• Nenhum resultado encontrado

Screening of Trichoderma isolates for their potential of biosorption of nickel and cadmium

N/A
N/A
Protected

Academic year: 2021

Share "Screening of Trichoderma isolates for their potential of biosorption of nickel and cadmium"

Copied!
9
0
0

Texto

(1)

h tt p : / / w w w . b j m i c r o b i o l . c o m . b r /

Environmental

Microbiology

Screening

of

Trichoderma

isolates

for

their

potential

of

biosorption

of

nickel

and

cadmium

Nabakishor

Nongmaithem,

Ayon

Roy

,

Prateek

Madhab

Bhattacharya

DepartmentofPlantPathology,UttarBangaKrishiViswavidyalaya,Pundibari,CoochBehar,WestBengal,India

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received16February2014 Accepted10August2015 Availableonline2March2016 AssociateEditor:CynthiaCanêdoda Silva Keywords: Heavymetals Biosorption Trichoderma MIC50 Fungistasis

a

b

s

t

r

a

c

t

FourteenTrichodermaisolateswereevaluatedfortheirtolerancetotwoheavymetals,nickel andcadmium.Threeisolates,MT-4,UBT-18,andIBT-I, showedhighlevelsofnickel tol-erance,whereasMT-4,UBT-18,andIBT-IIshowedbettertoleranceofcadmiumthanthe other isolates.Undernickelstress,biomassproductionincreaseduptoaNi concentra-tionof60ppminallstrainsbutthendecreasedastheconcentrationsofnickelwerefurther increased.Amongthenickel-tolerantisolates,UBT-18producedsignificantlyhigherbiomass uponexposuretonickel(upto150ppm);however,theminimumconcentrationofnickel requiredtoinhibit50%ofgrowth(MIC50)washighestinIBT-I.Amongthecadmium-tolerant isolates,IBT-IIshowedbothmaximumbiomassproductionandamaximumMIC50valuein cadmiumstress.AsthebiomassoftheTrichodermaisolatesincreased,ahigherpercentage ofnickelremovalwasobserveduptoaconcentrationof40ppm,followedbyanincrease inresidualnickelandadecreaseinbiomassproductionathighernickelconcentrationsin themedium.Theincreaseincadmiumconcentrationsresultedinadecreaseinbiomass productionandpositivelycorrelatedwithanincreaseinresidualcadmiumintheculture broth.NickelandcadmiumstressalsoinfluencedthesensitivityoftheTrichodermaisolates tosoilfungistasis.IsolatesIBT-IandUBT-18weremosttoleranttofungistasisundernickel andcadmiumstress,respectively.

©2016SociedadeBrasileiradeMicrobiologia.PublishedbyElsevierEditoraLtda.Thisis anopenaccessarticleundertheCCBY-NC-NDlicense

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

Trichoderma species are imperfect filamentous fungi with teleomorphs and belong to the order Hypocreales in the Ascomycetedivision. Trichoderma spp.are amongthe most frequentlyisolated soilfungiand are well known fortheir

Correspondingauthor.

E-mail:ayonroy.plantpathology@gmail.com(A.Roy).

biocontrolabilityagainst awide rangeofplant pathogenic fungi,1inductionoflocalizedandsystemicdefenseresponses inplants,2 andplantgrowthenhancement.3,4 Theyplayan important role in ecology bytaking part in decomposition ofplantresidues,aswellasinbiodegradationofman-made chemicals and bioaccumulation of high amounts of vari-ous metals from wastewater and soil.5,6 Metal-containing

http://dx.doi.org/10.1016/j.bjm.2016.01.008

1517-8382/©2016SociedadeBrasileiradeMicrobiologia.PublishedbyElsevierEditoraLtda.ThisisanopenaccessarticleundertheCC BY-NC-NDlicense(http://creativecommons.org/licenses/by-nc-nd/4.0/).

(2)

pollutantsareincreasinglyreleasedintosoilfromindustrial wastewater, aswell asfrom wastes derivedfrom chemical fertilizersand pesticidesusedinagriculture.7 Some metal-containingpollutantsare notbiodegradable;theyenterthe food chainand leadto bioaccumulation.8 Minuteamounts of metals, except those that are non-essential for biologi-calfunctions,suchasmercury, arsenic,leadandcadmium, influencevital metabolicprocesses and are requiredbyall formsof life. However, metalsmay be toxic at concentra-tions higher than nutritional requirements. Evidence has suggestedthatTrichodermaspp.exhibitconsiderabletolerance formetalsandaccumulatehighamountsofmetalsfrom pol-luted habitats.1,8 Therefore, metal-tolerantTrichoderma spp. maybecomedominantorganismsinsomepolluted environ-mentsandmayplayanimportantroleineco-friendlymetal removaltechnology.7Asacomponentofsoilfungistasis,metal ionsmay influencethe growth,sporulationand enzymatic activities ofTrichoderma.9,10 Thiscan cause changes inthe quantitiesofextracellularenzymes andmetabolites,11,12 as wellasinoverallbiocontrolactivitiesagainstplantpathogenic fungiand in plantgrowth-stimulating activities. Katayama andMatsumura13demonstratedadegradationpotentialofa rhizosphere-competentTrichodermasp.forseveralsynthetic dyes,pentachlorophenol,endosulfan,and dichlorodiphenyl-trichloroethane(DDT).Thus,Trichodermaspp.haveacquired anexceptionalroleaspartofasustainableapproachto biore-mediationofherbicide/pesticide-ladensoils.

However, the microhabitat behavior of Trichoderma spp. upon exposuretometal-containingcompoundsmay differ, dependingonthetypeofthemetalandtheTrichodermaisolate, andverylittleinformationinthisregardisavailable.Hence, anattemptwasmadetoscreenTrichodermaisolatesfornickel andcadmiumtoleranceandidentifystrainsthatcan poten-tiallybeusedforbioremediationofsoilspollutedwiththese metals.

Materials

and

methods

IsolationofTrichodermaspp.fromsoil

Trichoderma spp. were isolated from soil on a modified Trichoderma-specific medium(TSM)14 using a dilution plate method.15Soilsampleswerecollectedfromdifferent sugar-canegrowingareasofManipurandfromteaindustryareasin northerndistrictsofWestBengal,whereindiscriminateuseof chemicalsandeffluentshascausedheavy-metalsoiltoxicity. Thesampleswereair-driedandgroundtopowderusinga mor-tarandapestle.Soilsuspensions(1mLof10–3,10–4,and10–5

dilutions)wereplatedinPetriplatescontaining20mLof mod-ifiedTSM.Thesuspensionsweredistributeduniformlyover themediumsurfacebyhorizontalshakingandincubatedat 28±1◦Cforsevendays.Greencoloniesoftheantagonist usu-allyappearedafterfourorfivedaysofincubation.Eachcolony wasobservedunderamicroscopeusinglactophenolcotton bluestainandidentifiedtothegenuslevelbasedonthe avail-abletaxonomicliterature.16Theshape,sizeandaggregation of phialospores and phialides were used as main identifi-cationcriteria,alongwithculturalcharacteristics onpotato dextroseagar(PDA).ThecoloniesidentifiedasTrichodermaspp.

weretransferredontoPDAslantsandkeptat4◦Cforfurther use.TheisolatesfromManipurweredesignatedasMT,and the isolatesfrom the tea plantationareas were designated as IBT,followed byanumber. Oneisolate,namely,UBT-18, wasobtainedfromtheculturecollectionoftheDepartment ofPlantPathology,UttarBangaKrishiViswavidyalaya.

Selectionofnickel-andcadmium-tolerantisolatesof Trichodermaspp.

InvitrotoleranceofTrichoderma spp.todifferent concentra-tionsofnickelandcadmiumwasdeterminedbythepoisoned foodtechnique.15PDAmedium(100mL)waspreparedin 250-mLconicalflasks,thenappropriatequantitiesofnickeland cadmiumstocksolutionswereaddedtomoltenPDAtogetthe requiredconcentrations(40,60,100,150,and200mg/L),and theresultingmediawerepouredintoPetriplatesafter gen-tleshaking.Thenon-amendedmediumservedasacontrol. Theplateswere inoculatedbyplacing6-mmmycelialdiscs of4-day-oldculturesoftheTrichodermaisolatesontheagar surfaceandincubatedat28±1◦Cfor2–3days.Isolates show-ingmaximumradialgrowthonthemedia,irrespectiveofthe metalconcentration,wereselectedforfurtherstudies.

BiomassproductionbyTrichodermaisolatesand

determinationofminimuminhibitoryconcentrationofthe metals

For biomasspreparation,selected Trichoderma isolateswere inoculated on PDAplates and incubated atroom tempera-ture(27±1◦C).Afterfivedays,asmallportion(0.5mm)from the fungalmasswascut,transferredinto a250-mLconical flaskcontaining50mLofpotatodextrose(PD)broth supple-mentedwithdifferentconcentrationsofametal(0,40,60,100, 150,and200ppm),andincubatedintriplicatesat27±1◦Cfor sevendays.Thebiomasswasharvestedbyfilteringthrough Whatmanno.1filterpaperandthenwashedthoroughlywith deionizedwatertoremovethegrowthmedium.Theharvested myceliawereoven-driedat60◦Cfor48handthedryweight wasmeasuredusingaSartoriusLA8200Sdigitalweight bal-ancewithanaccuracyof0.1mg.Theinhibitionofbiomass productionwascalculatedbasedonthedryweightusingthe followingformula: PI=



(X−Y) X



×100

where PI is the percentage of inhibition; X is biomass in the control (0ppm) broth; and Y is biomass in the metal-containingbroth.

The minimum inhibitory concentration of each metal, causing50%ofgrowthinhibition(MIC50)oftheselected

Tri-chodermaisolates,wascalculatedfromthegrowthinhibition results.

Estimationofresidualmetalsinculturebroth

After harvesting the biomass ofeach isolategrown in the PDbrothamendedwithdifferentconcentrationsofnickelor cadmium(0,10,25,50and100ppm),theculturebrothwas assayed forresidualmetal, followingthe methoddescribed

(3)

byTandon.17Fivemillilitersoftheculturebrothwasplacedin a100-mLcleanbeaker,followedbytheadditionof10mLofa triacidmixture(HNO3:H2SO4:HClO4,9:4:1,v/v/v),andthe

con-tentwasmixedbyswirlingandkeptovernight.Themixture wasdigestedinadigestionchamberat60◦Cfollowedby heat-ingat90◦CuntiltheproductionofredNO2fumesceased.The

contentwasfurtherevaporateduntilthevolumewasreduced toabout2–3mL.Thecompletionofdigestionwasconfirmed whentheliquidbecame colorless.Aftercoolingthebeaker, itscontentwastransferredquantitativelytoa50-mLcapacity volumetricflask,dilutedto50mLwithdistilledwater,andkept overnight.Onthenextday,itwasfilteredthroughWhatman no.44filterpaper.Thefiltrateswereanalyzedforcadmiumor nickelusingaPerkinElmerAnalyst200AAflame spectropho-tometer.Eachsamplewasanalyzedtwoorthreetimesata wavelengthof445nmfornickelor229nmforcadmium. Resid-ualmetalconcentrationswereexpressedin␮g/mLofculture broth.

ToleranceofTrichodermaisolatestosoilfungistasisunder heavymetalstress

Fungistatic effects of soil were studied using the soil cel-lophane agar disk method18 with a slight modification.In thisexperiment,soilsampleswere amendedwithdifferent concentrationsofnickelorcadmiumtoadjustthemetal con-tamination levels to 50, 100 or 150ppm and kept for one monthforstabilization.Well-saturated,metal-contaminated soil(100g)wasfilledinaplasticcup,andtheuppersurface wassmoothedusingthumbpressure.Cellophanepaperwas cuttothediameterofthecupandboiledtoeliminate plas-ticizereffects. A single pieceof cellophane was placedon thesmoothsoilsurface,andadisc(1cmindiameter)of2% wateragar wasplacedonthecellophane paper.Theentire systemwasrefrigeratedfor24htoactivatetheagardisc.On thenextday,aconidialsuspension(103cfu/mL)oftheselected

metal-tolerantTrichodermaisolatewasappliedtotheagardisc andincubatedat28±1◦Cfor20h.Aftertheincubation,the discwastransferredtoaglassslideandstainedwith0.1% lac-tophenolcottonbluetoexamineconidialgerminationundera lightmicroscopeat20×magnification.Thepercentageof ger-minatedconidiawasrecorded,andthepercentofgermination inhibitionwascalculated.

Statistical

analysis

Theexperimentswereconductedusingafactorial,completely randomizeddesignwiththreereplications, consideringthe isolatesasfactorAandthemetalconcentrationsasfactorB. Ananalysisofvariance(ANOVA)wasperformedforall param-eters using the INDOSTAT package. Comparison of means wasdonebyDuncan’smultiplerangetestatthep<0.05level ofsignificance.19 Theidentical lettersinthe resultsdenote non-significantdifferencesamongthetreatmentswithineach isolate.

Results

and

discussion

Trichoderma spp. areubiquitous microorganismsdistributed in almost all types ofcroprhizosphere20,21 and haveeven beenfoundinmetal-pollutedecosystems.22,23 Inthisstudy, 14Trichodermaisolates,namely,MT-1,MT-4,MT-7,MT-8, MT-11,MT-13,MT-18,MT-21,MT-23,MT-24,MT-25,IBT-I,IBT-II,and UBT-18,wereidentifiedandselectedforfurtherstudy,based ontheirculturalvariabilityandgrowthrates.Cultural variabil-ityexistedamongtheisolateswithrespecttotheirmycelial growthpattern,colorofsporulation,andpigmentationofthe medium(Table1),indicatingthattheisolatesmightbeableto producesecondarymetabolites. Themaximumgrowth rate wasdemonstratedbyUBT-18,followedbyMT-13,MT-8,MT-4, andMT-23.

Table1–CulturalvariabilityoftheTrichodermaisolates. Isolate Growthrateat48h

(mm)

ColonyappearanceonPDA

MT-1 53.2 Lightgreen,granularsporulationinconcentricring;greenishwhitemyceliagrowthatthemargin. MT-4 71.7 Whitishsporulationwithgreenishtinge,submergedmyceliagrowth,olivegreenpigmentationof

medium.

MT-7 66.3 Profusemycelialgrowthwhiteincolor,scantygreensporulationintermingledwithinthemycelia. MT-8 71.8 Greenishwhitesporulationwithprofusemycelialgrowthatmargin;lightyellowpigmentationin

themedium.

MT-11 38.0 Lightgreencolonywithprofusewhitefluffymycelialgrowthatmargin. MT-13 72.8 Greenishwhitescantysporulation;lightyellowpigmentationinthemedium.

MT-18 66.3 Darkgreengranularsporulationinconcentricringwithscantymycelialgrowth;lightgreen sporulationattheedgeofthecolony

MT-21 64.8 Profuse,greenishwhitefluffymycelialgrowthwithlittlegranulargreensporulationatthecenter. MT-23 68.7 Grayishwhite,fluffymycelialgrowthprofuselyatmargin;darkgreensporulationinhighamount. MT-24 59.7 ColonycharactermoreorlesssimilartoMT-23.

MT-25 38.0 ColonycharactermoreorlesssimilartoMT-23andMT-24.

IBT-I 58.3 Whitishsubmergedmycelialgrowthwithgreenishtingeattheedgeofthecolony,littleyellow pigmentationofthemedium.

IBT-II 54.4 Greenishwhiteraisedcolonywithfluffymycelialgrowth,darkgreensporulationintermingled withinthemyceliaatthecenter.

(4)

Table2–GrowthrateoftheTrichodermaisolatesonnickelamendedPDAmedium.

Isolate GrowthrateofTrichodermaisolates(mm)at48h

Concentrationofnickel 0ppm 40ppm 60ppm 100ppm 150ppm 200ppm MT-1 33.3 38.3 36.6 35.6 34.3 7.0 MT-4 64.8 66.0 57.0 54.9 53.2 30.0 MT-7 36.3 35.3 33.6 31.6 27.0 0.0 MT-8 36.6 38.6 36.3 31.6 30.0 0.0 MT-11 38.0 37.3 35.0 27.3 26.3 0.0 MT-13 38.6 38.6 37.0 34.0 27.6 0.0 MT-18 41.2 42.1 40.0 37.7 33.0 28.2 MT-21 49.7 59.6 53.6 49.7 35.7 34.0 MT-23 29.3 36.3 34.3 31.3 23.0 20.1 MT-24 39.3 46.0 40.5 40.0 29.6 18.6 MT-25 38.0 38.0 37.3 36.6 29.3 0.0 IBT-I 44.4 55.2 53.1 50.1 48.0 41.4 IBT-II 49.8 55.6 55.0 51.2 26.3 17.3 UBT-18 68.7 70.8 60.4 57.9 44.5 20.3 SEM±1.23;LSD(p=0.05)3.50. PDA,potatodextroseagar.

TheeffectsofdifferentconcentrationsofNionmycelial growthofthe14Trichodermaisolatesweretested(Table2),and themaximumradialgrowthwasshownbyUBT-18(70.8mm) at a Ni concentration of 40ppm, followed by isolate MT-4 (66.0mm),withasignificantdifferencebetweenthetwo iso-lates.Sixotherisolates,namely,IBT-I,IBT-II,MT-1,MT-23,and MT-24,exhibitedsignificantlyhighermycelialgrowthatthe same Ni concentrationcompared withtheir corresponding non-amended cultures. Witha further increase ofNi con-centrationinthemediumto60ppm,onlyfourisolates,IBT-I, IBT-II,MT-21,andMT-23,showedsignificantlyhighermycelial growth versus their respective controls. Athigher concen-trationsofNi,from100to200ppm,therewasasignificant reductioninmycelialgrowth ofallisolates, althoughthree ofthem,viz.,MT-4,IBT-I, and UBT-18,consistentlyshowed highermycelialgrowth atconcentrationsofup to150ppm. Although MT-21 showed a higher level of tolerance to Ni toxicityat200ppm,itsgrowthwascomparativelylowat con-centrations from 60 to 150ppm compared with the other Trichodermaisolates.

Theeffectsofnickelonradialgrowthofthe14Trichoderma isolatesare presentedinFigs. 1and 2. Itwas noticedthat thegrowthoftheTrichodermaisolateswassignificantly influ-encedbytheheavymetal;inparticular, at40ppmofNi in theamendedmediumthegrowthwasevenhigherthanthat observedinthenon-amendedmedium.Athigher concentra-tionsofthe heavymetal,from 60to200mg/L,therewas a significantreductioninradialmycelialgrowthofallthe Tri-chodermaisolates.IsolateMT-4showedthehighesttolerance tonickel.Takentogether,isolatesMT-4,IBT-I,andUBT-18were consideredtoberesistantsincetheirradialgrowthdecreased ataslowerratethanthatoftheotherisolates,whileisolates MT-7,MT-18, MT-11,MT-13,andMT-25were mostsensitive andnomycelialgrowthwasdetectedat200mg/L.Hence,three isolates,namely,MT-4,IBT-IandUBT-18,werefinallyscreened duetotheirhighNitolerance.

ScreeningoftheTrichodermaisolatesfortheircadmium tol-erancerevealedthattheisolatesvariedsignificantlyintheir

0 10 20 30 40 50 60 MT -1 MT -4 MT -7 MT -8 MT-11 MT-13 MT-18 MT-21 MT-23 MT-24 MT-25 IB T -I IB T -II UB T -1 8 Gr o wt h rate ( mm)

Fig.1–ToleranceofTrichodermaisolatesatdifferent concentrationofnickel.

levels oftolerance,irrespective ofthecadmium concentra-tions tested (Table 3). There was asignificant reductionin themycelialgrowthoftheTrichodermaisolatesuponexposure tocadmium(Fig.3).Atacadmiumconcentrationof40ppm, themaximummycelialgrowthwasshownbyIBT-II(73.4mm), whichwassignificantlyhigherthanthatofUBT-18(66.6mm), followedbyMT-4andMT-24(62.6and62.2mm,respectively). ThedegreeoftoleranceoftheTrichodermaisolates,irrespective

0.00 10.00 20.00 30.00 40.00 50.00 100 ppm 200 ppm 60 ppm 40 ppm 0 ppm Gr o wt h rate ( mm) 150 ppm

Fig.2–EffectofnickelconcentrationsonTrichoderma isolates.

(5)

Table3–GrowthrateoftheTrichodermaisolatesatdifferentconcentrationsofcadmiuminPDA.

Isolate GrowthrateofTrichodermaisolates(mm)at72h

Concentrationofcadmium 0ppm 40ppm 60ppm 100ppm 150ppm 200ppm MT-1 90.0 44.5 40.2 34.0 24.3 11.3 MT-4 90.0 62.6 58.3 56.2 48.0 44.7 MT-7 90.0 55.2 49.1 49.0 43.5 39.3 MT-8 90.0 43.6 39.7 36.4 28.9 25.5 MT-11 90.0 56.5 56.2 53.6 43.0 35.3 MT-13 90.0 40.2 34.4 33.9 25.9 24.3 MT-18 90.0 55.1 52.8 46.1 45.2 29.7 MT-21 90.0 51.9 42.1 42.4 38.8 32.9 MT-23 90.0 50.2 46.7 44.4 40.4 33.7 MT-24 90.0 62.2 58.1 50.6 42.8 32.4 MT-25 90.0 61.1 59.2 47.5 46.1 35.8 IBT-I 90.0 57.7 24.3 13.0 0.0 0.0 IBT-II 90.0 73.4 63.0 52.0 39.3 34.0 UBT-18 90.0 66.6 54.8 50.7 43.6 40.6 SEM±1.13;LSD(p=0.05)3.10. PDA,potatodextroseagar.

0 10 20 30 40 50 60 70 MT-1 MT-4 MT-7 MT-8 MT-11 MT-13 MT-18 MT-21 MT-23 MT-24 MT-25 IBT-I IBT-II UBT-18 Gr o wt h rate ( mm)

Fig.3–ToleranceofTrichodermaisolatesatdifferent concentrationsofcadmium.

ofthecadmiumlevel,ispresentedinFig.3.Thedataindicated thatMT-4,UBT-18,andIBT-IIweretolerant,IBT-I,MT-7, MT-11,MT-18,MT-21,andMT-23weremoderatelytolerant,and MT-1,MT-8,andMT-13weresusceptibletocadmiumtoxicity. InFig.4,theeffectsofcadmiumconcentrationsonthe Tricho-dermaisolatesaredepicted,andatrendofadecreasinggrowth

0.00 20.00 40.00 60.00 80.00 100.00 100 ppm 40 ppm 0 ppm 150 ppm 200 ppm Gr o wt h rate ( mm) 60 ppm

Fig.4–EffectofcadmiumconcentrationonTrichoderma isolates.

rateoftheisolateswasobservedwithincreasing concentra-tionsofcadmium.

Intheabsenceofarationalmethodforanapriori predic-tionofabiosorptionpotentialofamicroorganism,theonly method foridentifying and developingnewer and efficient biosorbentsissustainedscreeningofmicrobes.24Variationsin metaltoleranceamongdifferentspeciesofagenusorwithin thesamespeciesmightbeduetothepresenceofoneormore resistancemechanismsexhibitedbydifferentfungi.25Sarkar etal.26reportedTrichodermaharzianumtobemoderately toler-anttoupto60ppmofNi,atthatconcentrationthelevelof inhibitionofmycelialgrowthwas33.3%.Afurtherincreasein theNiconcentrationreducedthegrowth,andtotalinhibition wasobservedat200mg/L.Limaetal.27 alsoobserved influ-enceofcadmiumonradialgrowthofT.harzianum.Theresults ofthepresentinvestigationareinlinewiththeseearlier obser-vations.

When the effects of different nickel concentrations on biomassproductionofthethreepromisingTrichoderma iso-lates(inorderofranking)werestudied,themaximumbiomass weightwasrecordedforUBT-18(359mg),whichwas signifi-cantlyhigherthanthevaluesobtainedforMT-4(256.67mg) and IBT-I(225mg),ataNi concentrationof40ppm.Witha furtherincreaseofthenickel concentrationinthemedium to60ppm, biomassproductionbyallthe isolatesscreened wasinsignificantcomparedwiththeirrespectivecontrols.At higherconcentrationsofnickel,from100to200ppm,there wasasignificant reductioninbiomassofallthreeisolates. AlthoughisolateUBT-18showedsignificantlyhigherbiomass productionatNiconcentrationsofupto150ppm,IBT-Ishowed somewhathigherbiomassproductioncomparedtotheother twoisolatesat200ppm(Table4).

Effects ofdifferent cadmiumconcentrationsonbiomass productionwerestudiedusingthethreemosttolerant Tricho-dermaisolates.Themaximumbiomassvaluewasrecordedfor IBT-II(523.70mg),anditwassignificantlyhigherthanthe val-uesobtainedforUBT-18(147.03mg)andMT-4(147.01mg)ata Cdconcentrationof40ppm(Table5).Withafurtherincrease

(6)

Table4–BiomassproductionoftheTrichodermaisolatesunderdifferentconcentrationofnickel.

Isolates Biomassproduction(mg)

Concentration(ppm)

0ppm 40ppm 60ppm 100ppm 150ppm 200ppm

MT-4 240.67def 256.67cde 225.67efg 223.00defg 200.33fgh 165.33h

UBT-18 321.67ab 359.00a 323.33ab 303.33bc 269.33cd 166.67h

IBT-I 215.33efgh 225.00defg 210.33efgh 196.33fgh 181.67gh 177.33gh

*ValuesfollowedbydifferentlettersdiffersignificantlyaccordingtoDuncan’smultiplerangetestatp=0.05.

Table5–BiomassproductionoftheTrichodermaisolatesunderdifferentconcentrationofcadmium.

Isolate Biomassproduction(mg)

Concentration(ppm)

0ppm 40ppm 60ppm 100ppm 150ppm 200ppm

MT-4 240.34d 147.01e 120.34efg 110.34efg 100.36efgh 60.34h

UBT-18 269.70d 147.03e 131.70ef 123.70efg 86.70fgh 79.70gh

IBT-II 577.03a 523.70b 453.70c 440.37c 410.37c 240.36d

*ValuesfollowedbydifferentlettersdiffersignificantlyaccordingtoDuncan’smultiplerangetestatp=0.05.

inthecadmiumconcentration,biomassproductionwas sig-nificantly reduced, except that IBT-II showed insignificant variations in biomass production at cadmium concentra-tionsofupto150ppm.IsolateMT-4(165.33mg)andUBT-18 (166.67mg) exhibited insignificant variations between each otherinbiomassproductionuponexposuretocadmium tox-icity(upto200ppm).

Significant reductions in microbial biomass and soil respirationhavebeenfoundinmetal-contaminatedsoils com-pared to uncontaminated ones.28–30 Optimum biosorption conditionsdependonpH,biomassofthemicroorganism, con-tact time and temperature. The Langmuir, Freundlich and Dubinin–Radushkevichmodel,whichdescribesthe biosorp-tionisothermofametalion,hasindicatedthatbiosorption ofcadmiumbyHylocomiumsplendensbiomassoccursthrough chemicalionexchange.31Themainfunctionalgroups respon-sible for a biosorption process are hydroxyls, carbonyls, carboxyls,sulfonates,amides,imidazoles,phosphonates,and phosphodiestergroupsasestablishedbyPradhanetal.32and Volesky.33SomeofthesegroupsarepresentinTrichodermasp. biomassandmayinteractwiththemetalions.Ithasalsobeen reportedthatbindingofNi(II)tobiopolymersoccursmainlyin thepeptidoglycanlayerofthecellsurface.34

Theminimuminhibitoryconcentrationsofnickeland cad-mium requiredfor50% ofgrowth inhibition(MIC50)ofthe

isolates were computed, and the results are presented in

Table 6. The highestminimum inhibitory concentration of

nickelwascalculatedforIBT-I(1884.93ppm),followedbyMT-4 (638.90ppm),whereasthehighestMIC50ofcadmiumwas

cal-culatedforIBT-II(227.92ppm),followedbyMT-4(71.16ppm). Determinationofresidualnickelintheculturebrothafter harvestingmycelialbiomassfromthemetal-amendedmedia revealedtotalremovalofnickelbytheincreasedbiomassof theTrichodermaisolatesatNiconcentrationsofupto40ppm, followed by an increase in residual nickel and a decrease in biomass production at higher nickel concentrations in the medium.Amongtheisolates,IBT-Iwas mostpotentin biosorptionofnickel,followedbyUBT-18andMT-4(Fig.5).The resultsareinagreementwiththefindingsofSarkaretal.,26 who recorded90.2%removalofNifroma50ppm-amended culture broth by T. harzianum after seven days of growth, beyondthat,therewasnoincreaseinmetaluptake.Theuseof asolid-phaseextractionprocesstodeterminebiosorptionof heavymetalsshowedthat0.59␮gofnickelcouldberemoved byAspergillusfumigatusfromaliterofpollutedwater.35

The trend of cadmium biosorption was quite different, so thatthe increasingcadmium concentrationsresultedin decreasingbiomassproductionbyallofthetestisolatesand positivelycorrelatedwithincreasedresidualcadmiuminthe culturebroth(Fig.6).

Ithasbeensuggestedthat metaluptakebyT.harzianum ishighlypH-andtemperature-dependentandthemaximum metaluptaketakesplaceatpH4.36,37AtpHvaluesabove7, metaluptakeisreducedasmetalsexistashydroxidecolloids

Table6–MinimuminhibitoryconcentrationsofnickelandcadmiumfortheTrichodermaisolates.

Nickel Cadmium

Isolate Linearequation R2 MIC50(ppm) Isolate Linearequation R2 MIC50(ppm)

MT-4 Y=46.77x−81.21 0.896 638.90 MT-4 Y=43.52x−30.61 0.886 71.16

UBT-18 Y=73.07x−132.4 0.834 313.49 UBT-18 Y=36.76x−14.66 0.934 57.41 IBT-I Y=32.22x−55.53 0.992 1884.93 IBT-II Y=56.18x−82.46 0.768 227.92

(7)

-2 0 2 4 6 8 10 0 50 100 150 200 250 300 350 400 120 100 80 60 40 20 0 Residual nickel in culture broth (µ g/ml) Biomass dry wt. (mg ) Nickel concentration (ppm)

Biomass (MT-4) Biomass (UBT-18) Biomass (IBT-I)

Ni Conc-(MT-4) Ni Conc-(UBT-18) Ni Conc-(IBT-I)

Fig.5–BiosorptionofnickelinamendedmediabyTrichodermaisolates.

0 1 2 3 4 5 6 0 100 200 300 400 500 600 700 120 100 80 60 40 20 0 Residual cadmium in culture broth (µ g/ml ) Dry myceli al b iomass (mg ) Cadmium concentration (ppm)

Biomass (UBT-18) Biomass (IBT-II) Biomass (MT-4)

Cd Conc-(MT-4) Cd Conc-(UBT-18) Cd Conc-(IBT-II)

Fig.6–BiosorptionofcadmiuminamendedmediabyTrichodermaisolates.

andprecipitate atalkalinepHdue toosmoticchangesand ahydrolyzing effect,38,39 thusresultinginadecrease inthe sorption rate.40 As biomass ofT. harzianum increased, the pH of the medium was shown to become more acidic41; however,belowpH4biomassproductionwasreduced and subsequentlytheresidualmetalconcentrationincreased.Low absorption ofheavy metals at low pH is attributedto the

competitionbetweenthehydrogenionandthemetalionat thesorptionsite.42

Theresultsobtainedwhilestudyinggerminationofconidia oftheTrichodermaisolatesundernickelandcadmiumstress conditionsrevealedthattheisolatesdifferedsignificantlyin their responses tofungistatic effects(Table 7). Under non-amended conditions,asignificantlylower germinationrate

Table7–EffectoffungistasisonconidialgerminationoftheTrichodermaisolatesundernickelandcadmiumstressed condition.

Germinationofconidia(%)

Nickel Cadmium

Isolate 0ppm 50ppm 100ppm 150ppm Isolate 0ppm 50ppm 100ppm 150ppm

MT-4 91.73ab 89.09c 81.65ef 79.99f MT-4 88.37b 68.33cde 63.22ef 57.04f UBT-18 88.23c 85.14d 79.18f 75.81g UBT-18 96.10a 73.70c 69.36cde 66.83de IBT-I 93.73a 89.67bc 83.00de 81.31ef IBT-II 97.30a 73.53cd 70.83cd 50.59g ValuesfollowedbydifferentlettersdiffersignificantlyaccordingtoDuncan’smultiplerangetestatp=0.05.

(8)

79 80 81 82 83 84 85 86 87 88 IBT-I UBT-18 MT-4 Ger mi n a tion of con idia (% )

Fig.7–FungistasisofTrichodermaisolatesirrespectiveof nickelgradient.

wasshownbyUBT-18(88.23%)comparedtoIBT-IandMT-4 (93.73and91.73%,respectively).Thedifferentlevelsofnickel stressalsohadsignificanteffectsonsporegermination; how-ever,thevariationintheinteractioneffectwiththeTrichoderma isolateswasnon-significant.Irrespectiveofthenickel concen-tration,IBT-Iwasmostresistanttofungistaticeffects(86.93% conidial germination),followed by MT-4 and UBT-18 (85.61 and82.09%conidialgermination,respectively)(Fig.7).Inthe absenceofcadmium,IBT-IIexhibitedthehighestgermination rate(97.30%),whichsignificantlydifferedfromthatofMT-4 (88.37%).Withthe increase inthe cadmiumconcentration, germinationwassignificantlyaffected,particularlyinthecase ofIBT-II,indicatingthattheisolatewasverysensitivetothe fungistaticeffect.UBT-18 wasfoundtobemosttolerantto thefungistaticeffect,evenatahighercadmiumstresslevel (66.83%conidialgermination),anditsgerminationratewas significantlydifferentfromthatofMT-4(57.04%).Irrespective ofthecadmium concentration,UBT-18 showedthe highest resistancetothefungistaticeffect(76.50%conidial germina-tion),followedbyIBT-IIandMT-4(73.06and69.24%conidial germination,respectively)(Fig.8).Partialannulmentofsoil fungistasishasasignificantimpactonsurvivaland popula-tiondynamicsofTrichodermaandGliocladiuminsoil.43Royand Pan44reportedthatgammairradiationsignificantlyincreased phialosporeandchlamydosporegerminationratesinmutants ofT.harzianumandGliocladiumvirenscomparedtotheirwild types.

Inconclusion,thepresentinvestigationhighlightsthe sig-nificanceofTrichodermaspp.aspotentialmetalbiosorbents. Fourisolatesobtainedinthisstudy,viz.,MT-4,UBT-18,IBT-I, andIBT-II,canbeexploitedaspotentbioremediationagents innickel-andcadmium-pollutedagriculturalfields.

64 66 68 70 72 74 76 78 IBT-II UBT-18 MT-4 Ger mi n a tion of con idia (% )

Fig.8–FungistasisofTrichodermaisolatesirrespectiveof

cadmiumgradient.

Conflicts

of

interest

Theauthorsdeclarenoconflictsofinterest.

r

e

f

e

r

e

n

c

e

s

1.HowellCR.MechanismsemployedbyTrichodermaspeciesin

thebiologicalcontrolofplantdisease;thehistoryand

evolutionofcurrentconcept.PlantDis.2003;87:4–10.

2.YedidiaI,BenhamouN,ChetI.Inductionofdefense

responsesincucumber(CucumissativusL.)bythebiocontrol

agentTrichodermaharzianum.ApplEnvironMicrobiol.

1999;65:1061–1070.

3.HarmanGE,HowellCR,ViterboA,ChetI,LoritoM.

Trichodermaspecies-opportunistic,avirulentplant

symbionts.NatRev.2004;2:43–56.

4.Hoyos-CarvajalL,OrduzS,BissettJ.Growthstimulationin

bean(PhaseolusvulgarisL.)byTrichoderma.BiolControl.

2009;51:409–416.

5.EzziMI,LynchJM.BiodegradationofcyanidebyTrichoderma

spp.andFusariumspp.EnzymeMicrobTechnol.

2005;36:849–854.

6.AnandP,IsarJ,SavanS,SaxenaPK.Bioaccumulationof

copperbyTrichodermaviride.BioresourTechnol.

2006;97:1018–1025.

7.TingASY,ChoongCC.Bioaccumulationandbiosorption

efficacyofTrichodermaisolatesSP2F1inremovingCopper

(CuII)fromaqueoussolutions.WorldJMicrobiolBiotechnol.

2009;25:1431–1437.

8.ErrasquinLE,VazquezC.Toleranceanduptakeofheavy

metalsbyTrichodermaatrovirideisolatedfromsludge.

Chemosphere.2003;50(1):137–143.

9.PapavizasGC.TrichodermaandGliocladium:biology,ecology

andpotentialforbiocontrol.AnnRevPhytopathol.

1985;23:23–54.

10.JaworskaM,DluzniewskaJ.Theeffectofmanganeseionson

developmentandantagonismofTrichodermaisolates.PollishJ

EnvironStud.2007;16(4):549–553.

11.KredicsL,AntalZ,DocziI,ManczingerL.Effectofheavy

metalongrowthandextracellularenzymeactivityof

mycoparasiticTrichodermastrains.BullEnvironContamToxicol.

2001;66:249–354.

12.KredicsL,AntalZ,ManczingerL,NagyE.Beadingof

mycoparasiticTrichodermastrainsforheavymetalresistance.

LettApplMicrobiol.2001;33:112–116.

13.KatayamaA,MatsumuraF.Photochemicallyenhanced

microbialdegradationofenvironmentalpollutants.Environ

SciTechnol.1991;25:1329–1333.

14.SahaDK,PanS.Qualitativeevaluationofsomespecific

mediaofTrichodermaandGliocladiumandtheirpossible

modifications.JMycopathRes.1997;34:7–13.

15.DhingraOD,SinclairJB.BasicPlantPathologyMethods.2nd

editionLondon:CRCLewisPublishers;1995:434.

16.GamsW,BissettJ.Morphologyandidentificationof

Trichoderma.In:KubicekCP,HarmanGE,eds.Trichodermaand Gliocladium–BasicBiology,TaxonomyandGenetics.vol.1.

LondonC.P:Taylor&Francis;2002:3–31.

17.TandonHLS.MethodsofAnalysisofSoils,Plants,Waters,

FertilisersandOrganicManures.NewDelhi,India:Fertilisers

DevelopmentandConsultationOrganisation;2005:

86–87.

18.JacksonRM.AninvestigationoffungistasisinNigeriansoils.

JGenMicrobiol.1958;18:248–258.

19.SteelRGD,TorrieJH.PrinciplesandProceduresofStatistics.New

(9)

20.ChetI,InbarJ,HadarY.Fungalantagonistsand

mycoparasites.In:WicklowFS.,ed.TheMycotaIV:

EnvironmentalandMicrobialRelationships.Heidelberg:Springer

Verlag;1997:165–184.

21.KleinD,EveleighDE.EcologyofTrichoderma.In:KubicekCP,

HarmanGE,eds.TrichodermaandGliocladium–BasicBiology,

TaxonomyandGenetics.vol.1.London:Taylor&Francis; 1998:57–73.

22.HusseinH,FaragS,MoawadH.Isolationand

characterisationofPseudomonasresistanttoheavymetals

contaminants.ArabJBiotechnol.2003;7:13–22.

23.ParemeswariE,LakshamananA,ThilagavathiT.Biosorption

andmetaltolerancepotentialoffilamentousfungiisolated

frommetalpollutedecosystem.ElecJEnvironAgricFood

Chem.2010;9(4):664–671.

24.MuraleedharanTR,IyengarL,VenkobacharC,Biosorption:.

anattractivealternativeformetalremovalandrecovery.Curr

Sci.1991;61:379–385.

25.ZafarS,AqilF,AhmadI.Metaltoleranceandbiosorption

potentialoffilamentousfungiisolatedfrommetal

contaminatedagriculturalsoil.BioresourTechnol.

2007;98:2557–2561.

26.SarkarS,SatheshkumarA,JayanthiR,PremkumarR.

BiosorptionofnickelbylivebiomassofTrichoderma

harzianum.ResJAgricSci.2010;1(2):69–74.

27.deLimaAF,deGabrielleFM,deLimaMAB,etal.Roleof

morphologyandpolyphosphateinTrichodermaharzianum

relatedtocadmiumremoval.Molecules.2011;16:

2486–2500.

28.DoelmanP.Resistanceofsoilmicrobialcommunitiesto

heavymetals.In:JensenV,KjollerA,SorensenCH,eds.

MicrobialCommunitiesinSoil.London,UK:ElsevierApplied

SciencePublishers;1986.

29.HattoriH.Influenceofheavymetalsonsoilmicrobial

activities.SoilSciPlantNutr.1992;38:93–100.

30.KonopkaA,ZakharovaT,BischoffM,OliverL,NakatsuC,

TurcoRF.Microbialbiomassandactivityin

lead-contaminatedsoil.ApplEnvironMicrobiol.

1999;65:2256–2260.

31.SariA,MendilD,TuzenM,SoylakM.BiosorptionofCd(II)

andCr(III)fromaqueoussolutionbymoss(Hyloconium

splendens)biomass:equilibrium,kineticandthermodynamic

studies.ChemEngJ.2008;144(1):1–9.

32.PradhanS,SinghS,RaiLC.Characterizationofvarious

functionalgroupspresentinthecapsuleofMicrocystisand

studyoftheirroleinbiosorptionofFe,NiandCr.Bioresour

Technol.2007;98:595–601.

33.VoleskyB.Biosorptionandme.WaterRes.2007;41:4017–4029.

34.LinZ,WuJ,XueR,YangY.Spectroscopiccharacterizationof

Au3+biosorptionbywastebiomassofSaccharomyces

cerevisiae.SpectrochimActa.2005;61:761–765.

35.SoylakM,TuzenM,MendilD,TurkekulI.Biosorptionof

heavymetalsonAspergillusfumigatusimmobilizedDianon

HP-2MGresinfortheiratomicabsorptionspectrometric

determinations.Talanta.2006;70(5):1129–1135.

36.TsezosM,VoleskyB.Biosorptionofuraniumandthorium.

BiotechnolBioeng.1981;23:583–604.

37.TobinJM,CooperDG,NeufeldRJ.Uptakeofmetalionsby

Rhizopusarrhizus.ApplEnvironMicrobiol.1984;47:821–824.

38.Filipovic-KovacevicZ,SiposL,BriskiF.Biosorptionof

chromium,copper,nickelandzincionsontofungalpellets

ofAspergillusniger405fromaqueoussolutions.FoodTech Biotech.2000;38:211–216.

39.NasseriS,MazaheriAM,NooriSM,RostamiKH,ShariatM,

NadafiK.Chromiumremovalfromtanningeffluentusing

biomassofAspergillusoryzae.PakJBiolSci.2002;5:1056–1059.

40.LiuN,LuoS,YangY,ZhangT,JinJ,LiaoJ.Biosorptionof

americium-241bySaccharomycescerevisiae.JRadioAnal

NuclearChem.2002;252:187–191.

41.BenitezT.Increasedantifungalandchitinasespecific

activatesofTrichodermaharzianumCECT2413byadditionofa

cellulosebinding-domain.ApplMicrobiolBiotechnol.

2004;64:675–685.

42.CongeevaramS,DhanaraniS,ParkJ,DexilinM,

ThamaraselviK.Biosorptionofchromiumandnickelby

heavymetalresistantfungalandbacterialisolates.JHazard

Mater.2007;146:270–277.

43.PapavizasGC,LumsdenRD.Biologicalcontrolofsoilborne

fungalpropagules.AnnRevPhytopathol.1980;18:389–412.

44.RoyA,PanS.Effectoffungistasisongerminabilityofwild

andmutantisolatesofTrichodermaharzianumandGliocladium

Referências

Documentos relacionados

Abstract: As in ancient architecture of Greece and Rome there was an interconnection between picturesque and monumental forms of arts, in antique period in the architecture

the possibility of using thermosensitive and pH-sensitive hydrogels for the removal and recovery of nickel ions from aqueous solutions, by placing the hydrogels in aqueous

The probability of attending school four our group of interest in this region increased by 6.5 percentage points after the expansion of the Bolsa Família program in 2007 and

As doenças mais frequentes com localização na cabeça dos coelhos são a doença dentária adquirida, os abcessos dentários mandibulares ou maxilares, a otite interna e o empiema da

As organizações partidárias de maior expressividade eram: a conservadora União Democrática Nacional (UDN) de oposição ferrenha a Vargas, além do Partido

The iterative methods: Jacobi, Gauss-Seidel and SOR methods were incorporated into the acceleration scheme (Chebyshev extrapolation, Residual smoothing, Accelerated

Alguns ensaios desse tipo de modelos têm sido tentados, tendo conduzido lentamente à compreensão das alterações mentais (ou psicológicas) experienciadas pelos doentes

Para isso, iremos usar não apenas as crónicas de Fernão Lopes, Zurara e Rui de Pina – delimitando o estudo das crónicas àquelas escritas pelos