• Nenhum resultado encontrado

Enzymatic potential of heterotrophic bacteria from a neutral copper mine drainage

N/A
N/A
Protected

Academic year: 2021

Share "Enzymatic potential of heterotrophic bacteria from a neutral copper mine drainage"

Copied!
7
0
0

Texto

(1)

h ttp : / / w w w . b j m i c r o b i o l . c o m . b r /

Environmental

Microbiology

Enzymatic

potential

of

heterotrophic

bacteria

from

a

neutral

copper

mine

drainage

Bruna

Zucoloto

da

Costa

a,1

,

Viviane

Drumond

Rodrigues

b,1

,

Valéria

Maia

de

Oliveira

c

,

Laura

Maria

Mariscal

Ottoboni

b

,

Anita

Jocelyne

Marsaioli

a,∗

aUniversidadeEstadualdeCampinas,InstitutodeQuímica,Campinas,SP,Brazil

bUniversidadeEstadualdeCampinas,CentrodeBiologiaMoleculareEngenhariaGenética,Campinas,SP,Brazil

cUniversidadeEstadualdeCampinas,CentroPluridisciplinardePesquisasQuímicas,BiológicaseAgrícolas,Campinas,Brazil

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received25March2015 Accepted22February2016 Availableonline26July2016 AssociateEditor:CynthiaCanêdoda Silva

Keywords:

Copperminedrainage High-throughputscreening Hydrolases

Monooxygenases

a

b

s

t

r

a

c

t

Copperminedrainagesarerestrictedenvironmentsthathavebeenoverlookedassourcesof newbiocatalystsforbioremediationandorganicsyntheses.Therefore,thisstudyaimedto determinetheenzymaticactivities(esterase,epoxidehydrolaseandmonooxygenase)of56 heterotrophicbacteriaisolatedfromaneutralcopperminedrainage(SossegoMine,Canaã dosCarajás,Brazil).Hydrolaseandmonooxygenaseactivitiesweredetectedin75%and20% oftheevaluatedbacteria,respectively.Bacterialstrainswithgoodoxidativeperformance werealsoevaluatedforbiotransformationoforganicsulfides.Fourteenstrainswithgood enzymaticactivitywereidentifiedby16SrRNAgenesequencing,revealingthepresenceof threegenera:Bacillus,PseudomonasandStenotrophomonas.ThebacterialstrainsB.megaterium

(SO5-4andSO6-2)andPseudomonassp.(SO5-9)efficientlyoxidizedthreedifferentorganic sulfidestotheircorrespondingsulfoxides.Inconclusion,thisstudyrevealedthatneutral copperminedrainagesareapromisingsourceofbiocatalystsforesterhydrolysisand sul-fideoxidation/bioremediation.Furthermore,thisisanovelbiotechnologicaloverviewofthe heterotrophicbacteriafromacopperminedrainage,andthisreportmaysupportfurther microbiologicalmonitoringofthistypeofmineenvironment.

©2016SociedadeBrasileiradeMicrobiologia.PublishedbyElsevierEditoraLtda.Thisis anopenaccessarticleundertheCCBY-NC-NDlicense(http://creativecommons.org/

licenses/by-nc-nd/4.0/).

Introduction

Brazil is the world’s 15th largest producer of copper concentrate.1TheminingcompanyValeS.A.isresponsiblefor

themajorityofcopperproduction,havingreached275,000mt

Correspondingauthorat:ChemistryInstitute,UniversityofCampinas(UNICAMP),POB6154,13084-971Campinas,SP,Brazil.

E-mail:anita@iqm.unicamp.br(A.J.Marsaioli).

1 Theseauthorscontributedequallytothiswork.

ofcopperconcentrateinthefirstninemonthsof2013,2and

operates atthe SossegoMine(CanaãdosCarajás,PA,since 2004) andattheSaloboMine (Marabá,PA,since2012).The processusedforcopperoreconcentrationinvolvescrushing andsubsequentsemi-autogenousgrinding(SAG),followedby

http://dx.doi.org/10.1016/j.bjm.2016.07.004

1517-8382/©2016SociedadeBrasileiradeMicrobiologia.PublishedbyElsevierEditoraLtda.ThisisanopenaccessarticleundertheCC BY-NC-NDlicense(http://creativecommons.org/licenses/by-nc-nd/4.0/).

(2)

comminutioninaballmill.Thematerialisclassified accord-ingtotheparticlesizeand thenpassesthroughaflotation process.Thegeneratedwaste(aslurry)isdepositedinadam approximately5200minlength.

Theaqueouswastesgeneratedfromminingactivitiesare known as mine drainages and are described as restricted environmentsthatoftenhaveahighmetalcontentandlow organic matter concentration. In addition, water drainage fromminewastesandabandonedminesareoftenacidicas aresultoftheextendedexposureofsulfidicmineralstowater andoxygen.However,thepHofcopperminedrainagemay drasticallydifferaccordingtothewaste chemical composi-tion,thetimeofexposureandthemicrobialcommunity.3

Most microbial studies focus on the mineral-oxidizing prokaryotesfromacidminedrainages(AMD),whichusually consistofacidophilic bacteriaand archaea. These microor-ganismsareabletooxidizeferrousironand/orreducedforms ofsulfurandacceleratetheoxidativedissolution ofsulfidic minerals,whichmaybeappliedtometaloreprocessingand concentratesinabiotechnologicalprocessknownas biomin-ingandbioleaching.4–6

However, the microbial community from copper mine drainages(acidicorneutral)hasbeenoverlookedasasource ofnewbiocatalystsforbioremediationandthesynthesisof organiccompounds.Tothebestofourknowledge,thereare no reports about the use ofheterotrophic microorganisms isolatedfrom theserestrictedenvironments asbiocatalysts appliedforbioremediationoforganicpollutantsorfor syn-theticorganicchemistry.

Fromabiotechnologicalpointofview,esterases,epoxide hydrolasesandmonooxygenasesaresomeofthebest-studied andmost-appliedenzymes.Thesebiocatalystsarecommonly usedfortheenantioselectiveproductionofvalue-added com-pounds, which are important to pharmaceutical and fine chemicalindustries.Inthiscontext,ourresearchgrouphas been workingon the detectionofenzymatic activity using fluorogenic probes and organic substrates of interest. Our focus hasbeen onnew biocatalystsfrom theAmazon and Atlantic rainforest,7 petroleum oil and formation water,8

humanskin,9andfromBrazilianCultureCollections.10,11

The present work aimed to investigate hydrolases and monooxygenases inheterotrophic bacteria isolated from a neutralcoppermine drainage, applying fluorescence-based high-throughput screening (HTS) assays and multibioreac-tions tomonitororganic sulfide oxidations. Therefore, this studyrepresentsanewbiotechnologicalapplicationofpoorly investigated,heterotrophicmicrobiota.

Materials

and

methods

Generalmethods

Reagents were purchased from Sigma–Aldrich (Steinheim, Germany). Solvents were distilled from technical solvents. FluorogenicprobesandproductsforHTSassays(2–16)were synthesized by our group.12 A free sample of

2-methyl-4-propyl-1,3-oxathiane(19)fromGivaudan(Jaguaré,SP,Brazil) was provided by Naturaperfumery and cosmetic industry (Cajamar,SP,Brazil).Ethylphenylsulfide(18)andoxidation

productsofsubstrates18,19and20(sulfoxides18a,19aand 20a,respectively)weresynthesizedasdescribedbyPortoetal. (2002).13Allchemicalreactionsweremonitoredbysilicagel

TLC (aluminum foil, 60 F254 Merck), and visualization was

obtainedusingUVorbysprayingwithp-anisaldehyde/sulfuric

acid followed by heating at approximately 120◦C. Flash columnchromatographywasperformedusingMerck (White-houseStation,NJ,USA)silicagel60(0.04–0.063mm,230–400 mesh).NMRspectrawererecordedonaVarianInova500(Palo Alto,CA,USA)for1H(499.88MHz)and13C(125.69MHz)

mea-surements.Chemicalshifts(ı)aregiveninppm,andcoupling constants(J)aregiveninHertz.

Enzymatic reactions were monitored by GC–MS using an Agilent 7890gaschromatograph (Santa Clara,CA, USA) coupledwithaHewlettPackard5975C-MSD(70eV) spectrom-eterequippedwithafusedsilicacapillarycolumn(HP-5MS, 30m×0.25mm i.d.×0.25␮m film thickness).GC–MS analy-seswereconductedusinga1mLmin−1Heflow,splitmode (20:1) and the following temperature program: initial tem-perature 50◦C, increasing at 10◦Cmin−1 to 200◦C and at 20◦Cmin−1 to 300◦C, remaining constant for 5min. Enan-tiomer discrimination was performed on an Agilent 6850 gas chromatograph (Santa Clara, CA, USA) coupledwith a flameionizationdetector(GC-FID)usingafusedsilica capil-larycolumnLipodex-E(Macherey-NagelInc.,Bethlehem,PA, USA)withchiralphase Octakis-(2,6-di-O-pentyl-3-O-butyryl)-␥-cyclodextrin(28m×0.25mmi.d.×0.25␮mfilmthickness). TheGC-FIDanalyseswereconductedusinga1mLmin−1H2

flow,splitmode(10:1)andthefollowingtemperatureprogram: initialtemperature50◦C,increasingat10◦Cmin−1to100◦C andat5◦Cmin−1to180◦C,remainingconstantfor5min.

Samplecollectionandisolationofheterotrophicbacteria

SamplesfromtheSossegocopperminedrainage,Canaãdos Carajás,StateofPará,Brazil,werecollectedinAugust2009. ThesampleswerenamedSO5,SO6andSO7;collectedin ster-iledisposableflasks;andstoredat4◦C.TheSossegomining operationbegan in2004.Thus,theseare 5-year-old copper minedrainagesamples.

Thebacteriawere isolatedaccordingtoEatonand Fran-son(2005).14Eachsample(1g)washomogenizedwithsterile

water(9mL)andseriallydiluted.Onemilliliterofeachdilution wastransferredtoaPetridishandhomogenizedwith12mL ofPlateCountAgar(PCA).Theplateswereincubatedfor48h at35◦C.Coloniesexhibitingadifferentmorphologyandcolor werere-isolatedintrypticasesoyagar(TSA).Thebacteriawere storedat−70◦CinLBmediumcontainingglycerol.15

Fluorescence-basedhigh-throughputscreeningassays

Bacteriawere inoculatedinto LBsolidmedium15 and

incu-bated for 16h at 37◦C. After growth, cell suspensions (0.2mgmL−1)werepreparedinboratebuffer(20mmolL−1pH 7.4).

Assayswere performedinflat-bottompolypropylene 96-well microtiter plates, which were incubated at28◦C and 200rpm.Fluorescenceintensitiesweremeasuredusingaplate reader spectrophotometer (FlashScan 530 AnalyticJena) at 460nm(excitationwavelength:390nm).

(3)

Scheme1–Fluorescence-basedHTSassayfordetectionofesterases(EST,2–4),epoxidehydrolases(EH,5–6)and monooxygenases(BVMO,7–10).

Hydrolase screening was performed using fluorogenic probes 2–6 (Scheme 1, 100␮molL−1), NaIO4 (2mmolL−1),

BSA(2mgmL−1)andbacterialcellsuspension(0.1mgmL−1) andwasmonitoredupto24h.Monooxygenaseswere inves-tigated using probes 7–10 (Scheme 1, 100␮molL−1), BSA (2mgmL−1)andbacterialcellsuspension(0.1mgmL−1)and were monitored up to 72h. All enzymatic reactions were followed by positive controls, including hydrolyzed or oxi-dized fluorogenic products 11–16 instead of probes, and usingnegativecontrolsdevelopedintheabsenceofbacterial cells.

Substrateconversion(%) into productwascalculated by comparingthefluorescenceintensitiesofthereactionassay andpositivecontrol,consideringthelatteras100%.Negative controlswereusedtomonitorspontaneousprobehydrolysis oroxidation.Enzymaticactivity wasconsideredpositivefor conversionsgreaterthan5%.

Multibioreactionassays

BacteriaweregrowninLBliquidmediumfor16hat37◦Cand 200rpm.Cellswererecoveredbycentrifugationat4500×gfor 15min.Wetbacterialcells(0.25g)weremixedwithSørensen buffer16(5mL,100mmolL−1,pH7.0)containing1.5␮Lofeach

substrate (18–21) in Erlenmeyer flasks (25mL). The result-ingsolutionswereincubated at37◦Cand200rpm.After72 and120h,thereactionswereinterruptedbysaturationwith NaClandextractionwithethylacetate(2×2mL).Theorganic phaseswerecombined,driedoveranhydrousMgSO4,

deriva-tizedwithdiazomethane,andaninternalstandardwasadded (benzophenone;0.05mgmL−1).Allsampleswereanalyzedby GC–MS and chiral GC-FID. Substratestability and volatility underreactionconditionswere monitoredbyreaction con-trolsintheabsenceofbacterialcells.

Substrateconversions(%) were calculatedbycomparing thechromatographicpeakareasofthereactants,productsand internalstandards.

Identificationofbacteria

The bacterial strains displaying hydrolytic activity above 99% or monooxygenases capable of oxidizing organic sul-fur compoundswere identifiedbysequencing of16S rRNA. Genomic DNA was isolated using the Wizard Genomic DNA Purification Kit (Promega), following the manufac-turer’s instructions. PCR amplification and sequencing of partial 16S rRNA genes were conducted as described by Miquelettoetal.(2011).17Thesequencesobtainedwere

com-paredwithsequencesavailableatGenBank(http://www.ncbi.

nlm.nih.gov)andtheRibosomalDatabaseProject(http://www.

cme.msu.edu/RDP/html/index.html). Multiplealignmentsof

16S rRNA gene sequences were performed using ClustalW 1.6,18andevolutionaryanalyseswereconductedinthe

Molec-ular Evolutionary Genetics Analysis(MEGA) 6.06 package,19

using the DNA substitution model Kimura 2-parameter.20

A discrete Gamma distribution was used to model evo-lutionary rate differences among sites (5 categories (+G, parameter=0.5288)).21 Thephylogenetic reconstructionwas

performedusingtheMaximumLikelihoodmethodwith1000 bootstrappedreplicates.

Results

EnzymaticactivitydetectedbyHTS

The56 heterotrophicbacteriaisolatedfrom thethree sam-ples of a neutral copper mine drainage were evaluated by fluorescence-based HTS screening using probes 2–10

(Scheme1).

Assays performed in the presence of probes 2 and 3

(Table 1), which were used to detect esterases catalyzing

thehydrolysisofshortchainesters(acetateandpropionate, respectively),indicatedthat27bacteriawereabletohydrolyze probe2,fiveofwhichconvertedmorethan99%ofthe sub-strate (SO5-6, SO5-13, SO7-7, SO7-10 and SO7-15). Probe 3

(4)

Table1–Esteraseandmonooxygenaseactivitiesof heterotrophicbacteriaisolatedfromaneutralcopper minedrainagedetectedbyfluorescence-basedHTS assaysusingprobes2–4aand7–10.a

StrainID Conversion(%) 2 3 4 7 8 9 10 SO5-1 – 29 – 5 7 – – SO5-2 – – – 9 – 12 – SO5-3 45 – – – – – – SO5-4 – – – – 16 – – SO5-5 – – – – 14 7 – SO5-6 >99 21 – – – – – SO5-7 – 10 5 – – 30 – SO5-8 63 – – – – – – SO5-9 – – – – 5 21 – SO5-10 – 17 – – – 29 – SO5-13 >99 11 – – – – – SO5-14 76 10 – – – – – SO5-16 64 – – – – – – SO5-17 70 – – – – – – SO5-18 90 8 – 8 – – – SO5-19 – 18 – – – – – SO5-21 76 – – – – – – SO6-2 – 56 – – 29 – – SO6-3 – 19 – – – – – SO6-4 – 15 – – – – – SO6-5 84 6 – – – – – SO6-6 33 – – – – – – SO6-7 89 – – – – – – SO6-8 69 – – – – – – SO6-9 57 – – – – – – SO6-12 14 >99 – 6 – – – SO6-14 – 17 – – – – – SO6-15 88 18 – – – – – SO6-16 – 15 – – – – – SO6-18 – 33 – – – – – SO6-19 – 9 – – – – – SO6-20 82 – – – – – – SO6-22 75 – – – – – – SO7-1 – 13 – – – – – SO7-2 – 27 11 7 – – – SO7-3 91 46 – – – – – SO7-6 25 12 – – – – – SO7-7 >99 – – – – – – SO7-8 19 11 – – – – – SO7-9 – 13 – – – – – SO7-10 >99 – – – – – – SO7-11 80 – – – – – – SO7-12 10 11 – – – – – SO7-13 – 31 – – – – – SO7-14 21 11 – – – – – SO7-15 >99 – – – – – – a SeeScheme1.

was also hydrolyzed by 27 bacteria, and SO6-12 displayed outstandingperformance,convertingmorethan99% ofthe substrate.

The results for short-chain ester biohydrolysis can be dividedinto fourdistinctgroups:(a) 15bacteriathat exclu-sively catalyzed the hydrolysis of acetateesters (2), (b) 15 bacteriathatexclusivelyhydrolyzedpropionateesters(3),(c) 12bacteriathatwerenotabletodiscriminatebetween2and

Table2–Chromatographicconversion(%)of

multibioreactionassaysforsulfide(18–21)oxidation,a catalyzedbybacteriafromaneutralcoppermine drainage. StrainID Conversion(%) 18 19 20 21 SO5-1 3 1 – – SO5-2 1 – – – SO5-4 20 7 11 – SO5-5 7 – 1 – SO5-7 10 – 1 – SO5-9 22 7 30 – SO5-10 4 – – – SO6-2 12 5 9 – a SeeScheme2.

3,and(d)14bacteriawithnoesteraseactivity,asdetermined usingthetestedfluorogenicprobes.

Theheterotrophicbacteriaevaluatedinthisworkclearly prefershort-chainestersasonlytwostrains(SO5-7andSO7-2) wereabletohydrolyzethemedium-chainester4(Table1).

Noneofthestrainswereabletohydrolyze5and6,which were specific for epoxide hydrolases, after a 24h reaction period.Activitytowardtheseprobeswasobservedonlyafter 72h(datanotshown);however,theconversionswerebelow 10%,andthesebiocatalystswerenotconsideredanyfurther.

Monooxygenasescreeningusingfluorogenicprobes7–10 indicatedthatamongthe56strainsunderevaluation,11were active(Table1).StrainsSO5-2,-18,SO6-12andSO7-2catalyzed theconversionofcyclicketone7into13.StrainsSO5-1,-4, -5andSO6-2catalyzedtheoxidationof8tolactone14, and strainsSO5-2,-5,-7,-9and-10oxidizedketone9toester15. Noneofthestrainsoxidizedprobe10.

Biocatalyticsulfideoxidationbymultibioreactionassays

Multibioreactionexperiments(Table2)revealedthatbacteria isolatedfromaneutralcopperminedrainagewerereadilyable tooxidizeorganicsulfurcompoundstotheirrespective sul-foxides(Scheme2).Alltestedstrainswereabletocatalyzethe oxidationofatleastoneofthesubstrates.Eightstrains oxi-dized18,andthreestrainsoxidized19and20;however,none ofthestrainsoxidized21.Thebestresultswereobservedfor strainsSO5-4,SO5-9andSO6-2,whichwereabletooxidize threeofthesulfidestested(18,19and20).

Theenantioselectivities ofthe sulfidebiooxidations cat-alyzed bySO5-4, SO5-9 and SO6-2 were assessedby chiral GC-FID,revealinglowenantiomericexcesses(from5to15%, datanotshown).Nonetheless,oxidationofcis-19washighly diastereoselective(over99%de),providingonlyaracemic mix-tureoftrans-trans-19a(2S,3S,4Sand2R,3R,4R,Scheme3).

Isolationandidentificationofheterotrophicbacteriafrom

mineenvironments

AlloftheevaluatedcopperminedrainagesampleshadapH between7and8.Thus,specificlowpHculturemediafor iso-lation of acidophilic bacteria were notused. Heterotrophic bacteria (56strains)were isolatedfrom theSossego copper

(5)

Scheme2–Substrates(18–21)usedfordetectionoforganic sulfidebiooxidationandtheirrespective,expected

products(18a–21a).

Table3–Identificationofheterotrophicbacterialstrains isolatedfromaneutralcopperminedrainageby sequencingofthe16SrRNAgene.

StrainID Sample Identification GenBank ID SO5-1 SO5 Stenotrophomonasmaltophilia KC859435 SO5-2 SO5 Pseudomonassp. KC859436 SO5-4 SO5 Bacillusmegaterium KC859437 SO5-5 SO5 Pseudomonassp. KC859438 SO5-6 SO5 Bacillusthuringiensis KC859439 SO5-7 SO5 Bacillussp. KC859440 SO5-9 SO5 Pseudomonassp. KC859441 SO5-10 SO5 Pseudomonassp. KC859442 SO5-13 SO5 Bacillusthuringiensis KC859443 SO6-2 SO6 Bacillusmegaterium KC859444 SO6-12 SO6 Bacillusmegaterium KC859445 SO7-7 SO7 Bacillusthuringiensis KC859446 SO7-10 SO7 Bacilluscereus KC859447 SO7-15 SO7 Bacilluscereus KC859448

minedrainagesamples(18strainswereisolatedfromsample SO5,23fromsampleSO6and15fromsampleSO7)usingserial dilutionsandPCA.

Fourteenstrainswithoutstandinghydrolyticoroxidative activity(above99%and10%,respectively)wereidentifiedafter partialsequencingofthe16SrRNAgene(Table3,Fig.1).Nine strainsofBacilluswereidentifiedasB.thuringiensis,B. mega-terium,B.cereusandBacillussp.Otherstrainsrecoveredwere

StenotrophomonasmaltophiliaandPseudomonassp.

Discussion

The 56 heterotrophic bacterial strains isolated from this neutralcopperminedrainagewereevaluatedby fluorescence-based HTS enzymatic screening and displayed distinct enzymaticactivitytowardtheselectedprobes.Esterasesand monooxygenases were found in 75% and 20% of strains, respectively.Hydrolasesandoxidoreductasesarefrequently employed in industrial biocatalyzed processes,22 and the

search fornovel sourcesof theseenzymes isessential for the developmentofnewprocesses.TheHTSresults, there-fore,indicatethattherestrictedenvironmentofacoppermine drainageisapromisingsourceofnewbiocatalysts.

Thebestoxidationresultswereobtainedusingstrains iso-latedfromsampleSO5(Table1),whichwerefurtherevaluated bymultibioreactionassaysassessingsulfidebiooxidation.

Reducedorganicsulfurcompounds,suchassulfides,were chosenastargetsbecauseoftheirpresenceinindustrial aque-ous wastes. These organic sulfides are often bad smelling andenvironmentallydamaging.Theyareclassifiedasairand waterpollutants, and theirbioremediationisanimportant ecologicalissue.23

Sulfur atom oxidation is the first bioremediation step, producingsulfoxides(monooxygenation)orsulfones (dioxy-genation),whicharelessvolatileandhavealessunpleasant odor.Furthermore,sulfoxidesareindustriallyrelevant com-poundsthathavepotentialasdrugsandareusuallyapplied asprecursorsofaromasandflavorsandusedinasymmetric organicsyntheses.24

Compound18isusuallyemployedtodetectmicrobial sul-fideoxidationand,inthisstudy,wasoxidizedbyallscreened bacteria.Sulfide19isacommon,fruityodorconstituentand wasoxidizedtosulfoxide19abybacteriaSO5-4,SO5-9 and SO6-2,whichresultedinachange fromitsoriginalodorto anewaromavaluedbyfragranceindustries.25Furthermore,

oxidation ofrac-cis-19provided onlytherac-trans-trans-19a

(Scheme3),withover99%ofdiastereomericexcesstoward

rac-cis-cis-19a,whichischemicallyexpectedasbothenantiomers have all substituents at equatorial positions. Oxidation of sulfide20wasalsoaccomplishedbySO5-4,SO5-9and SO6-2,providingsulfoxiderac-20ainsteadofrac-20b(Scheme 2) becausethelonepairoftheexternalsulfuratomof20isnot partofthearomaticbenzothiazolesystem.

These resultsare promisingand indicate that biooxida-tion/bioremediationoforganicsulfidescanbeperformedby bacteriaisolatedfromtherestrictedenvironmentofneutral copperminedrainages.

Mostisolatedbacteriawithoutstandingenzymatic activi-tieswereidentifiedasbelongingtotheBacillusgenus,which isconsistentwiththewidespreaddistributionofBacillusspp.,

(6)

Fig.1–Phylogeneticanalysisbasedonpartial16rRNAgenesequencesoftheidentifiedbacterialstrainsandrelated microorganisms.TheevolutionaryhistorywasinferredusingtheMaximumLikelihoodmethodbasedontheKimura 2-parametermodel.ThenumbersatnodesindicatebootstrappercentvaluesfromtheMaximumLikelihoodanalysis,based on1000resampleddatasets.Onlysignificantbootstrapvaluesgreaterthan65%areshownneareachnode.Barsrepresent sequencedivergence,andthesequenceaccessionnumbersareindicatedinparenthesis.Nostocpunctiformewasusedasthe outgroup.

includinginminingenvironments.26–28Bacillusspecieshave

displayedbroadcatabolicabilitiesandarethemajor indus-trialhydrolaseproducers,responsibleforapproximately50% ofthetotalenzymemarketproduction.29

The other genera recovered were Stenotrophomonas and

Pseudomonas,identified,respectively,asS.maltophiliaand Pseu-domonassp.BothStenotrophomonasandPseudomonashavebeen previouslyisolatedfromheavymetal-contaminatedsoilsand other environmentalminingsamples.30–33 Bacterial species

fromtheStenotrophomonasandPseudomonasgeneraarewell knownfortheirmetabolicdiversity,multidrugresistanceand ability to degrade a wide range of compounds, including pollutants.34–36

Inthis work,theBacillus strains (SO5-6,SO5-13, SO6-12, SO7-7,SO7-10andSO7-15)displayedgoodhydrolaseactivity

(Tables1and3).Thesestrains,aswellasthestrains

identi-fiedasPseudomonas,presentedamoderatelevelofactivityfor monooxygenases(Tables1and3).

Thebestbiocatalyticperformanceforsulfideoxidationwas accomplished by Pseudomonas sp. (SO5-9), followed bytwo

Bacillusmegateriumstrains(SO5-4andSO6-2)(Tables2and3). Mahmood et al. (2009)37 isolated a strain of Pseudomonas

stutzeri that was characterizedas a chemolithoautotrophic sulfide-oxidizingandnitrite-reducingstrainfromthesludge ofananoxicsulfide-oxidizingreactor.Leeetal.(2012)38 identi-fiedaPseudomonassp.strainisolatedfromasludgereactorthat couldsuccessfully convertsulfidetoelementarysulfurand

thusdemonstratedthatsulfideoxidationcouldbeappliedto electricitygenerationfromsulfide-containingindustrial efflu-ent.Therefore,ourresultsindicatetheminestrains’potential applicationasbiocatalystsinorganicsynthesesand bioreme-diation, corroboratingprevious datathat demonstrated the useofPseudomonasandBacillusinindustry.

In conclusion, this study provides a novel overview of the heterotrophic bacteria from a copper mine drainage, whichmightbeusefulforfutureinvestigationsofindustrial processes,enzymeexpressionandbioremediationof contam-inatedenvironments.Furthermore,theobtainedresultswill supportfurthermonitoringofthemicrobiologicalprocesses occurringinthistypeofrestrictedenvironment.

Conflicts

of

interest

Theauthorsdeclarenoconflictsofinterest.

Acknowledgements

We thankPablodos SantosPina forthe samples from the Sossegomine.WealsothankCompanhiaAmbientaldoEstado deSãoPaulo(CETESB)fortheisolationofthebacterialstrains, especiallyAnaPaulaG.ChristandNancydeCastroStoppe.

(7)

r

e

f

e

r

e

n

c

e

s

1. ICSG–TheInternationalCopperStudyGroup.TheWorld

CopperFactbook2013.Lisbon:ICSG;2013.

2. BlameyA.Brazil’sValetargets289,000mtnickel,405,000mt copperin2014.Platts;2013.Availableat:http://www.

platts.com/latest-news/metals/london/brazils-vale-targets-289000-mt-nickel-405000-26507146.Accessed28.01.14.

3. JohnsonDB.Chemicalandmicrobiologicalcharacteristicsof

mineralspoilsanddrainagewatersatabandonedcoaland

metalmines.WaterAirSoilPollut.2003;3:47–66.

4. FalteisekL, ˇCepi ˇckaI.Microbiologyofdiverseacidicand

non-acidicmicrohabitatswithinasulfidicoremine.

Extremophiles.2012;16:911–922.

5. WatlingHR,WatkinELJ,RalphDE.Theresilienceand

versatilityofacidophilesthatcontributetothebio-assisted

extractionofmetalsfrommineralsulphides.EnvironTechnol.

2010;31:915–933.

6. HallbergKB.Newperspectivesinacidminedrainage

microbiology.Hydrometallurgy.2010;104:448–453.

7. MantovaniSM,OliveiraLG,MarsaioliAJ.Wholecellquick-E

forepoxidehydrolasescreeningusingfluorescentprobes.J

MolCatalB:Enzym.2008;52–53:173–177.

8. CruzGF,AngoliniCFF,OliveiraLG,etal.Searchingfor

monooxygenasesandhydrolasesinbacteriafroman

extremeenvironment.ApplMicrobiolBiotechnol.

2010;87:319–329.

9. SilvaCP.EnzymaticPotentialoftheHumanSkinMicrobiotaand

itsEffectsonFragranceIngredients.UniversityofCampinas;

2012[Ph.D.thesis].

10.Gonc¸alvesRAC,PortoALM,PinheiroL,CagnonJR,ManfioGP,

MarsaioliAJ.Multibioreactionmethodologyfor

Baeyer-Villigermonooxygenasemonitoring.FoodTechnol

Biotechnol.2004;42:355–361.

11.SicardR,ChenLS,MarsaioliAJ,ReymondJ-L.A

fluorescence-basedassayforBaeyer-Villiger

monooxygenases,hydroxylasesandlactonases.AdvSynth

Catal.2005;245:1041–1050.

12.BicalhoB,ChenLS,GrognuxJ,ReymondJL,MarsaioliAJ.

Studiesonwholecellfluorescence-basedscreeningfor

epoxidehydrolasesandBaeyer-Villigermonooxygenases.J

BrazChemSoc.2004;15:911–916.

13.PortoALM,CassiolaF,DiasSLP,etal.AspergillusterreusCCT

3320immobilizedonchrysotileorcellulose/TiO2forsulfide

oxidation.JMolCatalB:Enzym.2002;19–20:327–334.

14.EatonAD,FransonMH.StandardMethodsfortheExaminationof

WaterandWastewater.21sted.Washington,DC:American

PublicHealthAssociation;2005.

15.SambrookJ,FritschEF,ManiatisT.MolecularCloning:A

LaboratoryManual.2nded.NewYork:ColdSpringHarbor

LaboratoryPress;1989.

16.SørensenSPL.Enzymstudien:II.Mitteilung.Überdie

MessungunddieBedeutungder

Wasserstoffionenkoncentrationbeienzymatischen

Prozessen.BiochemZ.1909;21:131–304.

17.MiquelettoPB,AndreoteFD,DiasACF,FerreiraJC,DosSantos

NetoEV,OliveiraVM.Cultivation-independentmethods

appliedtothemicrobialprospectionofoilandgasinsoil

fromasedimentarybasininBrazil.AMBExpress.2011;1:1–16.

18.ThompsonJD,HigginsDG,GibsonTJ.CLUSTALW:improving thesensitivityofprogressivemultiplesequencealignment throughsequenceweighting,position-specificgappenalties andweightmatrixchoice.NucleicAcidsRes.

1994;22:4673–4680,http://dx.doi.org/10.1093/nar/22.22.4673.

19.TamuraK,StecherG,PetersonD,FilipskiA,KumarS.MEGA6:

MolecularEvolutionaryGeneticsAnalysisVersion6.0.Mol

BiolEvol.2013;30:2725–2729.

20.KimuraM.Asimplemethodforestimatingevolutionaryrate

ofbasesubstitutionsthroughcomparativestudiesof

nucleotidesequences.JMolEvol.1980;16:111–120.

21.YangZ.Maximumlikelihoodphylogeneticestimationfrom

DNAsequenceswithvariableratesoversites:approximate

methods.JMolEvol.1994;39:306–314.

22.KirkO,BorchertTV,FuglsangCC.Industrialenzyme

applications.CurrOpinBiotechnol.2002;13:345–351.

23.HabibiMH,VosooghianH.Photocatalyticdegradationof

someorganicsulfidesasenvironmentalpollutantsusing

titaniumdioxidesuspension.JPhotochemPhotobiolA:Chem.

2005;174:45–52.

24.BentleyR.Roleofsulfurchiralityinthechemicalprocesses

ofbiology.ChemSocRev.2005;34:609–624.

25.BentleyR.Thenoseasastereochemist.Enantiomersand

odor.ChemRev.2006;106:4099–40112.

26.Selenska-PobellS,FlemmingK,TzvetkovaT,RaffJ,

SchnorpfeilM,GeiblerA.Bacterialcommunitiesinuranium

miningwastepilesandtheirinteractionwithheavymetals.

In:MerkelBJ,Planer-FriedrichB,Wolkersdorfer,eds.Uranium

intheAquaticEnvironment.Berlin:Springer-Verlag;2002.

27.FreitasDB,ReisM,Lima-BittencourtCI,etal.Genotypicand

phenotypicdiversityofBacillusspp.isolatedfromsteelplant

waste.BMCResNotes.2008;1:92.

28.DhanjalS,CameotraSS.Aerobicbiogenesisofselenium

nanospheresbyBacilluscereusisolatedfromcoalminesoil.

MicrobCellFact.2010;9:52–62.

29.SchallmeyM,SinghA,WardOP.Developmentsintheuseof

Bacillusspeciesforindustrialproduction.CanJMicrobiol.

2004;50:1–17.

30.FreitasDB,Lima-BittencourtCI,ReisMP,etal.Molecular

characterizationofearlycolonizerbacteriafromwastesina

steelplant.LettApplMicrobiol.2008;47:241–249.

31.MorelMA,UbaldeMC,Oliveira-BravoS,CallejasC,GillPR,

Castro-SowinskiSC.CellularandbiochemicalresponsetoCr

(VI)inStenotrophomonassp.FEMSMicrobiolLett.

2009;291:162–168.

32.NangiaY,WangooN,GoyalN,ShekhawatG,SuriCR.Anovel

bacterialisolateStenotrophomonasmaltophiliaaslivingfactory

forsynthesisofgoldnanoparticles.MicrobCellFact.

2009;8:39–46.

33.ChoudharyS,SarP.Uraniumbiomineralizationbyametal

resistantPseudomonasaeruginosastrainisolatedfrom

contaminatedminewaste.JHazardMater.2011;186:336–343.

34.SamantaSK,SinghOV,JainRK.Polycyclic420aromatic

hydrocarbons:environmentalpollutionandbioremediation.

TrendsBiotechnol.2002;20:243–248.

35.PuchałkaJ,OberhardtMA,GodinhoM,etal.Genome-scale

reconstructionandanalysisofthePseudomonasputida

KT2440metabolicnetworkfacilitatesapplicationsin

biotechnology.PLoSComputBiol.2008;4:e1000210.

36.RyanRP,MonchyS,CardinaleM,etal.Theversatilityand

adaptationofbacteriafromthegenusStenotrophomonas.Nat

RevMicrobiol.2009;7:514–525.

37.MahmoodQ,ZhengP,HuB,etal.Isolationand

characterizationofPseudomonasstutzeriQZ1fromananoxic

sulfide-oxidizingbioreactor.Anaerobe.2009;15:108–115.

38.LeeCY,HoKL,LeeDJ,SuA,ChangJS.Electricityharvestfrom

nitrate/sulfidecontainingwastewatersusingmicrobialfuel

cellwithautotrophicdenitrifier,Pseudomonassp.C27.IntJ

Referências

Documentos relacionados

This study was conducted following the article “The function of creativity in the solution of irregular sequence problems among elementary school mathematics

isolated from pasteurized milk, and investigate the production of antimicrobial substances and their potential for action against the Gram-negative bacteria and staphylococci

pp.. se achem preenchidos. Ora, se assim for, então mesmo as sanções principais o serão, porquanto é o respectivo adimplemento que prova o cumprimento das suas finalidades

The lactic acid bacteria population was higher (P<0.05) in the silage without effluent drainage and lower in the silage with effluent drainage, and did not differ from wet

Of the waste material from mining, 74 g were filled in the leaching columns and mixed with three doses of the neutralizing agents, corresponding to 40, 80 and 120 % of the dose

In this work, we propose the multi-branch LINC (MB- LINC) technique where P nonlinear amplifiers are consid- ered to achieve an efficient amplification and at the same contributing

These patterns of clinal variation at the candidate and lack of clines for reference loci are also replicated across a temperature gradient at the meso-spatial scale, further

Tendo seu ápice em âmbito global com a Segunda Guerra Mundial e o nazismo, o tema da tortura como crime lesa-humanidade foi abordado pelo Tribunal Penal de Nuremberg, no