• Nenhum resultado encontrado

Gibberellins in Penicillium strains: Challenges for endophyte-plant host interactions under salinity stress

N/A
N/A
Protected

Academic year: 2021

Share "Gibberellins in Penicillium strains: Challenges for endophyte-plant host interactions under salinity stress"

Copied!
11
0
0

Texto

(1)

ContentslistsavailableatScienceDirect

Microbiological

Research

jo u r n al ho m e p ag e :w w w . e l s e v i e r . c o m / l o c a t e / m i c r e s

Gibberellins

in

Penicillium

strains:

Challenges

for

endophyte-plant

host

interactions

under

salinity

stress

Ana

Lúcia

Leitão

a,∗

,

Francisco

J.

Enguita

b

aMEtRICs,DepartamentodeCiênciaseTecnologiadaBiomassa,FaculdadedeCiênciaseTecnologia,UniversidadeNOVAdeLisboa,CampusdeCaparica, 2829-516Caparica,Portugal

bFaculdadedeMedicina,UniversidadedeLisboa,Av.Prof.EgasMoniz,Lisboa1649-028,Portugal

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received9November2015 Accepted14November2015 Availableonline1December2015 Keywords: Penicillium Plants Salinity Gibberellins Symbioticinteractions

a

b

s

t

r

a

c

t

ThegenusPenicilliumisoneofthemostversatile“mycofactories”,comprisingsomespeciesableto pro-ducegibberellins,bioactivecompoundsthatcanmodulateplantgrowthanddevelopment.Although plantshavetheabilitytosynthesizegibberellins,theirlevelsarelowerwhenplantsareundersalinity stress.Ithasbeenrecognizedthatdetrimentalabioticconditions,suchassalinestress,havenegative effectsonplants,beingtheavailabilityofbioactivegibberellinsacriticalfactorfortheirgrowthunder thisconditions.ThisreviewsummarizestheinterplayexistingbetweenendophyticPenicilliumstrains andplanthostinteractions,withfocusonbioactivegibberellinsproductionasafungalresponsethat allowsplantstoovercomesalinitystress.

©2015ElsevierGmbH.Allrightsreserved.

Contents

1. Introduction...8

2. Gibberellinsasmodulatorsofplant-endophyteinteractions...9

2.1. Fungalendophytes ... 9

2.2. Gibberellinsasphytohormones...9

2.3. Moleculardetailsofgibberellinaction...9

3. Fungiasgibberellinproducers:biosyntheticgeneclusters...10

4. GenusPenicillium...11

5. Salinestress,gibberellinsandPenicillium...13

5.1. Salinity ... 13

5.2. InteractionsbetweenPenicilliumandplantsthroughgibberellins...14

5.3. PutativegibberellinbiosyntheticgenesinPenicillium...15

6. Conclusionsandfutureperspectives...16

References...16

1. Introduction

Fungiareimportantmicrobialfactoriesofbioactive

extracel-lularmetabolitesor “extrolites”,namelysecondarymetabolites.

Enzymes, immunosuppressive agents, antitumor agents,

antibi-otics,vitamins,andpigments,areexamplesoftherepresentative

panoplyofproductswithincreasinginteresteitherforscientific

∗ Correspondingauthor.Fax:+351212948543. E-mailaddress:aldl@fct.unl.pt(A.L.Leitão).

communityorindustrialsector(Brakhage,2013;Correaetal.,2014;

Kimetal.,2014;LeitãoandEnguita,2014;Quangetal.,2014).

Thegibberellins,hormonessynthesizedbyplants,are

interest-ingextrolitesalsoproducedbysomestrainsoffungilikeFusarium

sacchari,Fusariumkonzum,Fusariumsubglutinans,Aspergillus

fumi-gatus,PenicilliumjanthinellumandPenicilliumresedanum,among

others(Troncosoetal.,2010;Khanetal.,2011b,2015a,b).The

gib-berellinsarerelatedbytheirchemicalstructure (resultingfrom

isoprenepolymerization)andtheirbiosynthesispathway(origin

inhydroxymethyl-glutarylcoenzymeA),butonlyfewofthemare

bioactive.Oneofthesebioactivegibberellinsisthegibberellicacid,

oftencalledGA3;curiouslysomefungalstrainsareabletoproduce

http://dx.doi.org/10.1016/j.micres.2015.11.004 0944-5013/©2015ElsevierGmbH.Allrightsreserved.

(2)

higherquantitiesofGA3whencomparedtoplants(Heddenetal., 2001).

Theuseof fungalendophytesand theirextrolites canbean

excellentopportunitytominimizethenegativeeffectofabiotic

factors,suchassalinity,oncropyield.Theterm

“plant-growth-promoting-fungi”wasestablishedtodesignatesomerhizosphere

fungiabletopromoteadirecteffectonplantgrowthuponroot

col-onizationorbythetreatmentwiththeirmetabolites(Hossainetal.,

2014).Recentstudies have revealedthat Penicillium endophyte

couldsupplygibberellinstoplanthost,whichisparticularly

impor-tantwhenplantisunderbioticorabioticstress.Inthisreview,we

summarizerecentdiscoveriesontheendophyticPenicilliumstrains

andplanthostinteractions,withemphasisonbioactivegibberellins

asresponsetosaltstress.

2. Gibberellinsasmodulatorsofplant-endophyte interactions

2.1. Fungalendophytes

Fungalendophytesrefertothefungiwhichinvadeorliveinside

the tissues of plants without causing apparent harm to them

(Chandra,2012).Theyweredescribedbythefirsttimein1904in

thedarnel,Loliumtemulentum(Freeman,1904),buttheydidnot

receivemuchattentionuntiltherecentdevelopmentofscreening

technologiesthatrevealedtheirgreatpotentialasamainsourceof

extroliteswithpromisingagriculturalandpharmaceutical

appli-cations(Tanand Zou, 2001; Kusari etal., 2012).Therefore,the

relationshipbetweentheendophyteandtheplantisgenerally

con-sideredmutualisticbecausetheendophytesignificantlyimproves

hostplanttolerancetoabioticstressessuchasdroughtand

water-deficitorbioticfactorssuchasinsects,vertebrateherbivoresand

nematodes,alongwithincreasedresistanceandpromotingplant

growth,nutrientsuptake,andwaterresourceuse;andinturnthe

plantprovidesthemicroorganismwithnutrients,protection,and

efficientdissemination(Schardlet al.,2004).However,theidea

thattherearenoneutralinteractionsbutratherthat

endophyte-hostrelationshipisabalancedsymbioticcontinuumrangingfrom

mutualismthroughcommensalismtoparasitism,isgaining

follow-ers(Alyetal.,2011).Infact,wheninsidetheplant,fungiassume

aquiescentstateuntilenvironmentalconditionsarefavorablefor

theirgrowth.Thefungihavetheabilitytocolonizetheplantmostly

byassociationwithbut insomecasescan liveinsidetheplant

eitherpenetratinginsidetherootcortexorintheaerialpartsof

theplant,duetotheirextracellularenzymaticsystem(Waqasetal.,

2012;Khanetal.,2013a).Aftercolonizationfungigrowwellinthe

apoplasticwashingfluidofthehost(Chandra,2012).

The fungal endophyte-plant host relationship seems to be

tightly dependent ongenetic, physiological and environmental

control(Kogeletal.,2006).Despiteofthat,thereisnodoubtthat

inthecaseof mutualisticinteractionthepresence ofthe

endo-phytehelpstomitigatetheeffectsofplantstresses,whichrequires

acontinualmetabolicinteractionbetweenfungusandplanthost.

Endophyticfungihaveastrongtolerancetowardsplant´ıs

metabo-litesduetotheirabilitytotransformanddetoxifythemwiththe

concomitant production ofextrolites, some of themwith great

pharmaceuticalpotentialas bioactivecompounds(Kusari etal.,

2012;Khanetal.,2015b).

In some cases from endophyte-host relationship results

metabolitesthatareproducedsimultaneouslybytheplantandthe

fungus,likethephytohormonesgibberellins(Takedaetal.,2015).

Twooppositetheoriestriedtoexplainthiscuriousphenomenon.

Onesupportstheideathatendophyteevolvedgibberellins

biosyn-thetic pathwaysindependently fromplants, based on the high

conservationofgibberellinsclusterorganizationinPhaeosphaeria

spp. and Sphaceloma manihoticola, two distantly related fungal

species. Thedifferences betweenplants andfungi at

biochemi-cal and geneticlevels strengthensthat higher plants and fungi

haveevolvedtheirbiosyntheticpathwaystogibberellins

indepen-dently(MacMillan,1997;Heddenetal.,2001;Yamaguchi,2008;

BomkeandTudzynski,2009).Theotheronepointoutthatduring

theco-evolutionofmicroorganismsandtheirhostplants,

endo-phytesundergogeneticmodification,for instanceby hostgene

transfer,thatallowthemtoadaptsuccessfullytotheplant

microen-vironments,whichcouldbealsocorroboratedbythelackofplant

responseagainstthepresenceofendophytes(ChapmanandRagan,

1980;Germaineetal.,2004).

2.2. Gibberellinsasphytohormones

Gibberellinswerefirstidentifiedasphytohormonesinthe1930s

basedonanover-growthriceseedlingduetoinfectionsbyFusarium

fujikuroi(teleomorphGibberellafujikuroi)a pathogenicrice

fun-gus(Ogas,2000).Thesefungalsecondarymetaboliteshavebeen

reportedtoplayapivotalroleinplantgrowthanddevelopment

processes,suchasregulationofgeneexpressioninthecereal,seed

germination,stemelongation,floweringandfruitdevelopment.In

thepresenceofgibberellins,plantsareabletoaltertheir

physiol-ogyandbiochemistryinrapidresponsetoenvironmentalchanges

(Olszewskiet al., 2002).Gibberellins were merely isolated and

identifiedasplanthormonefromextractsofhigherplantsinthe

mid-50sbyBritishscientists(Lang,1956;Radley,1956).The

knowl-edgeofgibberellicacid(GA3)structurefromG.fujikuroiopened

thewindowfornewstudiesthatculminatedwiththediscovery

thatgibberellinswerediterpenoidcompounds(Birchetal.,1958;

Crossetal.,1959).Furtherstudiesweredone,mostofthemwith

the mutant BI-41a (GA-deficientmutant of G. fujikuroi blocked

atanearlystepofthepathway), andbringtolight the

biosyn-theticpathwayofgibberellicacidintheG.fujikuroi(Bearderetal.,

1974;Bearder,1983).During severalyears, gibberellinpathway

wasonlyreportedintheF.fujikuroi.Detailedcharacterizationat

chemical,biochemicaland geneticlevelsinF.fujikuroihasbeen

reported(Cerda-Olmedoetal.,1994;Tudzynski,2005;Bomkeand

Tudzynski,2009).TheGA3biosynthesis,forexample,involvetwo

early cyclizationreactions, from geranylgeranyl diphosphate to

ent-kaurene,followedbyseveraloxidativereactionscatalyzedby

cytochrome P450monooxygenases torender thefinal product,

19–10␥-lactone(Kellerand Hohn,1997;TudzynskiandHolter,

1998).

Thegibberellinsaresmallmoleculesofalargegroupof

tetra-cyclicditerpenoidcarboxylicacids,beingdefinedbytheirchemical

structure based on the ent-gibberellane carbon skeleton and

assignedgibberellin“numbers”dependingonchronologicalorder

oftheiridentification.Nowadays,thereare136knowngibberellins

producedbyfungi,plantsandevenbacteria.Nevertheless,onlya

smallnumberofthem,suchasGA1,GA3,GA4andGA7are

promi-nentbioactive(Davies,2004).

2.3. Moleculardetailsofgibberellinaction

Asphytohormones, gibberellins regulatecritical stepsin the

plantlife cycle. Theirphysiological action is mainlyexertedby

counteractingtheinhibitoryeffectofDELLAproteins,afamilyof

nuclearnegativeregulatorsthatrestrictplantgrowthprobablyby

transcriptionalreprogramming(Fig.1)(Sun,2011).DELLAproteins

areexpressedunderosmoticortemperaturestress,repressingthe

plantgrowth.ExposureofArabidopsisthalianatosaltstress

trig-gersareductioninbioactivegibberellins,promotesDELLA(groupof

transcriptionalregulators)accumulationandconsequently

DELLA-mediatedgrowthrestriction(Achardetal.,2006).Althoughitis

(3)

Fig.1. Actionmechanismofgibberellins.Gibberellins(GA)actionisexertedbybindingtotheGID1nuclearreceptor,andsubsequentrecruitmentofDELLAproteins.The formationoftheternarycomplex,GA-GID1-DELLA,facilitatestheactionoftheubiquitintransferaseSCF,whichactsoverDELLAproteinsandinducestheirdegradationvia 26Sproteasome.Gibberellinscanbesynthesizeddirectlybyplantsorbyendophyticmicroorganisms,namelyfungi,counteractingtheinhibitoryeffectsofDELLAproteins overtheplantgrowingsignals.Underabioticstressconditions,severalgibberellin-inactivatingenzymesareproduced,suchasgibberellin-oxidases(GA2ox).

cascadeofinteractionsinvolvinggibberellinsandotherhormone

signalling pathways, the regulationof expressionor activity of

transcriptionsfactors involved in gibberellinmetabolism genes

couldrepresentonemechanismofstresstoleranceinplants.At

thesametime,theabioticformofstressisabletoinduceaseries

ofenzymeswhichareinvolvedintheinactivationofgibberellins,

namelygibberellin-oxidases(Rieuetal.,2008).Activeformsof

gib-berellins(namedGA1,GA3,GA4andGA7)actviaGID1proteins,a

familyofspecificnuclearreceptorsthatplayanimportantrolein

regulatingdifferentdevelopmentalprocessesinplants(

Ueguchi-Tanakaetal.,2007;Voegeleetal.,2011).Gibberellinbindingto

GID1receptorinducesaconformationalchangeintheproteinthat

makesitpronetointeractwiththeN-terminaldomainofDELLA

repressors.Gibberellinsoffungaloriginsharethesamefunctional

characteristicsoftheplantgibberellins,sincetheyareidenticalin

theirchemicalstructure(Khanetal.,2013b).Aftertheinteraction

withgibberellins,theGID1-DELLAcomplexissubsequently

ubiq-uitinatedbytheubiquitin-transferaseSCF,andthustargetedfor

proteindegradationmediatedbythe26Sproteasome.In

conse-quence,thegibberellinactionresultsinreducedlevelsoftheDELLA

repressorandastimulationofplantgrowth(Fig.1).

The detailed molecular mechanism of the

gibberellin-GID1-DELLAinteractionhasbeencharacterizedbyX-raycrystallography

studies(Fig.2)(Muraseetal.,2008;Shimadaetal.,2008).

Com-plexescontaininggibberellinsGA3andGA4,theGID1receptorand

theN-terminalDELLAdomainhavebeenresolvedathigh

resolu-tion,showinganintimateinteractionbetweenthereceptorand

thegibberellinmolecule,establishedinadeepproteinpocketand

basedmainlyonhydrophobicinteractions(Fig.2)(Muraseetal.,

2008).However,thelackofthestructuralinformationonthe

apo-receptorpreventedtounderstandthedynamicsofitsinteraction

withthegibberellinligandandthesubsequentbindingtothe

N-terminalDELLAdomain.

3. Fungiasgibberellinproducers:biosyntheticgene clusters

Several species of fungi belonging to the geni Fusarium,

Aspergillus and Penicilliumhave beencurrentlycharacterizedas

gibberellinproducers(Tudzynski,2005).Thecanonicalpathway

for gibberellinbiosynthesisin fungiwasoriginallydescribed in

F. fujikuroi and their molecular details and involved enzymes

(4)

Fig.2. StructuraldeterminantsforthegibberellinactionasdeterminedbyX-raycrystallography.(A)ribbonrepresentationoftheGA3-GID1-DELLA(PDBcode:2ZSH), showingtheGID1structurewiththebindingpocketwheregibberellinGA3islocated,andalsotheN-terminaldomainofDELLA.Thegraphwaspreparedbyusingthe CCP4MGsoftware(McNicholasetal.,2011).(B)planardiagramofmolecularinteractions(Ligplotdiagram)occurringinthesubstratebindingpocketofGID1receptor involvedintherecognitionofgibberellinGA3.Atomsinvolvedinhydrogenbondsbetweenthereceptorandtheligandaredepictedforeachaminoacidandrepresentedby dottedlines.Hydrophobicinteractionsaredepictedonlybythenumberandtypeofresidueinvolved.ThepanelwasdesignedandeditedbytheLigplot+software(Laskowski andSwindells,2011).

2009). Gibberellins, like other diterpenoid compounds, are

synthesized starting from geranyldiphosphate (GDP), farnesyl

diphosphate(FDP)andgeranylgeranyldiphosphate(GGDP).This

lastcompound isaprecursor forgibberellinsandalsofor some

carotenoidsandubiquinones.Infungiandplants,GGDPiscyclized

to produce ent-kaurene, the first gibberellin-specific precursor,

whichwillsuffersequentialoxidationstogenerateGA12-aldehyde

(Fig.2).Fungalgibberellinbiosyntheticpathwaywillconvert

GA12-aldehydeintoGA14-aldehydebyanoxidationreactioncatalyzed

bya cytochromeP450protein.Furtheroxidation and

desatura-tionreactionswillproducethegibberellinsGA1,GA3,GA4andGA7

(Tudzynski,2005;BomkeandTudzynski,2009).

Despitethebiochemicalcharacterizationofgibberellin

biosyn-theticpathwayinfungi,thegeneticbackgroundiscomparatively

lessknown.In F.fujikuroithegibberellinbiosyntheticclusteris

comprisedbysevenclusteredgenesencodingfourcytochrome

P-450oxidoreductases(P450-1, P450-2,P450-3and P450-4), two

GGDPsynthases(Ent-kaur-16-enesynthase,CPS/KS,and

geranyl-geranyldiphosphatesynthase,GGS2),andaGA4desaturase(DES).

BesidesspeciesbelongingtotheFusariumgenus,thereareonlytwo

documentedcasesofthegeneticcharacterizationofagibberellin

biosyntheticgeneclusterinSphaceloma(Bomkeetal.,2008)and

Phaeosphaeria(Kawaideetal.,1997,2000).Theevolutionary

mech-anismsbywhichthesefungiacquiredthegibberellinbiosynthetic

geneclustersarenotyetclear.Anincreasingnumberofevidences

pointedoutthat thepresenceofhomologousbiosyntheticgene

clustersindistantlyrelatedfungicanprobablyresultfrom

horizon-talgenetransfer(SlotandRokas,2011).Interestingly,recentdata

alsoindicated thepresenceofdefectiveortruncatedgibberellin

biosyntheticclustersinsomeFusariumspecies(Wiemannetal.,

2013).Theseincompleteclustersareprobablyrelatedwith

adap-tivephenomenainthesefungalspecies,whichexertedselection

pressureforspecificgenedeletion(Maloneketal.,2005).In

Fusar-iummangiferae,FusariumcircinatumandsomestrainsofFusarium

oxysporum,thegibberellingbiosyntheticclusterispresentbutits

expression prevented by a non-functional promoter (Wiemann

et al.,2013).Silentbiosynthetic clusterslikethose observed in

someFusariumspecies arevery commonamong fungi,andcan

opennewpossibilitiesofgeneticmanipulationfortheproductionof

secondarymetaboliteslikegibberellins(LeitãoandEnguita,2014).

4. GenusPenicillium

Penicillium belongs tothe phylum Ascomycota, however its

taxonomic characterization is still a matter of discussion and

the difficulties in identifying most Penicillium species requires

multidisciplinaryapproaches.Clarificationofspeciesconceptsin

the genus Penicillium was supported mainly by morphological

characteristics.RaperandThom,forexample,basedPenicillium

tax-onomyclassificationonthecombination ofmacroscopical(such

as colony texture and color) with micromorphological features

(RaperandThom,1949).InRaperandThomclassification,Penicillia

thatproducemonoverticillateconidiophoreswereincludedinthe

Monoverticillatagroupandthisgroupwasdividedintonineseries

(genussubdivision).LaterinPitt’sclassificationmodificationson

serieswereperformedandsectionswereintroducedinsubgenus

basedonthepresenceofaswellingatthestipeapex(Pitt,1979).

Despite ofdirectidentificationof purePenicilliumspecies being

possiblebyimageanalysis(Dorgeetal.,2000);conidialcolor,

pro-ductionofascomataandascospores,shapeandornamentationof

conidiaandgrowthratesonsolidmediaremainrelevant

parame-tersforspeciesidentification(Houbrakenetal.,2012).Houbraken

etal.(2011)basedonamultigeneapproachredefinedthegenus

Penicilliumusing singlenamenomenclature and includingboth

asexualandsexualreproducingspecies.Theyproposedasectional

classificationandsubdividedPenicilliumintotwosubgeneraand25

sections(Houbrakenetal.,2011).

ThegenusPenicilliumhasreceivedmuchattentionduetohave

the bestknown producerof the antibioticpenicillin,P.

chryso-genum.Later,mycotoxinsbecamefocuseduponastheyappeared

intheprocessingorripeningofhumanfoods,beingamajorrisk

forhumanhealthduetotheircytotoxicity(KellerandHohn,1997).

However,Penicilliumspeciesarealsowellknownaspotentialtool

intheenvironmentfield,sincetheyhavetheabilitytodegrade,or

toremoveawidevarietyofcompoundsandheavymetals(Leitão,

(5)

bio-Fig.3.GibberellinbiosyntheticpathwayinFusariumfujikuroiandputativegibberellinbiosyntheticgenesinseveralPenicilliumspecies.A,gibberellinbiosyntheticpathway ascharacterizedinF.fujikuroiincludingtheinvolvedenzymes;GGDP,geraryl-geranyldiphosphate;EK,ent-kaneurin;EKA,ent-kaneuroicacid;GA14-ald,GA-14aldehyde. B,sequencealignmentofP450-1proteinfromF.fujikuroiwithitsputativeorthologsinseveralPenicilliumspecies.Conservedresiduesalongthesequencearedepictedinred boxes.(Forinterpretationofthereferencestocolorinthisfigurelegend,thereaderisreferredtothewebversionofthisarticle.)

(6)

logicalactivityofPenicilliumstrainscanreducethegenotoxicity

inducedbyseveraltoxiccompounds(Pereiraetal.,2014;

Romero-Aguilaretal.,2014).

ThesuccessofPenicilliumstrainsismainlyduetotheir

occur-renceinvariousfoodandfeedstuffs(Santinietal.,2014),indoor

environmentssuchasair,dustanddampbuildingmaterials(Chang

etal.,1995;Scottetal.,2004;McMullinetal.,2014;Visagieetal.,

2014), as wellas in the marine (Gong et al., 2014; Kim et al.,

2014;Liaoetal.,2014;Quangetal.,2014;Guoetal.,2015;Park etal.,2015)andsoil(Leitãoetal.,2007; Alyet al.,2011;Gong et al., 2014; Moore-Kucera et al., 2014; Tansakul et al., 2014)

environments.Moreover,thecataboliccapacityofthese

microor-ganismsduetotherelativeunspecificityoftheirenzymestogether

withtheirlimited growth requirements, diversity of secondary

metabolitesproductionandhighabilitytoformextendedmycelial

networksallowthemtosurviveinaninhospitableenvironment.

It hasbeensuggested thattheproducts originatedfromfungal

metabolicmachinerysupply themwitha chemicalarsenal that

increases itsfitness under challenging ecological conditions. In

fact, these characteristics are shared by several fungal species

and couldbea seriousadvantage interms ofnatural selection.

Ontheotherhand,symbioticinteractionswithotherorganisms

co-occuringinthesamehabitathaveasignificantimpactinthe

ecosystem.Forinstance,itisknownthatPenicilliumspeciesare

importantphosphate-solubilizingmicroorganisms; this capacity

allowedPenicilliumoxalicumI1topromote maizegrowthwhen

funguswasinoculatedintheplant(Gongetal.,2014).

SomePenicilliumspeciesareconsideredtobeplantpathogens

duetotheircapacitytopotentiallyproducemycotoxinsthatare

then consumed by humans and animals. For instance,

Penicil-liumexpansum,PenicilliumitalicumandPenicilliumdigitatum,major

postharvestpathogens ofpomeandcitrus, producethe

polyke-tidelactone,namelypatulin(Lietal.,2015);howeverpatulinis

notrequiredbyP.expansumtosuccessfullyinfectapples(Ballester

etal.,2015;Lietal.,2015).Interesting,cell-freefiltrateof

Penicil-liumGP15-1increasedsystemicresistanceagainstcucumberleaf

infectionby theanthracnose pathogenColletotrichum orbiculare

(Hossainetal.,2014).OtherexampleisthepenicisteroidAisolated

from the culture extracts of the Penicillium chrysogenum

QEN-24Sstrainthatcolonizesanunidentifiedmarineredalgalspecies

belonging to the genus Laurencia. This polyoxygenated steroid

showedmoderateantifungalactivityagainstAlternariabrassicae

and potent activity against Aspergillus niger (Gao et al., 2011).

Recently,astudyconductedwithaP.janthinellumstrainshowed

thatitsinoculationintolerantSolanumlycopersicumreduced

cel-lularsuperoxideanionsinaluminumstress(Khanetal.,2015c).

Additionally,theeffectoffungalstraininthetomatoplantwas

com-paredtoexogenousgibberellicacidandasimilarbio-prospective

potentialwasdescribed.Basedontheseresults,theapplicationof

biochemicallyactiveendophyte wasproposedtoincreasemetal

phytoextractionandensurecropphysiologicalhomeostasis.

5. Salinestress,gibberellinsandPenicillium

5.1. Salinity

Salinityisthewordthatdescribessoilsthatenclosehigh

concen-trationsofwater-solublesalts,mainlyNaCl,whichcausingserious

agriculturalyieldlosses.Itisestimatedthat20%oftheworld’s

cul-tivatedfieldsandapproximatelyhalfofthearablesoilareaffected

bysalinity(SairamandTyagi,2004).Ifweconsiderthatin2050

thepopulationwillincrease2.3billion,representinganincreaseof

70%offoodcropproductiondemandsanewapproachfor

threat-eningfoodsecurityworldwideis essential(FAO, 2009).Salinity

is hostiletomost formsof life becauseit is responsiblefor an

imbalanceof cellularion homeostasis,which requiresa quickly

osmoticadjustmentviamorphologicalflexibilityandbiosynthesis

ofsecondarymetabolitessuchascompatiblesolutes,which

accu-mulationinplantsatthemillimolarrangeplayanimportantrole

inplanttolerancetosaltstress(ChenandMurata,2011;Nounjan

etal.,2012).Despitethat,theabilityofPenicilliumstrainstotolerate

highconcentrationsofNaClisknown.Infact,thegeneraPenicillium

isrepresentativeofthepan-globalstablemycobiotainhypersaline

environment(Butinaretal.,2011).

In plantshighsalinityinhibitsthegrowthof rootand shoot

systemsbylimitingtheavailabilityofwaterandmicronutrients

causingcellulardamageandmodulatingseveralprocesses.Besides

thegreateffortcanalizedtothecompatiblesolutes(forexample

betaine(Gaoetal.,2004),glycinebetaine(ChenandMurata,2011),

trehalose(Nounjanetal.,2012)andproline(Strizhovetal.,1997;

Nounjan et al.,2012)), phytohormone(abscisic acid(ABA),

jas-monate(JA),brassinosteroid(BR)andgibberellicacid(GA)(Geng

etal.,2013;Ismailetal.,2014;JulkowskaandTesterink,2015))

and enzymes(as ascorbate peroxidase, glutathione peroxidase,

catalase,polyphenoloxidase(Sofoetal.,2015))biosynthesis,the

salinityhasadditionalnegativeeffectsonthecellularenergy

sup-ply, photosynthesis and redox homeostasis, since plants must

assimilate Na+ and Cl(Zhu et al., 2010; Jacoby et al., 2011;

Mulleretal.,2014).Whenplantsareundersalinityconditions,the

decreaseinphotosynthesiscanbemainlyattributedtolowerCO2

availabilitythroughstomatalclosure,beingthecontrolof

respira-tionratesdependonsubstratesupplyandbiochemicalregulation.

Itissuggestedthatthevariabilityinrespiratoryresponsesmayvary

significantlybetweenspecies(Jacobyetal.,2011).

Theinfluxofsodiumionsbyrootepidermalandcorticalcells

through nonselectivecation channels (NSCCS) induces

depolar-ization of theplasma membrane, reducing potassium ions(K+)

channels uptake through inward-rectifying (Shabala and Cuin,

2008).To preventadditional influx of sodiumions two

deacti-vationmechanismsmaybeinvolved:byNSCCchannelsthrough

cAMP/cGMP-dependent signals or by high affinity potassium

transporter(HKAT)channel.Asaconsequenceofosmoticstress,

activationofmechanosensitivecalciumchannelsresultsinan

addi-tionalinfluxofprotonsandcalciumions(Ismailetal.,2014).The

cytosolicconcentrationofcalcium(Ca2+)increaseinducingreactive

oxygenspecies(ROS)productionthroughNADPHoxidase

stimula-tionandactivatingCa2+calmodulim-dependentkinases.TheCa2+

calmodulim-dependentkinasesstimulatestheplasma-membrane

H+-ATPasesactivityamongothersenzymes,restoringmembrane

voltageandinhibitingdepolarization-activatedNSCCS(Klobusand

Janicka-Russak, 2004; Shabala et al., 2006; Ismail et al., 2014; JulkowskaandTesterink,2015).Ontheotherhand,Ca2+andROS

modulatesthereleaseofabscisicacid(ABA),aphytohormonethat

regulatesseveralplantbiologicalprocessessuchasgrowth,

biosyn-thesisofcompatiblesolutes,controlofstomatalclosure,among

others(Ismailetal.,2014).

Inarecentandveryinterestingreview,itwasproposedthat

dependingonthetimingoftheeventstriggeredbythesodiumion

anadaptive/acclimationresponsesorthesodiumaccumulationin

thecytoplasmmightoccur.Theadaptiveresponsescouldinvolve

mechanismsofsequestrationintovacuoleandextrusionofsodium

aswellastheconstraintofjasmonate(JA)signalling.Meanwhile,a

delayintheactivationand,consequently,alsointhedeactivation,

of“salinitysignalling”throughthegenerationanddissipationof

triggeredcalcium-dependentsignalrelativetoasignaltransmitted

byROSwilloriginatetheactivationofJAsignalingandthusleading

tocelldeath(Ismailetal.,2014).

Itisoutofthescopeofthisreviewtodescribetheplant

cellu-larmechanismsandmolecularresponsestohighsalinity,butfor

thosereaderswhoareinterestedinthisaspectwerecommendthe

(7)

Table1

GibberellinsproductionbyPenicilliumstrainsandeffectonplantgrowthundersalinitystress.

Penicilliumstrain Gibberellin(GA) Plantgrowtheffectundersalinitystress References P.citrinumKACC43900 GA11.95ng/ml CanpromoteIxerisrepensgrowth(shoot

length,plantlength)

Khanetal.(2008) GA33.83ng/ml GA46.03ng/ml GA50.365ng/ml GA72.35ng/ml GA90.65ng/ml GA120.11ng/ml GA150.72ng/ml GA190.67ng/ml GA200.30ng/ml GA241.40ng/ml

P.funiculosumLHL06 GA11.53ng/ml Canpromotesoybeangrowth(shootlength, shootfresh/drybiomass,chlorophyllcontent, photosynthesisrate,leafarea)

Khanetal.(2011a)

GA49.34ng/ml GA81.21ng/ml GA937.87ng/ml

P.minioluteumLHL09 GA412.84ng/ml Canpromotesoybeangrowth(shootlength, shootfresh/drybiomass,chlorophyllcontent, leafarea)

Khanetal.(2011b)

GA748.912ng/ml

Penicilliumsp.SJ-2-2 GA11.185ng/ml Canpromotecucumbergrowth(shootlength, plantheight,chlorophyllcontent,leafarea)

Youetal.(2012) GA31.255ng/ml GA43.497ng/ml GA71.357ng/ml GA90.530ng/ml GA120.335ng/ml GA190.011ng/ml GA200.033ng/ml GA240.838ng/ml GA340.049ng/ml

Penicilliumsp.LWL3 GA15.33ng/ml Canpromotesitiensgrowth(shootlength, shootfreshbiomass,photosynthesisrate)

Waqasetal.(2012) GA33.42ng/ml

P.janthinellumLK5 GA31.2ng/ml Khanetal.(2013a,b)

GA410.19ng/ml GA70.71ng/ml GA1213.98ng/ml

P.resedanumLK6 GA17.1ng/ml Canpromotepeppergrowth(shootlength, shootdryweight,photosynthesisrate)

Khanetal.(2015a,b,c) GA313.9ng/ml GA419.159ng/ml GA71.12ng/ml GA92.2ng/ml GA121.93ng/ml GA201.68ng/ml

Tyagi,2004;Ismailetal.,2014;Julkowskaand Testerink,2015).

Despite ofplant salinitystress researchadvancesin the recent

years,anunderstandingofthetemporaldynamicnatureof

tran-scriptionaleventsisstilllacking.Gibberellinsareanexampleof

classicalgrowthpromotinghormone;however,saltstressinduced

repressionofthegibberellinsignalingpathwaysresultinginlower

cellcycle(Westetal.,2004).GAbiosynthesisandsignalinghave

recentlybeenshowntobenecessaryduringthelatephasesofthe

saltresponsetopromoterecovery(Gengetal.,2013).Therefore,GA

presenceisalsoacriticalfactorundersaltstress,justifyingan

alter-nativeapproachtopreventitsabsence.Cansymbioticinteraction

plant-fungussupplygibberellins?

5.2. InteractionsbetweenPenicilliumandplantsthrough

gibberellins

Although various Penicillium species have been reported as

endophytics(SpurrandWelty,1975;Colladoetal.,1999;Larran

etal.,2001;Caoetal.,2002;Petersonetal.,2005),earlierthan2008

verylittlewasknownaboutthesesymptomlessmicroorganisms

livinginsidehostplantandgibberellinsproductionunder

salin-itystress.AstrainofPenicilliumcitrinumisolatedfromduneplant

Ixerisrepeneswasdescribedforthefirsttimeasapossible

advan-tageforplantsatsalineenvironment(Khanetal.,2009).P.citrinum

KACC43900promotedI.repenesgrowthbytheproductionof

bioac-tivegibberellinsintherhizosphere(Khanetal.,2009).Later,several

studieswithdifferentPenicilliumstrainshavebeenreportedusing

alowgibberellinsbiosynthesis mutantricecultivar,Waito-Cfor

plantgrowth-promotingverification.Waito-CisaGA-deficientrice

mutant,whichlacksGA3␤-hydroxylase,andconsequentlyis

hin-deringGA1synthesisfromGA20(Ahmadetal.,2010).Inallofthese

studieswereconfirmedthatfungalstrainssuppliedplantgrowth

promotiontoWaito-C.InthecaseofPenicilliumfuniculosumLHL06

andPenicilliumminioluteumLHL09,isolatedfromGlycinemax.L.,

stimulatedWaito-Cgrowthbysecretionofbioactivegibberellins.

(8)

Table2

PutativegibberellinbiosyntheticenzymesidentifiedbyhomologywiththeproteinsfromF.fujikuroi.

Species Putativegibberellinbiosyntheticenzyme Mycocosm ProteinID

Hitlenght %Identity E-value PenicilliumbilaiaeATCC20851v1.0 Ent-kaureneoxidase(P450-4) Penbi1|369049 163 34.90% 6.72E-65

CPS-KSEnt-kaur-16-enesynthase(CPS/KS) Penbi1|369053 243 40.30% 8.86E-107 CytochromeP450monooxygenase(P450-3) Penbi1|375870 110 35.37% 3.89E-51

GA14-synthase(P450-1) Penbi1|375870 150 41.10% 3.95E-74

GA20oxidase(P450-2) Penbi1|375870 150 42.25% 8.78E-78

Geranylgeranyldiphosphatesynthase(ggs2) Penbi1|416244 90 48.13% 4.96E-53

GA4desaturase(des) Penbi1|481848 36 39.56% 5.69E-09

PenicilliumfellutanumATCC48694v1.0 Ent-kaureneoxidase(P450-4) Penfe1|374742 103 34.33% 9.80E-47 CPS-KSEnt-kaur-16-enesynthase(CPS/KS) Penfe1|374742 113 35.42% 1.72E-54 CytochromeP450monooxygenase(P450-3) Penfe1|403578 171 45.72% 3.95E-81

GA14-synthase(P450-1) Penfe1|403578 82 41.84% 1.35E-50

GA20oxidase(P450-2) Penfe1|417921 47 43.12% 1.76E-12

Geranylgeranyldiphosphatesynthase(ggs2) Penfe1|424093 216 42.27% 7.29E-72

GA4desaturase(des) Penfe1|424093 172 42.57% 1.12E-90

PenicilliumglabrumDAOM239074v1.0 Ent-kaureneoxidase(P450-4) Pengl1|107178 112 37.46% 6.11E-52 CPS-KSEnt-kaur-16-enesynthase(CPS/KS) Pengl1|107178 144 42.99% 3.76E-76 CytochromeP450monooxygenase(P450-3) Pengl1|345507 96 47.76% 3.36E-60

GA14-synthase(P450-1) Pengl1|374226 64 38.55% 7.71E-16

GA20oxidase(P450-2) Pengl1|400029 126 40.38% 8.45E-60

Geranylgeranyldiphosphatesynthase(ggs2) Pengl1|401725 142 36.79% 3.39E-62

GA4desaturase(des) Pengl1|436008 177 39.51% 6.39E-71

PenicilliumjanthinellumATCC10455v1.0 Ent-kaureneoxidase(P450-4) Penja1|284697 35 34.65% 1.46E-07 CPS-KSEnt-kaur-16-enesynthase(CPS/KS) Penja1|427667 154 45.16% 1.99E-82 CytochromeP450monooxygenase(P450-3) Penja1|427667 149 43.44% 4.65E-88

GA14-synthase(P450-1) Penja1|434515 115 44.92% 4.97E-54

GA20oxidase(P450-2) Penja1|445613 203 45.62% 9.72E-84

Geranylgeranyldiphosphatesynthase(ggs2) Penja1|447197 145 37.56% 6.09E-60

GA4desaturase(des) Penja1|459586 87 48.07% 2.11E-46

PenicilliumraistrickiiATCC10490v1.0 Ent-kaureneoxidase(P450-4) Penra1|287118 191 43.51% 8.32E-115 CPS-KSEnt-kaur-16-enesynthase(CPS/KS) Penra1|287118 171 40.05% 2.71E-110 CytochromeP450monooxygenase(P450-3) Penra1|348500 99 37.79% 2.87E-48

GA14-synthase(P450-1) Penra1|352910 139 34.32% 1.17E-57

GA20oxidase(P450-2) Penra1|355675 83 41.50% 1.06E-26

Geranylgeranyldiphosphatesynthase(ggs2) Penra1|363110 112 47.66% 3.51E-58

GA4desaturase(des) Penra1|376286 194 35.93% 1.57E-60

GA4andGA7weredetected,respectively,showingthecapacityof thesestrainstoproducebioactivegibberellinsundersalinitystress (Ahmadetal.,2010;Khanetal.,2011c).Inanotherreportan

endo-phyticfungus,Penicilliumsp.LWL3,wasisolatedfromrootsoffield

growncucumberplantsandsecretedGA1andGA3(Waqasetal.,

2012).Bioactivegibberellins,GA3,GA4andGA7,wereisolatedfrom

P.janthinellumLK5,anendophyticfungusinhabitingtherootsofS.

lycopersicumMill(tomatoplant)fromfieldslocatednear

Kyung-pookNationalUniversity.P.janthinellumLK5improvesgrowthof

Waito-C,aswellasofABA-deficienttomateundersalinity,

reduc-ingsodiumiontoxicityandincrementingcalciumcontentsinits

rootascomparedtocontrol(Khanetal.,2013b).Recently,ithas

beenreportedthatendophytescouldhaveeffectscomparableto

thoseofexogenousgibberellins.WhentheendophyticP.resedanum

LK6,isolatedfromCapsicumannuumL.,andexogenousgibberellic

acidtreatmentswereappliedonpepperplantssignificantly

ame-lioratedthenegativeeffectofsalt stress.Ahigherbenefiteffect

wasobservedbyapplicationofcombinedLK6strainplus

gibberel-licacidtreatment.Moreover,italsoshowedthatLK6strainhadthe

abilitytoincreasebiomass,shootlength,chlorophyllcontentand

photosynthesisratecomparedwiththeuninfectedcontrolunder

salinitystress,suchasoccurredinotherPenicilliumstrains(Table1)

(Khanetal.,2015b).However,theprocessbywhichthese

phyto-hormonesaresecretedintoplanttissuesisnotknown(Khanetal.,

2015c).

Comparative study on gibberellins production of Fusarium

fujikuroi and Penicillium sp., curiously revealed that Penicillium

strainscapacity isgenerally similarorhigher than wildtype F.

fujikuroi.Early,ithasbeenreportedthatbioactiveGAproduction

capacityofaP.citrinumstrainwasmuchhigherthanF.fujikuroi

(Khanetal.,2008).ThePenicilliumsp.SJ-2-2,ahalophyteofhealthy

rootscollectedfromasaltmarshofSuncheonBayinSouthKorea,

synthesizedasmuchGA1andGA3thanF.fujikuroi,and

synthe-sizedmuchmoreofGA4andGA7(Youetal.,2012).Similarly,the

P.resedanumLK6wasalsoreportedtoproducesignificantlyhigher

amountsofGA1andGA4thantheF.fujifuroi,andGA3contentwas

atlowerlevel(Khanetal.,2015a).

Ithasbeenreportedthatplantsreacttomycorrhizationby

GAs-secretingPenicilliumstrains,alteringtheABA,JAandsalicylicacid

levels,aswellastheaccumulationofisoflavonesandtheenzymes

activitiesinvolvedintheremovalofROS,catalasesandperoxidases.

Additionally,endophytetreatmentimproveplantnutritionbalance

asaconsequenceofhighernitrogenandphosphorussolubilization

andK+,Mg2+andCa2+levels,whichinturnmightlimit/inhibitthe

uptakeofNa+.Despiteofantagonisticbehaviordescribedinthe

lit-eratureinwhatconcerntoJA,ABAandenzymes,whichneedsto

beclarifiedat“omics”levels,endophyticassociationhasnotonly

re-programmedtheplantforhighergrowthbutalsosignificantly

amelioratedtheeffectofsaltinducedstress(Khanetal.,2011a;

Khanetal.,2011b;Waqasetal.,2012;Khanetal.,2013a).The

mech-anismbywhichendophytetreatmentaugmentshostresponseto

salinitystressisstillnotclearlyunderstood(Khanetal.,2015a).

5.3. PutativegibberellinbiosyntheticgenesinPenicillium

InF.fujikuroigenomethegenesinvolvedinthemainstepsof

gibberellinbiosynthesisareclusteredtogether(Linnemannstons

(9)

com-posed by seven genes: four genes encoding cytochrome P450

oxidoreductases(namedfrom1to4)involvedindifferent

hydrox-ylationstepsofthegibberellinnucleus,twoGGDPsynthasegenes

locatedintandem(Ent-kaur-16-enesynthase,CPS/KS,and

geranyl-geranyldiphosphatesynthase,ggs2),andaGA4desaturasegene

(des),encodingtheenzyme which convertsGA4 toGA7.

Avail-ablegenomicdatafromJGIMycocosmgenomicresource(Grigoriev

etal.,2014)allowedustolocalizeputativegibberellinbiosynthetic

genesin5outofthe14availablecompletegenomesbelongingto

thePenicilliumgenus(Table2).Interestingly,oneoftheanalyzed

genomesbelongstoP.janthinellumwhichhasbeenpreviously

char-acterizedasagibberellinproducer(Khanetal.,2013;KhanandLee,

2013).Thesequencehomologyoftheputativegibberellin

biosyn-theticenzymesindifferentPenicillium speciesshoweda higher

degreeofhomologyinthegroupofthecytochromeP450enzymes,

astheent-kaureneoxidase(P450-4)andtheGA14-synthase

(P450-1)(Fig.3).AlsoasdepictedinTable2,putativeCPS/KSproteinsfrom

differentPenicilliumspeciesshowedahighhomologywiththe

orig-inalenzymefromF.fujikuroi,whereasthedesaturaseenzymes(des)

arecomparativelylessconserved.

6. Conclusionsandfutureperspectives

Thereisincreasinginterestinthediscoveryofnaturally

occur-ring chemical molecules for stimulating plant growthin order

toincreaseagriculturalcropsyield.Endophyticfungiarewidely

foundinalmostallkindsofplants,andtheirspeciescomposition

andnumberseemstobeaffectedbyagesofplantsand

environ-mentalamongotherfactors.FungilikePenicilliumspeciescanbe

usedasa readilyrenewable and inexhaustiblesourceof

extro-litecompoundsthatcanimproveplantsundernegativebioticas

wellasabioticconditions.Itisnowcommonlyacceptedthatthis

phenomenonisobservedwhenendophyticfungi-plantsareunder

salinestress.Inthisenvironmentalconditiongibberellinsare

pro-ducedbyPenicilliumstrains.StructuresGA1,GA3,GA4andGA7

havebeenidentifiedwithfunctionasgrowthhormonesproduced

byPenicilliumstrainsassalinitystressresistanceresponse.

Inter-esting,therhizobacteriumPseudomonasputidaH-2-3isalsoableto

secretegibberellinwhensoybeanisundersalineanddroughtstress

conditions,improvingtheplantgrowth(Kangetal.,2014).Onthe

otherhand,ithasbeenshownthatplantsreducegibberellins

pro-ductionintheresponsetoabioticstress,reducinggrowthinorder

thatplantcanfocusitsenergyandcarbonresourcesonresisting

thestress(Colebrooketal.,2014).Ifwe consideredthat all

liv-ingorganismhaveasprioritygrowthandsurvival,thecapacityof

microorganismstoproducemetabolitesthatareplantsecondary

metabolitescouldbeawaythatmicroorganismsfoundto

embar-rassthehostplants?. Endophytic Penicilliumstrainsdrawfrom

plantthewater,foodandphysicalprotectionagainstbioticand

abi-oticadverseconditions,whichallowthemtolivewithintheplant

hoppingbyfavorableconditionstocompletelycolonizethe

host-plant.Meanwhile,endophyticsymbiosisresultedinsignificantly

higherassimilationofnutrientlikephosphorus,sulfur,magnesium,

calciumandpotassiumascomparedtocontrolplants;besides

sec-ondarymetabolitesthatendophytemayproduce.Ithasbeenalso

reportedthatendophyticfungibiomasscouldconstitutean

inter-estingnitrogensourceforplant.Furthermore,severalPenicillium

culturesrevealedthepresenceofindoleaceticacid,otherimportant

phytohormone (Khan et al., 2011b; Waqas et al., 2012).

Addi-tionally,itwasdescribedthatPenicilliumendophytescanhelped

planttore-programits responsestosalinestressbyregulating

theendogenousphytohormonesandenzymestominimizecellular

toxicity(Khanetal.,2013a;Khanetal.,2015c).Suchinteractions

betweennativeendophyticfungiandplanthostcouldbea

reli-ablemethodologytotheplantsaltstress,sincechemicalsolutions

couldbeharmfultoorganismsinthesoil,reducingthe

biodiver-sityofecosystems.Themajorconcernistopredictenvironmental

changes,endophyte-hostinteractions,aswellasplant-microflora

systemdevelopment.Nevertheless,webelievethatapplicationof

bioactivegibberellins Penicilliumstrainsproducers isa promise

environmentalfriendlystrategy of improvingplantgrowthand

amelioratingdamagecausebysaltstressincultivationcrops.

References

Achard,P.,Cheng,H.,DeGrauwe,L.,Decat,J.,Schoutteten,H.,Moritz,T.,VanDer Straeten,D.,Peng,J.,Harberd,N.P.,2006.Integrationofplantresponsesto environmentallyactivatedphytohormonalsignals.Science311(5757),91–94. Ahmad,N.,Hamayun,M.,Khan,S.A.,Khan,A.L.,Lee,I.J.,Shin,D.H.,2010.

Gibberellin-producingendophyticfungiisolatedfromMonochoriavaginalis.J. Microbiol.Biotechnol.20(12),1744–1749.

Aly,A.H.,Debbab,A.,Proksch,P.,2011.Fungalendophytes:uniqueplant inhabitantswithgreatpromises.Appl.Microbiol.Biotechnol.90(6), 1829–1845.

Ballester,A.R.,Marcet-Houben,M.,Levin,E.,Sela,N.,Selma-Lazaro,C.,Carmona,L., Wisniewski,M.,Droby,S.,Gonzalez-Candelas,L.,Gabaldon,T.,2015.Genome, transcriptome,andfunctionalanalysesofPenicilliumexpansumprovidenew insightsintosecondarymetabolismandpathogenicity.Mol.PlantMicrobe Interact.28,232–248.

Bearder,J.R.,1983.InvivoditerpenoidbiosynthesisinGibberellafujikuroi:the pathwayafterent-kaurene.In:Crozier,A.(Ed.),TheBiochemistryand PhysiologyofGibberellins,vol.1.Praeger,NewYork,pp.251–387. Bearder,J.R.,MacMillan,J.,Wels,C.M.,Chaffey,M.B.,Phinney,B.O.,1974.Position

ofthemetabolicblockforgibberellinbiosynthesisinmutantBI-41aof Gibberellafujikuroi.Phytochem13,911–917.

Birch,A.J.,Richards,R.W.,Smith,H.,1958.Thebiosynthesisofgibberellicacid. Proc.Chem.Soc.,192–193.

Bomke,C.,Tudzynski,B.,2009.Diversity,regulation,andevolutionofthe gibberellinbiosyntheticpathwayinfungicomparedtoplantsandbacteria. Phytochemistry70(15–16),1876–1893.

Bomke,C.,Rojas,M.C.,Gong,F.,Hedden,P.,Tudzynski,B.,2008.Isolationand characterizationofthegibberellinbiosyntheticgeneclusterinSphaceloma manihoticola.Appl.Environ.Microbiol.74(17),5325–5339.

Brakhage,A.A.,2013.Regulationoffungalsecondarymetabolism.Nat.Rev. Microbiol.11(1),21–32.

Butinar,L.,Frisvad,J.C.,Gunde-Cimerman,N.,2011.Hypersalinewaters-a potentialsourceoffoodbornetoxigenicaspergilliandpenicillia.FEMS Microbiol.Ecol.77(1),186–199.

Cao,L.X.,You,J.L.,Zhou,S.N.,2002.EndophyticfungifromMusaacuminataleaves androotsinSouthChina.WorldJ.Microbiol.Biotechnol.18,169–171. Cerda-Olmedo,E.,Fernandez-Martin,R.,Avalos,J.,1994.Geneticsandgibberellin

productioninGibberellafujikuroi.AntonieVanLeeuwenhoek65(3),217–225. Chandra,S.,2012.Endophyticfungi:novelsourcesofanticancerleadmolecules.

Appl.Microbiol.Biotechnol.95(1),47–59.

Chang,J.C.S.,Foarde,K.K.,VanOsdell,D.W.,1995.Growthevaluationoffungi (PenicilliumandAspergillusspp.)onceilingtiles.Atmos.Environ.29, 2331–2337.

Chapman,D.J.,Ragan,M.A.,1980.Evolutionofbiochemicalpathways:evidence fromcomparativebiochemistry.Annu.Rev.PlantPhysiol.31,639–678. Chen,T.H.,Murata,N.,2011.Glycinebetaineprotectsplantsagainstabioticstress:

mechanismsandbiotechnologicalapplications.PlantCellEnviron.34(1),1–20. Colebrook,E.H.,Thomas,S.G.,Phillips,A.L.,Hedden,P.,2014.Theroleofgibberellin

signallinginplantresponsestoabioticstress.J.Exp.Biol.217(pt.1),67–75. Collado,J.,Platas,G.,González,I.,Peláez,F.,1999.Geographicalandseasonal

influencesonthedistributionoffungalendophytesinQuercusilex.New Phytol.144,525–532.

Correa,R.C.,Rhoden,S.A.,Mota,T.R.,Azevedo,J.L.,Pamphile,J.A.,deSouza,C.G., PolizeliMde,L.,Bracht,A.,Peralta,R.M.,2014.Endophyticfungi:expandingthe arsenalofindustrialenzymeproducers.J.Ind.Microbiol.Biotechnol.41(10), 1467–1478.

Cross,B.E.,Grove,J.F.,MacMillan,J.,Moffatt,J.S.,Mulholland,T.P.C.,1959.Arevised structureforgibberellicacid.Proc.Chem.Soc.,302–303.

Davies,P.J.(Ed.),2004.KluwerAcademicPublishers,Dordrecht,Netherlands,pp. 63–94.

Dorge,T.,Carstensen,J.M.,Frisvad,J.C.,2000.Directidentificationofpure Penicilliumspeciesusingimageanalysis.J.Microbiol.Methods41(2),121–133. FAO,2009.HighLevelExpertForum—HowtoFeedtheWorldin2050.Economic

andSocialDevelopment.FoodandAgriculturalOrganizationoftheUnited Nations,Rome.

Freeman,E.M.,1904.Theseed-fungusofLoliumtemulentum,L.,theDarnel.Phil. Trans.R.Soc.B196,1–27.

Gao,X.P.,Pan,Q.H.,Li,M.J.,Zhang,L.Y.,Wang,X.F.,Shen,Y.Y.,Lu,Y.F.,Chen,S.W., Liang,Z.,Zhang,D.P.,2004.Abscisicacidisinvolvedinthewaterstress-induced betaineaccumulationinpearleaves.PlantCellPhysiol.45(6),742–750. Gao,S.S.,Li,X.M.,Li,C.S.,Proksch,P.,Wang,B.G.,Penicisteroids,A.,2011.andB,

antifungalandcytotoxicpolyoxygenatedsteroidsfromthemarine alga-derivedendophyticfungusPenicilliumchrysogenumQEN-24S.Bioorg. Med.Chem.Lett.21(10),2894–2897.

(10)

Geng,Y.,Wu,R.,Wee,C.W.,Xie,F.,Wei,X.,Chan,P.M.,Tham,C.,Duan,L.,Dinneny, J.R.,2013.Aspatio-temporalunderstandingofgrowthregulationduringthe saltstressresponseinArabidopsis.PlantCell25(6),2132–2154.

Germaine,K.,Keogh,E.,Garcia-Cabellos,G.,Borremans,B.,Lelie,D.,Barac,T., Oeyen,L.,Vangronsveld,J.,Moore,F.P.,Moore,E.R.,Campbell,C.D.,Ryan,D., Dowling,D.N.,2004.Colonisationofpoplartreesbygfpexpressingbacterial endophytes.FEMSMicrobiol.Ecol.48(1),109–118.

Gong,M.,Du,P.,Liu,X.,Zhu,C.,2014.TransformationofinorganicPfractionsof soilandplantgrowthpromotionbyphosphate-solubilizingabilityof PenicilliumoxalicumI1.J.Microbiol.52(12),1012–1019.

Grigoriev,I.V.,Nikitin,R.,Haridas,S.,Kuo,A.,Ohm,R.,Otillar,R.,Riley,R.,Salamov, A.,Zhao,X.,Korzeniewski,F.,Smirnova,T.,Nordberg,H.,Dubchak,I.,Shabalov, I.,2014.MycoCosmportal:gearingupfor1000fungalgenomes.NucleicAcids Res.42,D699–D704(Databaseissue).

Guo,W.,Li,D.,Peng,J.,Zhu,T.,Gu,Q.,Penicitols,A.-C.,Penixanacid,A.,2015.from theMangrove-DerivedPenicilliumchrysogenumHDN11-24.J.Nat.Prod. Hasegawa,P.M.,Bressan,R.A.,Zhu,J.K.,Bohnert,H.J.,2000.Plantcellularand

molecularresponsestohighsalinity.Annu.Rev.PlantPhysiol.PlantMol.Biol. 51,463–499.

Hedden,P.,Phillips,A.L.,Rojas,M.C.,Carrera,E.,Tudzynski,B.,2001.Gibberellin biosynthesisinplantsandfungi:acaseofconvergentevolution?J.Plant GrowthRegul.20(4),319–331.

Hossain,M.M.,Sultana,F.,Miyazawa,M.,Hyakumachi,M.,2014.Plant growth-promotingfungusPenicilliumspp:GP15-1enhancesgrowthand confersprotectionagainstdamping-offandanthracnoseinthecucumber.J. OleoSci.63(4),391–400.

Houbraken,J.,Frisvad,J.C.,Samson,R.A.,2011.Fleming’spenicillinproducing strainisnotPenicilliumchrysogenumbutP.rubens.IMAFungus2(1),87–95. Houbraken,J.,Frisvad,J.C.,Seifert,K.A.,Overy,D.P.,Tuthill,D.M.,Valdez,J.G.,

Samson,R.A.,2012.Newpenicillin-producingPenicilliumspeciesandan overviewofsectionChrysogena.Persoonia29,78–100.

Ismail,A.,Takeda,S.,Nick,P.,2014.Lifeanddeathundersaltstress:sameplayers, differenttiming?J.Exp.Bot.65(12),2963–2979.

Jacoby,R.P.,Taylor,N.L.,Millar,A.H.,2011.Theroleofmitochondrialrespirationin salinitytolerance.TrendsPlantSci.16(11),614–623.

Julkowska,M.M.,Testerink,C.,2015.Tuningplantsignalingandgrowthtosurvive salt.TrendsPlantSci.20(9),586–594.

Kang,S.M.,Radhakrishnan,R.,Khan,A.L.,Kim,M.J.,Park,J.M.,Kim,B.R.,Shin,D.H., Lee,I.J.,2014.Gibberellinsecretingrhizobacterium,PseudomonasputidaH-2-3 modulatesthehormonalandstressphysiologyofsoybeantoimprovethe plantgrowthundersalineanddroughtconditions.PlantPhysiol.Biochem.84, 115–124.

Kawaide,H.,Imai,R.,Sassa,T.,Kamiya,Y.,1997.Ent-kaurenesynthasefromthe fungusPhaeosphaeriasp.L487.cDNAisolation,characterization,andbacterial expressionofabifunctionalditerpenecyclaseinfungalgibberellin biosynthesis.J.Biol.Chem.272(35),21706–21712.

Kawaide,H.,Sassa,T.,Kamiya,Y.,2000.Functionalanalysisofthetwointeracting cyclasedomainsinent-kaurenesynthasefromthefungusPhaeosphaeriasp. L487andacomparisonwithcyclasesfromhigherplants.J.Biol.Chem.275(4), 2276–2280.

Keller,N.P.,Hohn,T.M.,1997.Metabolicpathwaygeneclustersinfilamentous fungi.FungalGenet.Biol.21(1),17–29.

Khan,A.L.,Lee,I.J.,2013.EndophyticPenicilliumfuniculosumLHL06secretes gibberellinthatreprogramsGlycinemaxL.growthduringcopperstress.BMC PlantBiol.13,86.

Khan,S.A.,Hamayun,M.,Yoon,H.,Kim,H.Y.,Suh,S.J.,Hwang,S.K.,Kim,J.M.,Lee, I.J.,Choo,Y.S.,Yoon,U.H.,Kong,W.S.,Lee,B.M.,Kim,J.G.,2008.Plantgrowth promotionandPenicilliumcitrinum.BMCMicrobiol.8,231.

Khan,S.A.,Hamayun,M.,Kim,H.Y.,Yoon,H.J.,Seo,J.C.,Choo,Y.S.,Lee,I.J.,Kim,S.D., Rhee,I.K.,Kim,J.G.,2009.AnewstrainofArthriniumphaeospermumisolated fromCarexkobomugiOhwiiscapableofgibberellinproduction.Biotechnol. Lett.31(2),283–287.

Khan,A.L.,Hamayun,M.,Kim,Y.H.,Kang,S.M.,Lee,I.J.,2011a.Ameliorative symbiosisofendophyte(PenicilliumfuniculosumLHL06)undersaltstress elevatedplantgrowthofGlycinemaxL.PlantPhysiol.Biochem.49(8), 852–861.

Khan,A.L.,Hamayun,M.,Kim,Y.H.,Kang,S.M.,Lee,J.H.,Lee,I.J.,2011b.Gibberellins producingendophyticAspergillusfumigatussp.LH02influencedendogenous phytohormonallevels,isoflavonoidsproductionandplantgrowthinsalinity stress.ProcessBiochem.46,440–447.

Khan,A.L.,Hamayun,M.,Ahmad,N.,Hussain,J.,Kang,S.M.,Kim,Y.H.,Adnan,M., Tang,D.S.,Waqas,M.,Radhakrishnan,R.,Hwang,Y.H.,Lee,I.J.,2011c.Salinity stressresistanceofferedbyendophyticfungalinteractionbetweenPenicillium minioluteumLHL09andGlycinemaxL.J.Microbiol.Biotechnol.21(9),893–902. Khan,A.L.,Waqas,M.,Hamayun,M.,Al-Harrasi,A.,Al-Rawahi,A.,Lee,I.J.,2013a.

Co-synergismofendophytePenicilliumresedanumLK6withsalicylicacid helpedCapsicumannuuminbiomassrecoveryandosmoticstressmitigation. BMCMicrobiol.13,51.

Khan,A.L.,Waqas,M.,Khan,A.R.,Hussain,J.,Kang,S.M.,Gilani,S.A.,Hamayun,M., Shin,J.H.,Kamran,M.,Al-Harrasi,A.,Yun,B.W.,Adnan,M.,Lee,I.J.,2013b. FungalendophytePenicilliumjanthinellumLK5improvesgrowthof ABA-deficienttomatoundersalinity.WorldJ.Microbiol.Biotechnol.29(11), 2133–2144.

Khan,A.L.,Waqas,M.,Lee,I.J.,2015a.ResilienceofPenicilliumresedanumLK6and exogenousgibberellininimprovingCapsicumannuumgrowthunderabiotic stresses.J.PlantRes.128(2),259–268.

Khan,A.L.,Hussain,J.,Al-Harrasi,A.,Al-Rawahi,A.,Lee,I.J.,2015b.Endophytic fungi:resourceforgibberellinsandcropabioticstressresistance.Crit.Rev. Biotechnol.35(1),62–74.

Khan,A.L.,Waqas,M.,Hussain,J.,Al-Harrasi,A.,Hamayun,M.,Lee,I.J.,2015c. Phytohormonesenabledendophyticfungalsymbiosisimprovealuminum phytoextractionintolerantSolanumlycopersicum:anexamplesofPenicillium janthinellumLK5andcomparisonwithexogenousGA3.J.Hazard.Mater.295, 70–78.

Kim,D.C.,Lee,H.S.,Ko,W.,Lee,D.S.,Sohn,J.H.,Yim,J.H.,Kim,Y.C.,Oh,H.,2014. Anti-inflammatoryeffectofmethylpenicinolinefromamarineisolateof Penicilliumsp.(SF-5995):inhibitionofNF-kappaBandMAPKpathwaysin lipopolysaccharide-inducedRAW264.7macrophagesandBV2microglia. Molecules19(11),18073–18089.

Klobus,G.,Janicka-Russak,M.,2004.Modulationbycytosoliccomponentsof protonpumpactivitiesinplasmamembraneandtonoplastfromCucumis sativusrootsduringsaltstress.Physiol.Plant121(1),84–92.

Kogel,K.H.,Franken,P.,Huckelhoven,R.,2006.Endophyteorparasite—what decides?Curr.Opin.PlantBiol.9(4),358–363.

Kusari,S.,Hertweck,C.,Spiteller,M.,2012.Chemicalecologyofendophyticfungi: originsofsecondarymetabolites.Chem.Biol.19(7),792–798.

Lang,A.,1956.InductionofflowerformationinbiennialHyoscyamusbytreatment withgibberellin.Naturwissenschaften43,284–285.

Larran,S.,Monaco,C.,Alippi,H.E.,2001.EndophyticfungiinleavesofLycopersicon esculentumMill.WorldJ.Microbiol.Biotechnol.17,181–184.

Laskowski,R.A.,Swindells,M.B.,2011.LigPlot+:multipleligand-proteininteraction diagramsfordrugdiscovery.J.Chem.Inf.Model.51(10),2778–2786. Leitão,A.L.,2009.PotentialofPenicilliumspeciesinthebioremediationfield.Int.J.

Environ.Res.PublicHealth6(4),1393–1417.

Leitão,A.L.,Enguita,F.J.,2014.Fungalextrolitesasanewsourcefortherapeutic compoundsandasbuildingblocksforapplicationsinsyntheticbiology. Microbiol.Res.169(9–10),652–665.

Leitão,A.L.,Duarte,M.P.,SantosOliveira,J.,2007.Degradationofphenolbya halotolerantstrainofPenicilliumchrysogenum.Int.Biodeterior.Biodegrad.59, 220–225.

Li,B.,Zong,Y.,Du,Z.,Chen,Y.,Zhang,Z.,Qin,G.,Zhao,W.,Tian,S.,2015.Genomic characterizationrevealsinsightsintopatulinbiosynthesisandpathogenicityin Penicilliumspecies.Mol.PlantMicrobeInteract.

Liao,L.,Lee,J.H.,You,M.,Choi,T.J.,Park,W.,Lee,S.K.,Oh,D.C.,Oh,K.B.,Shin,J., 2014.PenicillipyronesAandB,meroterpenoidsfromamarine-derived Penicilliumsp.fungus.J.Nat.Prod.77(2),406–410.

Linnemannstons,P.,Voss,T.,Hedden,P.,Gaskin,P.,Tudzynski,B.,1999.Deletions inthegibberellinbiosynthesisgeneclusterofGibberellafujikuroibyrestriction enzyme-mediatedintegrationandconventionaltransformation-mediated mutagenesis.Appl.Environ.Microbiol.65(6),2558–2564.

MacMillan,J.,1997.Biosynthesisofthegibberellinplanthormones.Nat.Prod.Rep. 14,221–244.

Malonek,S.,Rojas,M.C.,Hedden,P.,Hopkins,P.,Tudzynski,B.,2005.Restorationof gibberellinproductioninFusariumproliferatumbyfunctional

complementationofenzymaticblocks.Appl.Environ.Microbiol.71(10), 6014–6025.

McMullin,D.R.,Nsiama,T.K.,Miller,J.D.,2014.Secondarymetabolitesfrom Penicilliumcorylophilumisolatedfromdampbuildings.Mycologia106(4), 621–628.

McNicholas,S.,Potterton,E.,Wilson,K.S.,Noble,M.E.,2011.Presentingyour structures:theCCP4mgmolecular-graphicssoftware.ActaCrystallogr.DBiol. Crystallogr.67(pt.4),386–394.

Moore-Kucera,J.,Cox,S.B.,Peyron,M.,Bailes,G.,Kinloch,K.,Karich,K.,Miles,C., Inglis,D.A.,Brodhagen,M.,2014.Nativesoilfungiassociatedwithcompostable plasticsinthreecontrastingagriculturalsettings.Appl.Microbiol.Biotechnol. 98(14),6467–6485.

Muller,M.,Kunz,H.H.,Schroeder,J.I.,Kemp,G.,Young,H.S.,Neuhaus,H.E.,2014. DecreasedcapacityforsodiumexportoutofArabidopsischloroplastsimpairs salttolerance,photosynthesisandplantperformance.PlantJ.78(4),646–658. Murase,K.,Hirano,Y.,Sun,T.P.,Hakoshima,T.,2008.Gibberellin-inducedDELLA

recognitionbythegibberellinreceptorGID1.Nature456(7221),459–463. Nounjan,N.,Nghia,P.T.,Theerakulpisut,P.,2012.Exogenousprolineandtrehalose

promoterecoveryofriceseedlingsfromsalt-stressanddifferentiallymodulate antioxidantenzymesandexpressionofrelatedgenes.J.PlantPhysiol.169(6), 596–604.

Ogas,J.,2000.Gibberellins.Curr.Biol.10(2),R48.

Olszewski,N.,Sun,T.P.,Gubler,F.,2002.Gibberellinsignaling:biosynthesis, catabolism,andresponsepathways.PlantCell14(Suppl),S61–S80. Park,M.S.,Fong,J.J.,Oh,S.Y.,Houbraken,J.,Sohn,J.H.,Hong,S.B.,Lim,Y.W.,2015.

Penicilliumjejuensesp.nov.,isolatedfromthemarineenvironmentsofJeju Island,Korea.Mycologia107(1),209–216.

Pereira,P.,Enguita,F.J.,Ferreira,J.,Leitão,A.L.,2014.DNAdamageinducedby hydroquinonecanbepreventedbyfungaldetoxification.Toxicol.Rep.1, 1096–1105.

Peterson,S.W.,Vega,F.E.,Posada,F.,Nagai,C.,2005.Penicilliumcoffeae,anew endophyticspeciesisolatedfromacoffeeplantanditsphylogenetic relationshiptoP.fellutanum,P.thiersiiandP.brocaebasedonparsimony analysisofmultilocusDNAsequences.Mycologia97(3),659–666. Pitt,J.I.,1979.ThegenusPenicilliumanditsteleomorphicstatesEupenicilliumand

Talaromyces.AcademicPress,London.

Quang,T.H.,Ngan,N.T.,Ko,W.,Kim,D.C.,Yoon,C.S.,Sohn,J.H.,Yim,J.H.,Kim,Y.C., Oh,H.,2014.TanzawaicacidderivativesfromamarineisolateofPenicilliumsp.

(11)

(SF-6013)withanti-inflammatoryandPTP1Binhibitoryactivities.Bioorg.Med. Chem.Lett.24(24),5787–5791.

Radley,M.,1956.Occurrenceofsubstancessimilartogibberellicacidinhigher plants.Nature178,1070–1071.

Raper,K.B.,Thom,C.,1949.ManualofthePenicillia.WilliamsandWilkinsCo., Baltimore.

Rieu,I.,Eriksson,S.,Powers,S.J.,Gong,F.,Griffiths,J.,Woolley,L.,Benlloch,R., Nilsson,O.,Thomas,S.G.,Hedden,P.,Phillips,A.L.,2008.Geneticanalysis revealsthatC19-GA2-oxidationisamajorgibberellininactivationpathwayin Arabidopsis.PlantCell20(9),2420–2436.

Romero-Aguilar,M.,Tovar-Sanchez,E.,Sanchez-Salinas,E.,Mussali-Galante,P., Sanchez-Meza,J.C.,Castrejon-Godinez,M.L.,Dantan-Gonzalez,E.,Trujillo-Vera, M.A.,Ortiz-Hernandez,M.L.,2014.Penicilliumsp.asanorganismthatdegrades endosulfanandreducesitsgenotoxiceffects.Springerplus3,536.

Sairam,R.K.,Tyagi,A.,2004.Physiologyandmolecularbiologyofsalinitystress toleranceinplants.Curr.Sci.86,407–421.

Santini,A.,Mikusova,P.,Sulyok,M.,Krska,R.,Labuda,R.,Srobarova,A.,2014. PenicilliumstrainsisolatedfromSlovakgrapeberriestaxonomyassessmentby secondarymetaboliteprofile.MycotoxinRes.30(4),213–220.

Schardl,C.L.,Leuchtmann,A.,Spiering,M.J.,2004.Symbiosesofgrasseswith seedbornefungalendophytes.Annu.Rev.PlantBiol.55,315–340. Scott,J.,Untereiner,W.A.,Wong,B.,Straus,N.A.,Malloch,D.,2004.Genotypic

variationinPenicilliumchysogenumfromindoorenvironments.Mycologia96 (5),1095–1105.

Shabala,S.,Cuin,T.A.,2008.Potassiumtransportandplantsalttolerance.Physiol. Plant133(4),651–669.

Shabala,S.,Demidchik,V.,Shabala,L.,Cuin,T.A.,Smith,S.J.,Miller,A.J.,Davies,J.M., Newman,I.A.,2006.ExtracellularCa2+amelioratesNaCl-inducedK+lossfrom

ArabidopsisrootandleafcellsbycontrollingplasmamembraneK+-permeable

channels.PlantPhysiol.141(4),1653–1665.

Shimada,A.,Ueguchi-Tanaka,M.,Nakatsu,T.,Nakajima,M.,Naoe,Y.,Ohmiya,H., Kato,H.,Matsuoka,M.,2008.Structuralbasisforgibberellinrecognitionbyits receptorGID1.Nature456(7221),520–523.

Slot,J.C.,Rokas,A.,2011.Horizontaltransferofalargeandhighlytoxicsecondary metabolicgeneclusterbetweenfungi.Curr.Biol.21(2),134–139.

Sofo,A.,Scopa,A.,Nuzzaci,M.,Vitti,A.,2015.Ascorbateperoxidaseandcatalase activitiesandtheirgeneticregulationinplantssubjectedtodroughtand salinitystresses.Int.J.Mol.Sci.16(6),13561–13578.

SpurrJr.,H.W.,Welty,R.E.,1975.Characterizationofendophyticfungiinhealthy leavesofNicotianaspp.Phytopathol65,417–422.

Strizhov,N.,Abraham,E.,Okresz,L.,Blickling,S.,Zilberstein,A.,Schell,J.,Koncz,C., Szabados,L.,1997.DifferentialexpressionoftwoP5CSgenescontrolling prolineaccumulationduringsalt-stressrequiresABAandisregulatedbyABA1, ABI1andAXR2inArabidopsis.PlantJ.12(3),557–569.

Sun,T.P.,2011.ThemolecularmechanismandevolutionoftheGA-GID1-DELLA signalingmoduleinplants.Curr.Biol.21(9),R338–45.

Takeda,N.,Handa,Y.,Tsuzuki,S.,Kojima,M.,Sakakibara,H.,Kawaguchi,M.,2015. Gibberellinregulatesinfectionandcolonizationofhostrootsbyarbuscular mycorrhizalfungi.PlantSignal.Behav.10(6),e1028706.

Tan,R.X.,Zou,W.X.,2001.Endophytesarichsourceoffunctionalmetabolites.Nat. Prod.Rep.18,448–459.

Tansakul,C.,Rukachaisirikul,V.,Maha,A.,Kongprapan,T.,Phongpaichit,S., Hutadilok-Towatana,N.,Borwornwiriyapan,K.,Sakayaroj,J.,2014.Anew phenalenonederivativefromthesoilfungusPenicilliumherqueiPSU-RSPG93. Nat.Prod.Res.28(20),1718–1724.

Troncoso,C.,Gonzalez,X.,Bomke,C.,Tudzynski,B.,Gong,F.,Hedden,P.,Rojas, M.C.,2010.Gibberellinbiosynthesisandgibberellinoxidaseactivitiesin Fusariumsacchari,FusariumkonzumandFusariumsubglutinansstrains. Phytochemistry71(11–12),1322–1331.

Tudzynski,B.,2005.Gibberellinbiosynthesisinfungi:genes,enzymes,evolution, andimpactonbiotechnology.Appl.Microbiol.Biotechnol.66(6),597–611. Tudzynski,B.,Holter,K.,1998.GibberellinbiosyntheticpathwayinGibberella

fujikuroi:evidenceforagenecluster.FungalGenet.Biol.25(3),157–170. Ueguchi-Tanaka,M.,Nakajima,M.,Katoh,E.,Ohmiya,H.,Asano,K.,Saji,S.,Hongyu,

X.,Ashikari,M.,Kitano,H.,Yamaguchi,I.,Matsuoka,M.,2007.Molecular interactionsofasolublegibberellinreceptor,GID1,withariceDELLAprotein, SLR1,andgibberellin.PlantCell19(7),2140–2155.

Visagie,C.M.,Hirooka,Y.,Tanney,J.B.,Whitfield,E.,Mwange,K.,Meijer,M.,Amend, A.S.,Seifert,K.A.,Samson,R.A.,2014.Aspergillus,PenicilliumandTalaromyces isolatedfromhousedustsamplescollectedaroundtheworld.Stud.Mycol.78, 63–139.

Voegele,A.,Linkies,A.,Muller,K.,Leubner-Metzger,G.,2011.Membersofthe gibberellinreceptorgenefamilyGID1(GIBBERELLININSENSITIVEDWARF1) playdistinctrolesduringLepidiumsativumandArabidopsisthalianaseed germination.J.Exp.Bot.62(14),5131–5147.

Waqas,M.,Khan,A.L.,Kamran,M.,Hamayun,M.,Kang,S.M.,Kim,Y.H.,Lee,I.J., 2012.Endophyticfungiproducegibberellinsandindoleaceticacidand promoteshost-plantgrowthduringstress.Molecules17(9),10754–10773. West,G.,Inze,D.,Beemster,G.T.,2004.Cellcyclemodulationintheresponseofthe

primaryrootofArabidopsistosaltstress.PlantPhysiol.135(2),1050–1058. Wiemann,P.,Sieber,C.M.,vonBargen,K.W.,Studt,L.,Niehaus,E.M.,Espino,J.J.,

Huss,K.,Michielse,C.B.,Albermann,S.,Wagner,D.,Bergner,S.V.,Connolly,L.R., Fischer,A.,Reuter,G.,Kleigrewe,K.,Bald,T.,Wingfield,B.D.,Ophir,R., Freeman,S.,Hippler,M.,Smith,K.M.,Brown,D.W.,Proctor,R.H.,

Munsterkotter,M.,Freitag,M.,Humpf,H.U.,Guldener,U.,Tudzynski,B.,2013. Decipheringthecrypticgenome:genome-wideanalysesofthericepathogen Fusariumfujikuroirevealcomplexregulationofsecondarymetabolismand novelmetabolites.PLoSPathog.9(6),e1003475.

Yamaguchi,S.,2008.Gibberellinmetabolismanditsregulation.Annu.Rev.Plant Biol.59,225–251.

You,Y.H.,Yoon,H.,Kang,S.M.,Shin,J.H.,Choo,Y.S.,Lee,I.J.,Lee,J.M.,Kim,J.G., 2012.Fungaldiversityandplantgrowthpromotionofendophyticfungifrom sixhalophytesinSuncheonBay.J.Microbiol.Biotechnol.22(11),1549–1556. Zhu,J.,Lee,B.H.,Dellinger,M.,Cui,X.,Zhang,C.,Wu,S.,Nothnagel,E.A.,Zhu,J.K.,

2010.Acellulosesynthase-likeproteinisrequiredforosmoticstresstolerance inArabidopsis.PlantJ.63(1),128–140.

Imagem

Fig. 1. Action mechanism of gibberellins. Gibberellins (GA) action is exerted by binding to the GID1 nuclear receptor, and subsequent recruitment of DELLA proteins
Fig. 2. Structural determinants for the gibberellin action as determined by X-ray crystallography
Fig. 3. Gibberellin biosynthetic pathway in Fusarium fujikuroi and putative gibberellin biosynthetic genes in several Penicillium species

Referências

Documentos relacionados

Salt tolerant bacterial strains and their respective transformants used for plant growth experiments under 100 mM NaCl stress in laboratory conditions.. PARENT STRAINS SOURCE

In the present review we discuss current knowledge about the role of the plant growth hormones abscisic acid, auxin, brassinosteroid and ethylene in signaling pathways,

In order to better understand the early events on the host-parasite interactions, in this paper, we evaluated the production of proinfl ammatory (IFN- γ ,

benefício da coletividade, não podem ser renunciados ou descumpridos pelo administrador sem ofensa ao bem comum, que é o supremo e único objetivo de toda ação administrativa (2002,

Assim, por uma carência crónica de meios financeiros, problemas ligados às habili- tações para os cargos e aos ordenados (em que era habitual o atraso nos pagamentos), sobre- carga

Estes resultados podem sugerir que o sistema (NCCLS, 1999) usado para a detecção de estirpes produtoras de p-lactamases de tipo AmpC não é eficaz, não sendo contemplados métodos

Today, Alba has to manage its multichannel strategy and keep the competiveness of its products high. The Chinese stores channel has become a crucial pillar of the brand, and it

Segundo BONNARD, o controle da Administração no Direito Comparado se dá por um dos seguintes modos: “a) por órgãos da própria Administração, em que ocorre o autocon-