• Nenhum resultado encontrado

Effects of concentration and temperature on tribological properties of biodiesel

N/A
N/A
Protected

Academic year: 2017

Share "Effects of concentration and temperature on tribological properties of biodiesel"

Copied!
10
0
0

Texto

(1)

Advances in Mechanical Engineering 2015, Vol. 7(11) 1–10

ÓThe Author(s) 2015 DOI: 10.1177/1687814015611025 aime.sagepub.com

Effects of concentration and

temperature on tribological properties

of biodiesel

De-Xing Peng

Abstract

For tribologists, continuing challenges in engine design include reduced emissions and increased operating temperatures. Regulating the sulfur content in diesel fuel is expected to reduce the lubricity of these fuels, which may result in increased wear and damage of fuel injection systems in diesel engines. However, the use of biodiesel improves lubricity and cetane number requirements, particularly in ultra-low sulfur petro-diesel. In this study, the effect of temperature on the tribological properties of palm biodiesel was investigated using a wear machine. Palm biodiesel was used as a lubricat-ing additive to petro-diesel at six concentrations of 2%, 5%, 10%, 20%, 50%, and 100%, and these biodiesel blends were named as B2, B5, B10, B20, B50, and B100, respectively. The tribological experiments were performed using the ball-on-ring method. Tests were conducted at 30°C, 60°C, 90°C, and 120°C, under a normal load of 50 N for 2 h and at a speed

of 500 r/min. The wear scar diameter and the worn surface of tribopairs were studied and analyzed. According to the wear experimental results, the addition of a small amount of palm biodiesel to petroleum diesel can bring about a con-siderable reduction in the wear and friction under boundary lubrication. Results show that friction and wear increase with increasing temperature.

Keywords

Biodiesel, diesel engine, lubrication, wear testing

Date received: 22 February 2015; accepted: 27 August 2015

Academic Editor: Mustafa Canakci

Introduction

Increasing industrialization, modernization, and devel-opment has led to a high demand for petroleum world-wide. In the Kyoto conference on global climate change, nations worldwide have committed to reducing greenhouse gas emissions. The use of various fossil fuels, such as petroleum products and coal, leads to several environmental problems such as reduction in underground-based carbon energy sources and subsi-dence of the ground surface after the extraction of fuels and minerals. Because of the environmental impacts and fluctuating prices of petroleum products, biodiesel has drawn considerable attention in recent years as a clean and renewable fuel.1 The world is presently

confronted with the twin crises of fossil fuel depletion and environmental degradation. Recently, because of increase in crude oil prices, limited resources of fossil oil and environmental concerns, there has been a renewed focus on vegetable oils and animal fats to make biodiesel. These reductions in exhaust emissions

Department of Vehicle Engineering, Army Academy R.O.C, Taipei, Taiwan, ROC

Corresponding author:

De-Xing Peng, Department of Vehicle Engineering, Army Academy, No.750, 3rd Neighborhood, Longdong Rd., Zhongli City, Taoyuan County 32093, Taiwan (R.O.C.).

Email: sugarest.tw@yahoo.com.tw

(2)

have been caused by engine design such used biofuel and control of the fuel injection. Therefore, an attempt has been made on promotion and application for bio-fuel that is important to evaluate the performance and lubricity characteristics using biodiesel fuel blends on a diesel engine.2,3

Increasingly strict regulations of sulfur content in commercial petroleum diesel fuels decrease their lubri-city. This reduced lubricity can cause damage to the engine and fuel injection systems that use these fuels. This will lead to drastic reduction in sulfur content and increase in cetane number, which in turn will adversely affect the lubricity characteristics of the diesel fuel.4 However, the use of biodiesel improves lubricity and cetane number requirements, particularly in ultra-low sulfur diesel. Biofuels are renewable, can supplement hydrocarbon fuels, assist in their conservation, as well as mitigate their adverse effect on the climate. The advantages of biofuel include increased employment and improved economic conditions, particularly in rural areas; enhanced energy security owing to reduced dependence on oil imports; foreign exchange savings; reduced vehicular pollution; and only a negligible con-tribution to global warming.5

Interest in diesel fuel lubricity has increased since the early 1990s. It was at this time that ultra-low sulfur diesel fuel (ULSDF\50 ppm) was commercialized,

and coincident with this, there was an increased inci-dence of drivability problems and pump failures. The ULSDFs showed that their inherent lubricity was unac-ceptable. Therefore, to promote the use of biofuel, the performance and lubricity characteristics of biofuel blends used in a diesel engine must be evaluated.6,7 Biodiesel derived from these sources can generally be classified as mono-alkyl esters of long chain fatty acids. In addition to being a renewable fuel source, biodiesel has several attractive features. Biodiesel is biodegrad-able, non-toxic, has higher flash point, causes reduced exhaust emission, and eco-friendly with petroleum die-sel fuel.8,9 Engine design and tribology engineers are constantly challenged to develop advanced method and products with low emission, and higher operating tem-peratures. The resulting engine systems must also meet more demanding emissions and fuel economy targets. The main factor in the durability and tribological beha-viors of engine components and lubricants is fuel characteristics.

A diesel engine can perform satisfactorily on biodie-sel blends without any engine hardware modifications. Long-term endurance test using biodiesel proved that biodiesel can be used for substituting mineral diesel in long run. Smoke emissions decrease appreciably when biodiesel is used in the engine. Esterification has proven effective for preventing long-term problems associated with utilization of vegetable oils such as fuel filter plug-ging, injector coking, formation of carbon deposits in

combustion chamber, ring sticking, and contamination of lubricating oils.10–12 Other advantages of biodiesel are low engine wear, low cost, and easy availability. When burned, biodiesel produces pollutants with few detrimental human health effects. Since biodiesel is free from sulfur, less sulfate emissions and particulate reduction are resulted in the exhaust. Palm oil has great potential to meet future demand because of its high production rate and its high oil content. Palm oil (5950 L per hectare) has the highest oil productivity, which is approximately 13 times higher than that of soybean oil and followed by Calophyllum inophyllum

oil.13,14 Since palm biodiesel is an oxygenated fuel, its more complete combustion compared to conventional fuels results in lower CO emissions in the exhaust.

Demirbas15stated that biodiesel provides significant lubricity improvement over petro-diesel fuel. Lubricity results of biodiesel and petro-diesel using industry test methods indicate that there is a marked improvement in lubricity when biodiesel is added to conventional diesel fuel. Bettis et al.16studied that use of biodiesel in diesel engine results in a slight reduction in brake power and a slight increase in fuel consumption. The exhaust emis-sions of biodiesel are also lower than those of diesel due to the presence of oxygen in the molecular structure of the biodiesel. Moreover, biodiesel fuel is environmen-tally friendly because it does not produce SOxand does

not contribute to global CO2 emissions. Fazal et al.17

investigated the effect of speed and biodiesel concentra-tion on wear scar diameter and fricconcentra-tion coefficient by four-ball wear machine. They found that wear scar dia-meter and friction coefficient had an almost linear rela-tionship with engine speed. However, both wear scar diameter and friction coefficient were negatively associ-ated with the concentration of biodiesel in the blend.

One of the main factors in the durability and tribo-logical behavior of engine components and lubricants is fuel characteristics. New engines tend to require improved diesel fuel lubricity to avoid excessive wear of the fuel injection system. Lubricity is a critical property of diesel fuel because it affects engine performance. Current and future regulations are expected to reduce the sulfur content of diesel fuel. Low lubricity (i.e. low sulfur content) increases diesel engine wear and dam-ages the fuel injection system. Alternative types of fuel have reduced diesel engine exhaust emissions and improved the friction and wear properties of engine parts. Biodiesel reduced long-term engine wear in diesel engines, and it was an effective lubricant, demonstrat-ing a superior performance compared with petro-diesel. The possible uses of other types of biodiesel and their effects on human health and the environment warrant large-scale studies.

(3)

the sulfur-containing materials that caused the loss of lubricity. Poor lubricity is linked with the failure of engine parts. The biodiesel exhibits improved load capacity wear resistance. Analysis of lubricity charac-teristics of the biodiesel fuel blends showed a nonlinear relationship between biodiesel concentration and wear loads. However, the lubricant properties of biodiesel were more effective than those of petro-diesel and increased engine life. The use of biofuels as diesel engine fuels can play a vital role in helping the developed and developing countries to reduce the environmental impact of fossil fuels.

Although many studies have confirmed the accepta-ble performance results of engines operating with bio-diesel, few studies have analyzed wear and maintenance at different temperatures. The use of diesel engines has increased in recent years because of their high fuel effi-ciency and low emissions. However, the tribological behavior and durability of the fuel injection component of an engine that runs on biodiesel are unclear. In this study, the tribological measurements included motion resistance and wear. The tribological properties of bio-diesel used as an additive to pure petro-bio-diesel were examined using a ball-on-ring wear tester to determine the optimal concentration; the mechanism of the reduc-tion of wear and fricreduc-tion was investigated using optical microscopy (OM).

Experimental procedure

This study investigated the effect of temperature on the lubricity of different palm biodiesel blends. The essen-tial fuel properties are given in Table 1. The objective was to determine the correlation between wear quanti-ties being measured and percentage of biodiesel content in fuel oil. All test fuels were mixed for 30 min at 3000 r/ min by a mechanical homogenizer machine. The blends contained no water molecules and showed no phase separation. A biodiesel additive was added to ULSDF (less than 50 ppm) at weight percentages of 0 wt%, 2 wt%, 5 wt%, 10 wt%, 20 wt%, 50 wt%, and 100 wt% (labeled as B0, B2, B5, B10, B20, B50, and B100). The resulting engine systems must also meet the strict emis-sions and fuel economy targets that have been recently established. Cold starts require diesel engine

components to work at room temperature (28°C–

31°C). Some of the diesel engine components work at

high temperatures. Hence, wear tests were conducted at four temperatures, 30°C, 60°C, 90°C, and 120°C, to

evaluate the tribological behaviors of the diesel under normal diesel engine operating temperatures. The tribo-logical experiments were performed using the ball-on-ring method (Figures 1 and 2). The wear and friction characteristics of biodiesel blends were investigated at four temperatures from 30°C to 120°C under a normal

load of 50 N for 2 h at a speed of 500 r/min.

The ring was made of bearing steel (AISI 52100 steel with HRC of 60–62, of composition: 0.95–1.05% C,

Table 1. Base fuel properties.

Property B0 B10 B20 B50 B100

Viscosity (40°C, Cst) 2.62 2.83 3.06 3.52 4.54

Flash point (°C) 88 93 104 121 162

Sulfur content (%) 0.01 \0.01 \0.01 \0.01 \0.01

Water content (ppm) 50.2 155.3 178.9 210.3 250.4

Cetane number 52.3 52.3 52.2 52.5 52.6

Figure 1. Ball-on-ring motion.

(4)

0.15–0.35% Si, 0.2–0.4% Mn,\0.027% P, \0.020%

S, 1.3–1.65% Cr, \0.3% Ni, and \0.25% Cu) with

70 mm diameter and thickness of 17 mm. The ball used in this study was made of bearing steel GCr15 with hardness of HRC 59–61 and diameter of 12.7 mm. Both surfaces were polished to roughness Ra = 0.05mm for

ball and Ra = 0.20mm for ring. The test conditions

were as defined by the ISO standard defining air condi-tions for testing diesel fuel lubricity. The relative humid-ity was kept between 50% and 55% while the mean ambient temperature in the laboratory was maintained at an approximate temperature of 28°C–31°C. The

mean diameter of wear scar on the ball was then mea-sured from five identical tests using a digital-reading microscope with accuracy of 0.01 mm. The friction coefficients were calculated from the applied load and measured strain on the ball-on-ring tester. The steel balls were rinsed in ethanol immediately and then the topography of the scar surfaces after the wear test was observed by OM. After each test was competed, all components in contact with the tested fuels were cleaned with toluene and acetone.

Results and discussion

Fuel blend stability tests were conducted to evaluate whether phase separation of the fuel blends occurred. The test was performed using 0%, 2%, 5%, 10%, 20%, and 50% biodiesel by weight in petro-diesel fuel. The blended fuels were maintained at 30°C, and the stability

was tested every 2 h for the first 24 h and every day thereafter for 2 months. During this time, no precipita-tion or opacity was observed to determine any differ-ences in the stability and miscibility between the six fuels (Figure 3).

Figure 4 shows the wear scar diameter and friction coefficient for different additive concentrations of

biodiesel in petroleum diesel obtained by tribological test at room temperature (30°C), which confirmed that

adding biodiesel to petroleum diesel can reduce the wear scar diameter of steel balls in comparison with pure petroleum diesel. A wear scar was clearly largest (diameter, 1.39 mm) in the case of pure petro-diesel. The optimal concentration of biodiesel in terms of minimizing wear scar diameter and friction coefficient is 10 wt%.

Apparently, 2–5 wt% content of the biodiesel in petro-diesel oil considerably reduces the diameter of a wear scar compared to that of petro-diesel. A pro-nounced minimum can be observed in the concentra-tion range of 10%–20%. It is found that the lubricity in terms of friction and wear increases with increasing concentration of biodiesel. This difference was also attributable to the presence of aliphatic fatty acids in biodiesel, such as stearic acid, which could enhance lubrication properties by controlling friction and wear between contact surfaces by developing lubrica-tion films. The oxygen-containing compounds and the mixture of several fatty acids in methyl esters which were adsorbed onto the rubbing surface reduce friction and improve the film thickness of the bound-ary lubrication regime. This trend is also seen in the incremental viscosity as the chain length increases. However, at biodiesel concentrations above 10%, the wear scar diameter slightly increased, and small amounts of metal merged. This may be attributable to oxidation or chemical corrosive wear during the wear process.

The percentage share of the lubricant film covering the surface under friction conditions increases as con-centration increases. The protective films can reduce thermal energy in sliding contact and thereby improve lubricity. These lubricity-enhancing films are most likely based on carboxylic acid moiety. Another

Figure 3. The sedimentation of biodiesel in petro-diesel of pure petro-diesel (left), 2% biodiesel, 5% biodiesel, 10% biodiesel, 20% biodiesel, and 50% biodiesel (right).

(5)

possible explanation is trace components in the biodie-sel fuel, such as free fatty acids, monoglycerides, and diglycerides, which reportedly improve the lubricity of biodiesel. Working temperature plays a crucial role in lubricant wear performance. Hence, wear tests were conducted at different temperatures, such as room tem-perature (30°C), 60°C, 90°C, and 120°C, to evaluate

the tribological behaviors of the biodiesel blends at normal diesel engine operating temperatures. At room temperature, Figure 5 shows that B10 exhibits the high-est antiwear performance, followed by B5 and B2. All biodiesel blends yield a smaller wear scar diameter compared with pure petro-diesel. The wear scar dia-meter decreases drastically for B2 and B5 compared with pure petro-diesel.

Some diesel engine components work at high tem-peratures, which may induce dissimilar wear mechan-isms. To investigate the effect of biodiesel on tribological behavior, the blended fuels were tested at 30°C–120°C. Figure 5 shows that the wear scar

dia-meter increased slightly with increasing temperature. At 120°C, a superior antiwear performance was

observed for B5 and B10 because of the promoting effect of biodiesel with the effective formation of physi-cal adsorption films. At high temperatures, the effect of physical adsorption is considerably weak, suggesting that the tribological behavior is dominated by chemical adsorption and chemical reaction films.18,19

Figure 6 shows that the friction coefficient for differ-ent biodiesel blends increases somewhat with increasing temperature. The biodiesel blends have a lower friction coefficient than that of pure petro-diesel, and higher blends tend to have a lower friction coefficient. The magnitude of the friction coefficient confirms that the lubrication mode is located in the boundary lubrication regime, and the properties of the boundary films

dominate the wear behavior. Figure 7(a)–(d) shows the typical frictional behaviors of the ball-on-ring wear tests for pure petro-diesel (B0), B2, B5, and B10, indi-cating that the coefficient of frictions tested for B5 and B10 are the most stable at room temperature (30°C). In

addition, variations in the friction coefficients for B5 and B10 confirm a short run-in process, which can reduce the amount of wear. Figure 7(e)–(h) shows the typical frictional behaviors tested for the biodiesel blends at 120°C. Studies have indicated that increasing

the oxygen content improves the friction and wear properties of pure petro-diesel. The lowest friction coef-ficient was observed when pure petro-diesel was con-taminated with 10% biodiesel (B10). The analysis of fuel properties reveals that biodiesel has the advantages of a high cetane number, extremely low sulfur and aro-matic contents, and favorable lubricity. Biodiesel is pri-marily composed of fatty acid methyl ester compounds, and it has a higher dynamic viscosity than that of petro-diesel and is similar to surface active agents that have a high affinity toward metals. In addition, biodie-sel can be used as an oil additive for enhancing lubrica-tion and reducing wear.20–22 The laboratory wear test data for biodiesel as compared to that of diesel fuel have been summarized in Table 2.17

Figure 8(a)–(d) shows the worn surfaces of the ball specimens tested at room temperature (30°C) for the

biodiesel blends. Figure 8(a) shows the microcutting and abrasive wear caused by hard particles penetrating the brittle solid surface. As shown in Figure 8(d), B10 demonstrates the highest antiwear performance. Comparing Figure 8(b)–(d) shows that the worn sur-faces of B10 are smoother than those of B2 and B5. The percentage share of the lubricant film covering the sur-face under friction conditions increases as the biodiesel concentration increases. Protective films can reduce

Figure 5. Variation of wear scar diameter with temperature for different concentration of biodiesel (ball-on-ring, 500 r/min,

(6)

Figure 7. Typical friction behavior of ball-on-ring tested in the various oils at 30°C and 120°C. (ball-on-ring, 500 r/min, Ra: 0.20mm,

50 N): (a) B0 (30°C), (b) B2 (30°C), (c) B5 (30°C), (d) B10 (30°C), (e) B0 (120°C), (f) B2 (120°C), (g) B5 (120°C), and (h) B10

(7)
(8)
(9)

thermal energy on sliding contact, thereby improving lubricity.23–25These lubricity-enhancing films are likely based on carboxylic acid moieties. Figure 8(e)–(h) shows the worn surfaces of the ball specimens tested at 120°C for the biodiesel blends. The worn surfaces tested

at 120°C are comparatively darker than those tested at

30°C. The wear mechanisms of the worn surface tested

for B2 and B5 are similar to those for B10 (Figure 8(f)– (h)). Figure 8(f)–(h) shows that the ball specimens tested for B2, B5, and B10 are characterized by abrasive wear. The wear scar profiles perpendicular to sliding direction on worn surfaces were analyzed using a Talysurf-120 profilometer. Figure 9 shows the steel ring surface roughness analysis results. The surface exposed to pure petro-diesel after the lubricity test revealed a residue at the wear scar periphery and had a surface roughness of 0.565mm. Average roughness (Ra)

deter-mined through a surface profiler decreased from 0.531 to 0.304mm after biodiesel usage, which indicated

improved lubrication. The surface roughness analysis also showed good results. A possible reason is that the additional lubricity properties of the biodiesel reduced friction.

Conclusion

This study analyzes the tribological effect of pure petro-diesel blended with 2%, 5%, 10%, 20%, 50%, and 100% biodiesel fuels. The experimental results are attri-butable to biodiesel contamination acting as a friction-reducing additive in pure petro-diesel. Regarding anti-friction and antiwear properties, the lubricity of palm biodiesel increases as the biodiesel concentration increases. The low wear rate in biodiesel may result from fatty compounds. Biodiesel components, such as fatty acid methyl esters, free fatty acids, and monogly-cerides, reportedly improve the lubricity of biodiesel, thereby substantially reducing wear tendencies. However, the lubricity of biodiesel at higher tempera-tures is relatively decreased.

Declaration of conflicting interests

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Funding

This work was supported by the National Science Council of the R. O. C. with Grant no. NSC 101-2221-E-539-003.

References

1. Grigor B and Girma B. Elastohydrodynamic study of vegetable oil–polyalphaolefin blends.Lubric Sci2008; 20: 283–297.

2. Kesse DG. Global warming—facts, assessment, counter-measures.J Petrol Sci Eng2000; 26: 157–168.

3. Cao X. Climate change and energy development: implica-tions for developing countries.Resour Policy2003; 29: 61–74. 4. Wander PR, Altafini CR, Colombo AL, et al. Durability studies of mono-cylinder compression ignition engines operating with diesel soy and castor oil methyl esters. Energy2011; 36: 3917–3923.

5. Graboski MS and McCormick RL. Combustion of fat and vegetable oil derived fuels in diesel engines. Prog Energ Combust1998; 24: 125–134.

6. Mariasiu F. Numerical investigation of the effects of bio-fuel characteristics on the injector nozzle erosion process. Tribol T2013; 56: 161–168.

7. Xu YF, Yu HQ, Wei XY, et al. Friction and wear beha-viors of a cylinder liner–piston ring with emulsified bio-oil as fuel.Tribol T2013; 56: 359–365.

8. Nabi N, Shahadat MZ, Rahman S, et al. Behavior of diesel combustion and exhaust emission with neat diesel fuel and diesel-biodiesel blends. SAE paper 2004-01-3034, 2004.

9. Haseeb ASMA, Masjuki HH, Ann LJ, et al. Corrosion characteristics of copper and leaded bronze in palm bio-diesel.Fuel Process Tech2010; 91: 329–334.

10. Szybist JP and Boehman AL. Behavior of a diesel injec-tion system with biodiesel fuel. SAE paper 2003-01-1039, 2003.

11. Joseph PV and Sharma DK. Improvement of thermooxi-dative stability of non-edible vegetable oils of Indian Table 2. Wear data from laboratory wear test: wear in biodiesel as compared to diesel.17

References Biodiesel Method Results

Mun˜oz26 B1–B10 (waste vegetable oil) HFRR L

Sukjit27 B100 (RME) HFRR S

Mangesh28 B10 (canola oil) HFRR L

Wain29 B20 (soybean) Four-ball test S

Dalai et al.30 B1 (canola oil) Roller on cylinder S

Mansjuki and Maleque31 B5 Pin-on-disc L

Goodrum and Geller32 B (0.1–5) (rapeseed, soybean, castor) HFRR L

Kalam and Masjuki33 B20 (palm oil) Four-ball wear L Rashid et al.34 B100 (Moringa oleiferaoil) HFRR L

The works B100 (palm) Ball-on-ring L

(10)

origin for biodegradable lubricant application.Lubric Sci 2010; 22: 149–161.

12. Matthew T, Siniawski NS and Pantcho S. Influence of humidity on the tribological performance of unmodified soybean and sunflower oils.Lubric Sci2011; 23: 301–311. 13. Syahrullail S, Kamitani S and Nakanishi K. Experimen-tal evaluation of refined, bleached, and deodorized palm olein and palm stearin in cold extrusion of aluminum A1050.Tribol T2012; 55: 199–209.

14. Ing TC, Rafiq AKM, Azli Y, et al. The effect of tempera-ture on the tribological behavior of RBD palm stearin. Tribol T2012; 55: 539–548.

15. Demirbas A. Relationships derived from physical proper-ties of vegetable oil and biodiesel fuels. Fuel 2008; 87: 1743–1748.

16. Bettis BL, Peterson CO, Auld DL, et al. Fuel characteris-tics of vegetable oil from oilseed crops in the Pacific Northwest.Agron J1982; 74: 335–339.

17. Fazal MA, Haseeb ASMA and Masjuki HH. Biodiesel feasibility study: an evaluation of material compatibility; performance; emission and engine durability.Renew Sust Energ Rev2011; 15: 1314–1324.

18. Haseeb ASMA, Sia SY, Fazal MA, et al. Effect of tem-perature on tribological properties of palm biodiesel. Energy2010; 35: 1460–1464.

19. Lin YC, Kan T, Chen JN, et al. Tribological performance of engine oil blended with various diesel fuels.Tribol T 2013; 56: 997–1010.

20. Maleque MA, Masjuki HH and Haseeb ASMA. Effect of mechanical factors on tribological properties of palm oil methyl ester blended lubricant.Wear2000; 239: 117–125. 21. Hasimoglu C, Ciniviz M, Ozsert I, et al. Performance

characteristics of a low heat rejection diesel engine oper-ating with biodiesel.Renew Energ2008; 33: 1709–1715. 22. Clark SJ, Wagner L, Schrock MD, et al. Methyl and ethyl

soybean esters as renewable fuels for diesel engines.J Am Oil Chem Soc1984; 61: 1632–1638.

23. Sharma BK, Doll KM and Erhan SZ. Ester hydroxy deri-vatives of methyl oleate: tribological, oxidation and low

temperature properties. Bioresource Technol 2008; 99: 7333–7340.

24. Tsuchiya T, Shiotani H, Goto S, et al. Japanese standards for diesel fuel containing 5% FAME: blended diesel fuels and its impact on corrosion. SAE paper 2006-01-3303, 2006.

25. Yamane K, Kawasaki K, Sone K, et al. Unsaturated fatty acid methyl esters and thermal oxidation characteristics. Rev Automot Eng2006; 27: 593–600.

26. Mun˜oz M, Moreno F, Monne´ C, Morea J and Terradil-los J. Biodiesel improves lubricity of new low sulphur die-sel fuels.Renew Energ2011; 36: 2918–2924.

27. Sukjit E and Dearn KD. Enhancing the lubricity of an environmentally friendly Swedish diesel fuel MK1.Wear 2011; 271: 1772–1777.

28. Mangesh G, Kulkarni AK and Dalai NN. Transesterifi-cation of canola oil in mixed methanol/ethanol system and use of esters as lubricity additive.Bioresource Tech-nol2007; 98: 2027–2033.

29. Wain K. Oxidation of biodiesel fuel for diesel emissions reduction and improved fuel lubricity. University Park, PA: The Pennsylvania State University, 2001.

30. Dalai AK, Kulkarni MG and Meher LC. Biodiesel pro-ductions from vegitable oils using heterogenious catalysts and their applications as lubricity additives. IEEE Tech-nical Paper No. 1-4244-0218, 2006.

31. Masjuki HH and Maleque MA. The effect of palm oil diesel fuel contaminated lubricant on sliding wear of cast irons against mild steel.Wear1996; 198: 293–299. 32. Goodrum JW and Geller DP. Infuence of fatty acid

methyl esters from hydroxylated vegetable oils on diesel fuel lubricity.Bioresource Technol2005; 96: 851–855. 33. Kalam MA and Masjuki HH. Testing palm biodiesel and

NPAA additives to control NOx and CO while improving efficiency in diesel engines.Biomass and Bioenergy2008; 32: 1116–1122.

Imagem

Figure 1. Ball-on-ring motion.
Figure 4 shows the wear scar diameter and friction coefficient for different additive concentrations of
Figure 6 shows that the friction coefficient for differ- differ-ent biodiesel blends increases somewhat with increasing temperature
Figure 7. Typical friction behavior of ball-on-ring tested in the various oils at 30 ° C and 120 ° C
+3

Referências

Documentos relacionados

The iterative methods: Jacobi, Gauss-Seidel and SOR methods were incorporated into the acceleration scheme (Chebyshev extrapolation, Residual smoothing, Accelerated

Na hepatite B, as enzimas hepáticas têm valores menores tanto para quem toma quanto para os que não tomam café comparados ao vírus C, porém os dados foram estatisticamente

Tabela 2: Média e desvio padrão do Número de células de Sertoli (NCS), Número de espermatócitos (NE) e Número de espermátides alongadas (NEA) encontradas, por

Abstract: As in ancient architecture of Greece and Rome there was an interconnection between picturesque and monumental forms of arts, in antique period in the architecture

Roughness profile after lubricity tests with diesel and biodiesel fuels: on the left, new disc; on the right, role area of scar..

Response surface of biodiesel degradation highlighting the interaction between the variables time and biodiesel content in diesel (water content in biodiesel: 0.05% v/v;

Este artigo discute o filme Voar é com os pássaros (1971) do diretor norte-americano Robert Altman fazendo uma reflexão sobre as confluências entre as inovações da geração de

Ora, essas, por meio de pesquisas, desenvolvem inovações que permitem a organizações privadas alcançarem flexibilidade e eficiência, porém não conseguem elas mesmas