve-se, entre outras razões, a um contrato celebrado em 1919, entre o governo do Estado de Santa Catarina e a Sociedade Literária Padre Antônio Vieira (controladora do

Verbal working memory and sentence comprehension in children with speciic language impairment. J Speech Lang

Indeed, previous experiments within our laboratory have shown that both 5-fluorouracil and methotrexate cause rats to be impaired in the NLR task used in the present study and

In isolated focal dystonia, whole putaminal binding of dopamine D 2 -like receptor radioligands is quantitatively decreased, but it has not been known whether selected parts of

Pretreatment with GBR12909, which completely blocks dopamine release through the DAT pore, eliminated the METH- induced increase in locomotor activity in D5R-KO mice.. Thus, the

We searched for GPCRs abundantly expressed in mouse striatum using our transcriptional data (Figure 2A), and found that GPR88, GPR6, and GPR52, as well as dopamine D1 and D2