• Nenhum resultado encontrado

Rev. bras. farmacogn. vol.27 número3

N/A
N/A
Protected

Academic year: 2018

Share "Rev. bras. farmacogn. vol.27 número3"

Copied!
9
0
0

Texto

(1)

w ww.e l s e v i e r . c o m / l o c a t e / b j p

Original

article

A

cytotoxic

Petiveria

alliacea

dry

extract

induces

ATP

depletion

and

decreases

␤-F1-ATPase

expression

in

breast

cancer

cells

and

promotes

survival

in

tumor-bearing

mice

John

F.

Hernández

a,b

,

Claudia

P.

Urue˜na

a

,

Tito

A.

Sandoval

a

,

Maria

C.

Cifuentes

a

,

Laura

Formentini

b

,

Jose

M.

Cuezva

b

,

Susana

Fiorentino

a,∗

aGrupodeInmunobiologíayBiologíaCelular,FacultaddeCiencias,PontificiaUniversidadJaveriana,Bogotá,Colombia

bDepartamentodeBiologíaMolecular,CentrodeBiologíaMolecularSeveroOchoa,ConsejoSuperiordeInvestigacionesCientíficas-UniversidadAutónomadeMadrid,Madrid,Spain

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received17May2016 Accepted20September2016 Availableonline9February2017

Keywords: Petiveriaalliacea

Breastcancer

␤-F1-ATPase Respiration ATPdepletion

a

b

s

t

r

a

c

t

Metabolicplasticityincancercellsassurescellsurvivalandcellproliferationundervariablelevelsof oxy-genandnutrients.Therefore,newanticancertreatmentsendeavortotargetsuchplasticitybymodifying mainmetabolicpathwaysasglycolysisoroxidativephosphorylation.InAmericantraditionalmedicine PetiveriaalliaceaL.,Phytolaccacea,leafextractshavebeenusedforleukemiaandbreastcancertreatments. Herein,westudycytotoxicityandantitumoraleffectsofP.alliaceaextractintumor/non-tumorigeniccell linesandmurinebreastcancermodel.BreastcancercellstreatedwithP.alliaceadryextractshowed reductionin␤-F1-ATPaseexpression,glycolyticfluxtriggeringdiminishedintracellularATPlevels, mito-chondrialbasalrespirationandoxygenconsumption.Consequently,adeclineincellproliferationwas observedinconventionalandthree-dimensionspheresbreastcancercellsculture.Additionally,invivo treatmentofBALB/cmicetransplantedwiththemurinebreastcancerTS/AtumorshowedthatP.alliacea extractviai.p.decreasestheprimarytumorgrowthandincreasessurvivalintheTS/Amodel.

©2017SociedadeBrasileiradeFarmacognosia.PublishedbyElsevierEditoraLtda.Thisisanopen accessarticleundertheCCBY-NC-NDlicense(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

Cancer cells may assure survival and proliferation under shiftinglevelsofoxygenand nutrientsthrough metabolic plas-ticitybetweenglycolysisandoxidativephosphorylation(OxPhos) metabolicpathways.Integratingthesepathwaysinglucose oxida-tionprovidesimportantsubstratesasATP,NADHandbiosynthetic precursorsforthecellhousekeepingprocesses(Formentinietal., 2010).MitochondrialactivityandspecificallyOxPhosplaya rele-vantroleinfacilitatingtheexecutionofcelldeath(Cuezvaetal., 2009).InthemitochondrialinnermembraneisfoundtheATPase orcomplexV,amulti-enzymaticcomplexwithtwodomains:a hydrophobicintramembranedomainF0andahydrophilicdomain F1 facing to the matrix leaflet. F1 domain has five sub-units ␣3␤3␥1␦1␧1andthreecatalyticsites(subunit␤and␣/␤ inter-face).Theelectrochemicalgradientgeneratedbythemitochondria REDOXreactions,makespossibletheprotoninfluxintothematrix through F0 domain providing the necessary energy for ADP

∗ Correspondingauthor.

E-mail:susana.fiorentino@javeriana.edu.co(S.Fiorentino).

phosphorylation (Stock et al., 1999; Gledhill et al., 2007).It is wellknownthatcancercells canhavestructuralandfunctional mitochondrial alterations. For instance, it has been shown in human carcinomas that selective repression of ␤-F1-ATPase is inverselycorrelatedwithglyceraldehyde-3-phosphate dehydroge-nase(GAPDH)levelscausingdecreaseinmitochondrialactivityand increaseinglycolyticflux(Cuezvaetal.,2002).Moreover,human breastcancercellsoverexpressedlactatedehydrogenaseisoformA (LDH-A)leadingtoanincreaseinlactatesecretion(Koukourakis et al., 2008). Hence highlactate levels are associated to taxol resistanceand cell proliferation augmentation under a hypoxic microenvironment(Fantinetal.,2006;Zhouetal.,2010).

Recently, dichloroacetate (a pyruvate dehydrogenase kinase inhibitor)hasbeenproposedasanewanticancerdrugspecially forglycolytictumorsposinglimitedsideeffects(Papandreouetal., 2011)andbroadeningthespectrafornewOxPhosregulators.In thisregard,plantscouldbeasourceofcompoundsabletotarget cancermetabolicpathways.

In fact, Petiveria alliacea L., Phytolaccaceae, infusions from leafand roothave beenreportedto haveanti-spasmodic, anti-rheumaticandanti-inflammatoryproperties(Moralesetal.,2001) andparticularlyusedinleukemiaand breastcancertreatments

http://dx.doi.org/10.1016/j.bjp.2016.09.008

(2)

J.F.Hernándezetal./RevistaBrasileiradeFarmacognosia27(2017)306–314

(Garcia-Barriga, 1974; Gupta, 1995). It has been shown that P. alliacea extracts are cytotoxic on leukemia, lymphoma and melanomacelllines(Rossi,1990;Rossietal.,1993;Urue˜naetal., 2008), howeverit poseslow toxicity onhumanfibroblasts and peripheralbloodmononuclearcells(Urue˜naetal.,2008).Recently, wehaveproposedthatantitumoractivityofa dryextractfrom P.alliaceacanbepartlyexplainedbytheglycolyticfluxshifting ofcancercells,asshownon4T1breastcancermodel(Hernandez etal.,2014).

Herein, we demonstrated that a dry extract from P. alli-aceacauseschangesinmitochondrialactivitycharacterizedbya decreasein␤-F1-ATPaseexpressionandATPdepletionleadingto adecreaseinbreastcancercellproliferationinvitroandinvivo.

Materialsandmethods

Plantmaterialandextractionprocedure

Petiveria alliacea L., Phytolaccaceae, leaves and stems (local name“anamu”)werecollectedinCachipay,Cundinamarca, Colom-biaonApril2009andidentifiedbyCarlosParrafromtheColombian National Herbarium; voucher number COL 569765 (Colombian EnvironmentalMinistryagreementnumber 1927relatedtothe use of genetic resources and derivatives products). P. alliacea extractionprocedureand chemicalcharacterization were previ-ouslydescribed (Urue˜naet al.,2008).Briefly,dryground leaves and stemswereextracted with96%ethanol (15±5◦C),filtered andconcentratedunderreducedpressure.Ethanolicextractwas trapped on fumed silica, fractionated with ethyl acetate and extractedwithmethanol:wateryieldingadryextract(DER gen-uine:10000–11000:1).Thecompoundsidentifiedin dryextract fromP.alliaceawere:benzaldehyde,leridol,petiveral,myricetin, petiveral4-ethyl, pinitol,dibenzyldisulfideanddibenzyl trisul-phide. HPLC chromatographic fingerprint was acquired in a Jasco®PU2089plusequippedwitha UVdetector(254nm)using a C18 column and water/acetonitrile gradient as mobile phase (Hernandezetal.,2014).TomeetEMAguidelines,theactivemarker selectedwasdibenzyldisulfide,a reportedcytotoxiccompound (Cifuentesetal.,2009)foundata concentrationof2.6mg perg ofextract.

Celllines

4T1,TS/A,3T3andHS578TcelllineswereculturedinDMEM andHCT116celllineinMcCoy’s5Amedium,bothsupplemented withfetal calf serum (FCS) heat-inactivated (10%), l-glutamine

(2mM),penicillin (100U/ml), streptomycin (100␮g/ml), HEPES buffer(0.01M) andsodiumpyruvate(1mM)(EurobioToulouse, FR).MCF12Fcelllinewascultured inDMEM/F-12medium sup-plementedwithfetalhorseserum(5%),epidermalgrowthfactor (20ng/ml),humaninsulin(10␮g/ml),hydrocortisone(500ng/ml), choleratoxin(100mg/ml),penicillin(100U/ml)andstreptomycin (100␮g/ml).Celllineswereincubatedunderhumidified environ-mentat37◦Cand5%CO2.

Invitrocytotoxicityassays

Cytotoxic effects were evaluated using methylthiazol tetra-zolium (MTT, Sigma-Aldrich,Saint Louis, MO) and trypan blue dye assays. Cells (5×103 cells/well) were seeded in 96-wells plateswithdifferentconcentrationsofdryextractfromP.alliacea (250–0.95␮g/ml)orethanol(0.02%)asnegativecontrolfor48h. ProliferationwasestimatedbyMTTassayaccordingtoprocedure previouslydescribed(Urue˜naetal.,2008).TheIC50valuewas esti-matedwithnonlinearregressionanalysis(GraphPadPrism5for Windows).

Westernblots

Cellsweresuspendedinlysisbuffercontaining25mMHEPES, 2.5mM EDTA,0.1% TritonX-100,1mM PMSFand 5mg/ml leu-peptin.Extractswerecentrifugedat11,000×gfor15minat4◦C. Supernatantsprotein concentrationwasdeterminedwith Brad-fordproteinassay.Cellularproteins(7–20␮g)werefractionated bySDS/PAGE (12%)andtransferred ontoPVDFmembranes. Pri-marymonoclonalantibodieswere: anti-␤-F1-ATPase (1:50,000) (Cuezvaetal.,2002),anti-Hsp60(1:10,000)andanti-NADH9 (com-plexI39kDa)(1:1000)(Aceboetal.,2009),anti-ComplexIIIsubunit Core 2 (1:1000) from Abcam; anti-SDH (succinate dehydroge-nase)(1:500)fromLifeTechnologies;anti-␤-actin(1:20,000)and anti-tubulin(1:5000)fromSigma-Aldrich.Peroxidase-conjugated anti-mouseoranti-rabbitIgG(NordicImmunology,1:3000)were usedassecondaryantibodies.Blotsrevealedwithluminol electro-chemiluminescence(ECL)reagent(AmershamPharmaciaBiotech, LittleChalfont,UK).

Oxygenconsumptionestimation

CellularoxygenconsumptionratesweredeterminedinanXF24 ExtracellularFluxAnalyzer(SeahorseBioscience).Cells(4×104) wereseededinXF24-wellcellculturemicroplates(Seahorse Bio-science), treated with dry extract from P. alliacea or ethanol, incubatedat37◦Cand5%CO2 for6or24h.Aftertreatmentthe followingsubstanceswereconsecutivelyinjectedtoachieve the indicatedfinalconcentration:oligomycin(OLIGO,6␮M), dinitro-phenol(DNP)0.5mM,rotenone1␮Mandantimycin1␮M.

Glycolysisfluxestimation

Cells(1.5×105)wereseededandallowedtogrowuntil60%of confluence.Todetermineglycolyticrates,cells weretreatedfor 3,6,24or48hwithdryextractfromP.alliaceaorethanolwith orwithoutOLIGO6␮M.Aftertreatmentmediumwasreplacedby freshone(FCS0.5%)andcellswereallowedtorestduring2h. Sam-plemedium(100␮l)wasprecipitatedwithperchloricacid(6%), neutralized(KOH20%),andglycine–hydrazine–EDTAbuffer(1M: 0.4M:1.3mM)containingLDH(RocheDiagnosticsGmbH)and␤ -NADHhydrate (Sigma-Aldrich) wasadded (Govindarajan etal., 2007).Lactatelevelswereestimatedat340nminaShimadzu spec-trophotometer.ProteincontentwasestimatedbyBradfordprotein assay(Sigma-Aldrich).

IntracellularATPdetermination

Intracellular ATP was measured using ATP Bioluminescence AssaykitHS II(RocheDiagnostics). Briefly,1.5×105 cells were platedin6-wellplates,treatedwithdryextractfromP.alliacea, DOG/metforminHCl (Sigma-Aldrich)orethanolduring6h, har-vested, counted, and lysedwithlysis buffer(50␮l) at 20◦C for 5min.Adilution(1:100)fromsampleorstandard(50␮l)was trans-ferredtoa96-wellplate,andluciferasereagent(50␮l)wasadded. Theemittedlightwasmeasuredimmediatelyandintegratedusing aPlateChameleonVModel425-156(Hidex)for10s.Blankvalue (noATP)wassubtractedfromeachsample’srawdataandATP con-centrationswerecalculatedfromthestandardcurveandexpressed as␮molper1×105cells.

Spheresnumberandareaestimation

(3)

J.F.Hernándezetal./RevistaBrasileiradeFarmacognosia27(2017)306–314

streptomycin (100␮g/ml). Cells were daily treated during 6 dayswithethanol(negativecontrol),dryextractfromP.alliacea (11␮g/ml),deoxyglucose(DOG,0.24mM)anddoxorubicin(DOX, 0.08␮M).After7days,sphereswerecountedbytwoindependent observersusinganopticalmicroscopeOlympus(10×).Cellculture mediumwas recovered,centrifuged(100×g)during 3min and spheres pelletsuspended in phosphate buffer saline(PBS) and placed onmicroscope slide. Spheres’ areawas measuredusing Axiovision®software(CarlZeiss).

Animals

Female BALB/c mice,6–12 weeks old were purchased from CharlesRiversLaboratoriesInternational,Inc.(Boston,MA), and housedinouranimalresearchfacilityfollowingtheestablished protocols of the Ethics Committee of the Science Faculty and National and International Legislation for Live Animal Experi-mentation(Colombia Republic, Resolution 8430/1993; National

AcademyofSciences, 2010).Micewerehousedinpolyethylene cageswithfoodandwateradlibitum,controlledtemperature,anda 12-hlight/darkcycle.Beforetreatments,themicewereacclimated foroneweekunderstandardconditions.Thisprojectwasapproved bytheEthicsCommitteeoftheScienceFacultyon29/04/2009.

Tumormodel

TS/Acells(1×104)suspendedin100␮lofPBSwereinjected intotherightmammaryfatpad(subcutaneously[SC])onday0 and then randomly assigned to PBS control group (n=9), DOX group (3mg/kg Al Pharma®, n=9) or P. alliacea extract group (250mg/kg, n=8).After5 days ofinoculation, treatmentswere injectedintraperitoneally(i.p.)onceaweekforDOXandtwicea weekforP.alliaceaextractuntil56dayspost-inoculation.Tumors weremeasuredwithVerniercalipersthreetimesaweek,andtumor volumewascalculatedusingthefollowingformula:tumorvolume (mm3)=[(width)2

×length]/2Gallotannin-richCaesalpiniaspinosa

100

80

60

40

20

0

0 25 50 75 100 125 150

P. alliacea dry extract (µg/ml)

Control

125 µg/ml 62.5 µg/ml P. allieacea

Control Doxorubicin

5 µM 2.5 µM

Cell line

4T1 HS578T TS/A HCT116 MCF12F 3T3

29.3 30.3 76.7 88.0

≅ 250

≅ 250 IC50 (µg/ml)

Cell death, %

175 200 225 250

A

B

(4)

J.F.Hernándezetal./RevistaBrasileiradeFarmacognosia27(2017)306–314

20

A

C

D

E

B

16

12

8

4

0

20

16

12

8

4

0

Control Oligo

∗∗ ∗∗

∗∗

∗∗

∗∗∗

3h 6h 24h

P. alliacea extract 3 µg/ml

48h Control

nmol lactate/

µ

g protein/h

±

SEM

nmol lactate/

µ

g protein/h

±

SEM

nmol lactate/

µ

g protein/h

±

SEM

nmol lactate/

µ

g protein/h

±

SEM

nmol lactate/

µ

g protein/h

±

SEM

Oligo 3h 6h 24h

P. alliacea extract 3 µg/ml 48h

20

16

ns

12

8

4

0

20

16

12

8

4

0

20

16

12

8

4

0

Control Control Oligo Control Oligo P. alliacea

3 µg/ml P. alliacea extract 10 µg/ml

After wash 24h

After wash 48h

3h 6h 24h

Oligo 3h

P. alliacea 12 µg/ml

Fig.2. Petiveriaalliaceaextractdecreasesglycolyticfluxinbreastcancercelllines.(A)4T1,(B)HS578T,(C)MCF12F,(D)HCT116,(E)HS578T.Celllinesweretreatedwitha

P.alliaceadryextract(IC50/10)during3,6,24or48h.Aftertreatmentlactateconcentrationwasevaluatedbyenzymaticassay.Datarepresentthemean±S.E.M.ofatleast

threeindependentexperiments*p<0.05,**p<0.001,***p<0.0001comparedtocontrolusingStudent’sttest.

fractiondecreasestheprimarytumorandfactorsassociatedwith poorprognosisina murinebreast cancermodel (Urue˜naetal., 2013).Astudyofsurvivaldefiningtheendpointofeach individ-ualaccordingtothecriteriaof toxicityand animalwelfarewas conducted.TheanimalswereeuthanizedinaCO2chamberwhen achieveoneormoreendpointcriteria.

Statisticalanalysis

Resultsareexpressedasmean±S.D.Foroxygenconsumption estimations and mammosphere analyses two-way ANOVAwas usedandunpairedttestforremaininganalyses.Survivalcurves obtainedbytheKaplan–Meiermethodwerestatisticallyanalyzed usingtheLog-ranktest.StatisticalanalysesweredoneusingGraph PadPrism5withap<0.05significance.

Results

Petiveriaalliaceadryextractismorecytotoxictobreastcancer celllineswhilesparingtofibroblastsandepithelialbreastcells

Dryextract from P.alliacea is cytotoxicto breast and colon tumorcell lines in a dose-dependent mannerwhile sparingto fibroblasts(3T3)and non-tumorigenicepithelial breastcell line (MCF12F)(Fig.1A).ThecorrespondingIC50is30␮g/mlforhuman HS578Tandmurine4T1breastcancercells,77␮g/mlformurine TS/Abreastcancercelllineand88␮g/mlforcolontumorcellline HCT116(Fig.1A).Cytotoxicityobservedinbreastcancercelllines wasassociatedtomorphologicalchangeslikeincreaseofcellular volume,theappearanceofrefringentvesiclesanddetachmentfrom theculturesurface(Fig.1B).

Reductionintheglycolyticfluxwasobservedaftertreating4T1 andHS578Tcelllines(3and6h)withP.alliaceaextract,at sub-cytotoxicconcentrations–IC50/10th–(Fig.2,panelAandB).The extracteffectisearlyandtransientdisappearingafter24h, regard-lesswhethertheextractremainsornotinthecellculture(Fig.2, panelE).Noeffectisobserved onMCF12F orHCT116celllines (Fig.2,panelCandD,respectively)after24htreatment,neither intheexpressionofglycolyticenzymesasGAPDH,pyruvatekinase (PK)andLDH(datanotshown).Thelattersuggeststhattheextract compoundsmaybindanyglycolyticenzymeinareversibleway promotingthetransientdecreaseintheglycolyticflux.

Petiveriaalliaceadryextracttreatmentcausesdecreasein mitochondrialrespiration,ATPsynthaseexpressionand intracellularATPconcentrationonbreastcancercelllines

MitochondrialOxPhosproteinexpressionofNADH9(complex I), succinatedehydrogenase (complexII30kDairon–sulfur sub-unit),cytochromeb-c1subunit2(complexIIICoreIIsubunit)and ␤-F1-ATPase (complexV)weredetermined toassess P.alliacea extractactivity.Wefoundthattheexpressionof␤-F1-ATPase pro-teinwasaffectedbythetreatmentinbothbreastcancercelllines (Fig.3).

(5)

J.F.Hernándezetal./RevistaBrasileiradeFarmacognosia27(2017)306–314 Control 1

A

B

30 48 52 52 42 30 39 48 52 52 42 SDH 3.5 3 2.5 2 1.5 1 0.5

Control 24 h

0

2 7 20 12

10 8 6 4 2 0 15 10 5 0 6 5 4 3 2 1 0 1.8 1.6 1.4 1.2 1 0.8 0.6 0.4 0.2 0 3.5 3 2 1 0 3 2.5 2 1.5 1 0.5 Control Core II/α-tubulin

SDH/α-tubulin β-F1/β-actin

24 h Control 24 h

Control 24 h Control 24 h

Control 24 h Control

NADH9/α-tubulin SDH/α-tubulin Core II/α-tubulin β-F1/β-actin

24 h 0 Core II β-F1-ATPse α-tubulin β-actin SDH NADH9 Core II β-F1-ATPse α-tubulin β-actin

2 3 1 2 3

P. alliacea extract (3 µg/ml)

Control

1 2 3 1 2 3

P. alliacea extract (3 µg/ml)

Fig.3. Petiveriaalliaceaextractdecreases␤-F1-ATPaseexpressioninbreastcancercelllines.(A)4T1and(B)HS578TcelllinestreatedwithaP.alliaceadryextractfor24h. NADH9,SDH,andCOREIIproteinexpressionwerealsodeterminedshowingnoeffectaftertreatment.RepresentativeWesternblotsandtheircorrespondinghistogramsare shownofthreeindependentpreparations(lanes1–3).Theleftsideofblotshowsproteinmolecularmassin(kDa).Blackbarsrepresentnormalizedbandswith␣-tubulinor

␤-actininarbitraryunits.Resultsarethemean±S.E.M.ofthreeindependentexperiments.*p<0.05comparedtocontrolusingStudent’sttest.

100 80 60 40 20 0 0 50 100 150

0 10 20

Rotenone Rotenone Antimycin Antimycin Control P. alliacea Control ∗ ∗∗ ∗∗ P. alliacea Oligomycin Oligomycin DNP DNP 30 Time (min) OCR (pmol/min/ µ g protein) ± SEM OCR (pmol/min/ µ g protein) ± SEM OCR (pmol/min/ µ g protein) ± SEM OCR (pmol/min/ µ g protein) ± SEM

40 50 60

0 10 20 30

Time (min)

40 50 60 BR MR OSR

BR MR OSR

150 0 20 40 60 80 100 100 50 0

Fig.4.Petiveriaalliaceaextracttreatmentreducesbasalrespiration,maximalrespirationandoxygenconsumptionrate(OCR)associatedtoATPproductionin4T1cells. After6h(upperpanel)and24htreatment(lowerpanel)theOCRwasmeasuredfollowingtheadditionoftheindicatedagents(left).Histogramsshowthecomparisonin basalrespiration(BR),maximalrespiration(MR)andoligomycinsensitiverespiration(OSR)betweencontrolandP.alliaceaextractcellstreated.Resultsareexpressedasthe mean±SEMoftwoindependentexperiments.*p<0.05,**p<0.001comparedtocontrolusingatwo-wayANOVA.

However,itmustbetakenintoaccountthattreatmentsignificantly lowers basal respiration explaining the no change in respira-tion.DNP,isaprotonionophorethatinduceselectrontransport chaintofunctionatitsmaximumratebycollapsingmitochondrial

(6)

J.F.Hernándezetal./RevistaBrasileiradeFarmacognosia27(2017)306–314

2.0

1.5

1.0

0.5

0.0

ETOH P. alliacea

(30 µg/ml)

P. alliacea

(3 µg/ml)

DOG (1.2mM)+ MET (0.5mM)

Treatment

∗∗∗ ∗∗ ∗∗

A

T

P [

µ

M]/1

×

10

5 cel

Fig.5. PetiveriaalliaceaextracttreatmentdecreasesintracellularATP.4T1cellswere treatedwithP.alliaceadryextractordeoxyglucoseplusmetformin(DOG+MET) during6h.ATPwasmeasuredbyabioluminescenceassay.ATPconcentrationis expressedas␮molper1×105cells.Thefigurerepresentsonefromthree

indepen-dentexperiments.Resultsareexpressedasthemean±S.D.**p<0.001,***p<0.0001 comparedtocontrolusingStudent’sttest.

expressionlevelorfunctionalityof␤-F1-ATPaseisaltered(Fig.4, upperpanel).Similarresultswereobtainedafter24htreatment (Fig.4,lowerpanel).

IntracellularATPlevelin4T1 cellswasmeasuredafterusing DOG/metformin (1.2mM/0.5mM) as a severe ATP synthesis inhibitor,whichcausesa5-foldreductioninintracellularATP.Our treatmentshoweda 2.5-folddecrease(Fig.5)in 4T1cells, con-firmingthatmitochondrialATPsynthesisisdecreasebyP.alliacea extracttreatment.

AdryextractfromPetiveriaalliaceadecreases4T1spheresand conventionalcellcultureproliferation

Anoutstandingmodelfordrugscreeningarethespheressince theyaremidwaybetweenconventionalculturesandinvivotumors (Pampaloniet al., 2007).Aftersix days of P.alliacea treatment atsub-cytotoxicconcentrations,asignificantdecreaseinspheres’ numbernearly74%and75%inareawasobserved(Fig.6AandB).A comparablebehaviorwasobservedwithDOGandDOXtreatments. Decreaseinviablecellsnumber(60%)wasobservedin4T1 conven-tionalcellcultureafter6daystreatmentwithDOGorP.alliacea extractatsub-cytotoxicconcentrations(Fig.7).

Petiveriaalliaceadryextractdecreasestheprimarytumorand promotessurvivalinaTS/Amurinebreastcancermodel

ToassesstheantitumoreffectofP.alliaceaextract,a murine modelofmetastaticbreastcancerwasused.Previously,an esti-matedlethaldose50 (LD50) of1545mg/kg for theextract was reported(Hernandezetal.,2014),thustherapeuticdoseevaluated was6-foldlowertoassurelowtoxicity.FemaleBALB/cmicewere inoculatedwithSCinjectionof1×104TS/Acells.Afterfivedays, thetumorswerepalpable,andthemiceweretreatedwithP. alli-aceaextract(250mg/kg,twiceaweek),vehicle(PBS)orpositive control(DOX, 3mg/kgonce a week).Fig.8A shows thatP. alli-aceaextractsignificantlyreducedtumorgrowthcompared with thecontrol,becomingincreasinglymarkedfromday32,atday42 thetumorachievesavolumeof881mm3incontrolgroup com-pareto343mm3inP.alliaceatreatment.Likewise,DOXtreatment reducestumorvolumeinasignificantlymannershowingavolume of87mm3atday42witha67%ofanimalsfreeoftumor.Duetoa

15

A

B

C

800 000 ∗∗∗

∗∗∗ ∗∗∗ ∗∗∗

∗∗∗

∗∗∗

600 000

400 000

200 000

0 10

5

0

Control DOG

Treatment

Spheres n

umber

±

SD

Area (

µ

m

2)±

SD

DOX

P. alliacea

Control P. alliacea (6 µg/ml) DOG (0.24 mM) DOX (0.08 µM)

Control DOG

Treatment

DOX

P. alliacea

Fig.6. Petiveriaalliaceaextracttreatmentdecreasesthespheresinnumberandarea.4T1singlecellscultureonultra-lowattachmentplatesweretreatedwithaP.alliacea

dryextract(IC50/5),deoxyglucose(DOG,0.24mM))ordoxorubicin(DOX,0.08␮M)duringsixdays.(A)Sphereswerecountedbytwoindependentobserversonday7thusing

anopticalmicroscopyOlympus(10×).(B)SpheresareawasdeterminedusinganopticalmicroscopyOlympus(10×)andimagesanalyzedwithsoftwareAxiovision®.(C)

(7)

J.F.Hernándezetal./RevistaBrasileiradeFarmacognosia27(2017)306–314

500 000

400 000

300 000

200 000

100 000

0

ETOH ∗∗∗

∗∗∗ ∗∗∗

DOG Treatment

Number of viab

le cells

±

SD

DOX P. alliacea

Fig.7.ContinuoustreatmentwithPetiveriaalliaceadryextractusingsub-cytotoxic concentrationsdecreases4T1cellviability.4T1cellsweretreatedwithP.alliacea

dryextract(IC50/5),deoxyglucose(DOG,0.24mM))ordoxorubicin(DOX,0.08␮M)

duringsixdays.Atday7thviablecellswerecountedusingtrypanbluedye.Results areexpressedasmean±S.D.fromthreeindependentexperiments.***p<0.0001 comparedtocontrolusingatwo-wayANOVA.

markeddecreaseinthecontrolgrouppopulationbeforeday50th (77%),weevaluatethesurvivaloftreatmentsgroupsfollowingthe endpointcriteriaoftoxicityandanimalwelfareforeach individ-ual.AsshowninFig.8BP.alliaceaextractincreasessurvivalto48.5 dayscomparedto38daysin controlgroup(p=0.0055Log-rank test)whileDOXtreatmentimprovessurvivalto70dayscompared tocontrol(p=0.0004Log-ranktest).

1200

A

B

800

400

0

100

150

0

0 15 30 45 60 75 90

0 2 4 7 9 11 14 16 18 21

Time (days)

Time (days)

PBS

∗ ∗ ∗

∗∗∗

∗∗∗

∗ DOX (3 mg/kg) (n=9) P. alliacea (250 mg/kg) (n=8)

PBS (n=9) DOX (3 mg/kg) (n=9)

P. alliacea (250 mg/kg) (n=8)

Sur

viv

al, %

T

u

mor v

olume (mm

3)

23 25 28 30 32 35 37 39 42

Fig.8.TumorgrowthinhibitionandincreaseinsurvivalinBALB/cmicebyPetiveria alliaceaextract.BALB/cmiceimplantedSCwith1×104TS/Acellsforfivedaysand

randomlydividedintothreegroups.Group1wastreatedwithPBS(vehicle),group 2wastreatedwith3mg/kgofdoxorubicin,andgroup3wastreatedwith250mg/kg ofP.alliaceaextract.(A)Meantumorvolume.Thegraphrepresentsthemeantumor volume(mm3)

±S.D.fromeachgroupwith8–9animalspergroup.***p<0.0001 comparedtocontrolusingStudent’sttest.(B)Kaplan–Meiersurvivalcurves rep-resenting%survivalofmicebearingsubcutaneousTS/Abreasttumors.Statistical analysiswasdoneusinglogranktest.**p<0.001,***p<0.0001comparedtocontrol.

Discussion

OurgroupaimstovalidateP.alliaceatraditionaluseforcancer treatment(Chirinos,1992;Gupta,1995;CorreaandBernal,1998). Previously,P.alliaceaextracthasbeenproventoinduce apopto-sisandtodecreasecolonycellgrowthin4T1cells(Urue˜naetal., 2008).Inaddition,hereinweshowedthatthedryextractfromP. alliaceaiscytotoxicinadose-dependentmannertohumanbreast (IC5030␮g/ml)andcolon(IC5088␮g/ml)cancercelllines. How-ever,theplantextractislesscytotoxictomurinefibroblastsand non-tumorigenicepithelialbreastcellline,whenculturedathigh xenobioticconcentration(Fig.1).Thecytotoxicityshowninbreast butnotcoloncancercellsisassociatedwiththedecreasein gly-colyticrate,giventhatthelactateproductionisreduced(Fig.2A). Although,wedidnotfindchangesinglycolyticenzymes expres-sion,thefluctuationsinratewereacuteandreversible.

Suolinnaetal.(1975)havedemonstratedthatflavonoidshaving hydroxylgroupsat3′,4,7either3or5positions,likefisetin, lute-olinorquercetindecreaseglycolyticrateinErhlichascitestumor cells. Such behaviorhasbeenexplained by thelossofNa+–K+ -ATPaseactivitythatlowersintracellularADPandPi,requiredfor glycolyticratemaintenance(Suolinnaetal.,1975).Previouslywe haveshown,thatP.alliaceaextractcontainsflavonoidsasleridol, petiveraland4-ethylpetiveralwhichhavehydroxylgroupsat5,7 and6positionsrespectively,althoughmethoxylsubstituentsmay bepresentat5or7positions(Urue˜naetal.,2008).Thisunique flavonoidcombinationcouldberesponsibleforthelactate secre-tiondecreaseinbreastcancercelllines.

Herein, we have demonstrated a decrease in ␤-F1-ATPase expressionandmitochondrialrespiration(basalandafterOLIGO addition)inhumanand murinebreast cancercelllinesafter P. alliaceaextracttreatment(Figs.3and4).Also,changesin maxi-mumrespirationcanbeaccountedbytheeffectofP.alliaceaextract onrespiratorycomplexesexpression(Fig.3).Inmammaliancells ␤-F1-ATPaseexpressionisprimarilyregulatedbymechanisms con-trolledattheleveloftranslation(WillersandCuezva,2011).Hence, wesuggestthatP.alliaceaextractmightpartiallyinhibittranslation of␤-F1-ATPasemRNA.

Moreover, flavonoids like quercetin, kaempferol and morin affectmitochondrial ATPaseactivity(ZhengandRamirez,2000). Specifically,quercetinbindstothehydrophobicpocketbetween ␥-and␤TP-subunitbymeansofvanderWaalsforcesandH-bonds preventingtherotationofF1catalyticdomain(Gledhilletal.,2007). Asdiscussedabove,P.alliaceaextractcontainsseveralflavonoids havingaplanarconformationlikequercetin.Wehypothesizedthat P.alliaceaextractflavonoids behavein aquercetin-like manner suchastheonereportedbyZhengandRamirez(2000),bybinding toF1hydrophobicpocketsanddecreasingtherespirationrate.

Celldeathisaddressedtonecrosisorapoptosisdependingupon ATPlevels.StrongATPdepletion(>50%)isacommitmentto necro-siswhilehigherATPlevelsfavorsapoptosis(Leistetal.,1997).Also, wehaveestablisheda2.5-folddecreaseinATPlevelsassociatedto adeclineinglycolyticfluxandOCRin4T1cells(Fig.5).Previously, ourgrouphasreportedthatP.alliaceaextractinducesapoptotic celldeath(Hernandezetal.,2014)whereATPdepletioncouldbe implied.

(8)

J.F.Hernándezetal./RevistaBrasileiradeFarmacognosia27(2017)306–314

Glucose

Glucose 6P

PEP

Pyruvate

P. alliacea

extract

ADP ATP

TCA

OxPhos ADP

Breast cancer cell

Intracellular ATP

cell proliferation

ATP

Basal respiration

O2 consumption

F1-ATP synthase Acetyl-CoA

Lactate Lactate

Fig.9. AmodelfortheproposedmetabolicmechanismofactionofthecytotoxicextractofPetiveriaalliacea.

Invivo assay showedthat treatmentwithP. alliaceaextract twiceaweekviai.p.withadoseequivalenttotheLD50/6decreases the primary tumor growth and increases survival in the TS/A murinebreastcancermodel.TS/Aisahighlyheterogeneous mam-maryadenocarcinomaoriginatedspontaneouslyinaBALB/cmice thatdevelopsspontaneouslungmetastases andgenerates100% oftumordevelopmentafterinoculationof105cellsviaSC(Nanni etal.,1983).OurresultsshowedthatP.alliaceaextractincreases significantlythemediansurvivalofmicewithaninteresting50%of populationfreeoftumoruntil42days,suggestingthatATP deple-tioncausedbyP.alliaceatreatmentcouldarrestthetumorgrowth atthebeginningphase,astagecharacterizedbyahighlyglycolytic andmitochondrialactivity.Overallwehypothesizethatcontinuous treatmentof cancercells withP.alliaceaextract decrease␤ -F1-ATPaseexpressionandglycolyticfluxtriggeringdiminishedATP levelsandfinallydecreasingcellproliferation.SoATPdepletionin breastcancercelllinescouldpartiallyexplainP.alliaceadryextract cytotoxicandantitumoralactivity.Aproposedmodeldisplaying themetabolismmechanismof actionoftheextract isshownin Fig.9.

Anticancerdrugsthatblockenergyproductionormimic low energyconditionrepresentanewclassofcancerdrugtherapy(Jose andRossignol,2013).Particularly,drugsaffectingmitochondrial complexes(I,IIandIV)likeVLX600anindol-1,2,4-triazinehave shownantitumoractivityincolontumorxenografts(Zhangetal., 2014).Similarly,acytotoxicaqueousextractfromScutellaria bar-batacontainingflavonoids,terpenesand alkaloidsreducesbasal respirationandglycolyticfluxinbreastcancercelllines(Chenetal., 2012).

Conclusions

HerewehavedemonstratedthatATPdepletionanddecreasein mitochondrialexpressionof␤-F1-ATPasecouldpartlyexplainthe P.alliaceadryextractcytotoxicactivity.Suchmechanismseems specifictoepithelialbreastcancercelllineshavingnoeffecton non-tumorigeniccounterparts.Currently,wearestudyingifATP depletionisonlyduetomitochondrialeffectsorNa+–K+-ATPase

changesareinvolvedinamechanismsimilartothedescribedby Suolinnaforhydroxylsubstitutedflavonoids.

Authorcontributions

SF,JMC, LFand JFH participate inthe studyconception and experimentsdesign.JFHandTASperformtheacquisitionofdata. JFH,CPU,MCCandTASparticipateindraftingofmanuscript.SF, MCCandJMCaccomplishthecriticalrevisionofmanuscript.All theauthorscontributetoanalysisandinterpretationofdata.

Conflictsofinterest

Theauthorsdeclarenoconflictsofinterest.

Ethicaldisclosures

Protectionofhumanandanimalsubjects. Theauthorsdeclare thattheproceduresfollowedwereinaccordancewiththe regula-tionsoftherelevantclinicalresearchethicscommitteeandwith thoseoftheCodeofEthicsoftheWorldMedicalAssociation (Dec-larationofHelsinki).

Confidentialityofdata. Theauthorsdeclarethattheyhave fol-lowed theprotocolsof theirwork centeronthe publicationof patientdata.

Right to privacy and informed consent.The authors have

obtainedthewritteninformedconsentofthepatientsorsubjects mentionedinthearticle.Thecorrespondingauthorisinpossession ofthisdocument.

Acknowledgments

(9)

J.F.Hernándezetal./RevistaBrasileiradeFarmacognosia27(2017)306–314

AdministrativodeCiencia,TecnologíaeInnovación“COLCIENCIAS” (120348925341)andPUJ(ID00004753)fortheirfinancialsupport. SomeexperimentsweresupportedbyMinisteriodeEconomíay Competitividad(SAF2013-41945-R),Spain.LFwasfinancially sup-portedbyAsociaciónEspa˜nolaContraelCáncer(AECC),Spain.PhD studentsJFHandTASwerefinanciallysupportedbyCOLCIENCIAS.

References

Acebo,P.,Giner,D.,Calvo,P.,Blanco-Rivero,A.,Ortega,Á.D.,Fernández,P.L., Ron-cador,G.,Fernández-Malavé, E., Chamorro,M., Cuezva,J.M., 2009. Cancer abolishesthetissuetype-specificdifferencesinthephenotypeofenergetic metabolism.Transl.Oncol.2,138–145.

Chen,V.,Staub,R.E.,Fong,S.,Tagliaferri,M.,Cohen,I.,Shtivelman,E.,2012.Bezielle selectivelytargetsmitochondriaofcancercellstoinhibitglycolysisandOXPHOS. PLoSONE7,e30300.

Chirinos,D.N.,1992.Elmilagrodelosvegetales:Petiveriaalliacea,3rded.Bienes Lacónica,Caracas,Venezuela.

Ciavardelli,D.,Rossi,C.,Barcaroli,D.,Volpe,S.,Consalvo,A.,Zucchelli,M.,DeCola, A.,Scavo,E.,Carollo,R.,D’Agostino,D.,Forli,F.,D’Aguanno,S.,Todaro,M.,Stassi, G.,DiIlio,C.,DeLaurenzi,V.,Urbani,A.,2014.Breastcancerstemcellsrely onfermentativeglycolysisandaresensitiveto2-deoxyglucosetreatment.Cell DeathDis.5,e1336.

Cifuentes,C.,Casta˜neda,D.,Urue˜na,C.,Fiorentino,S.,2009.AfractionfromPetiveria alliaceainducesapoptosisviaamitochondriadependentpathwayandregulates Hsp70expression.UniversitasSci.14,125–134.

Correa,J.,Bernal,H.,1998.EspeciesVegetalesPromisoriasdePaisesdelconvenio AndrésBello,Bogotá,Colombia.

Cuezva,J.,Krajewska,M.,deHeredia,M.,Krajewski,S.,Santamaria,G.,Kim,H., Zapata,J.,Marusawa,H.,Chamorro,M.,Reed,J.,2002.Thebioenergeticsignature ofcancer:amarkeroftumorprogression.CancerRes.62,6674–6681.

Cuezva,J.M.,Ortega,A.,Willers,I.,Sanchez-Cenizo,L.,Aldea,M.,Sanchez-Arago, M.,2009.Thetumorsuppressorfunctionofmitochondria:translationintothe clinics.Biochim.Biophys.Acta1792,1145–1158.

Fantin,V.,St-Pierre,J.,Leder,P.,2006.AttenuationofLDH-Aexpressionuncovers alinkbetweenglycolysis,mitochondrialphysiology,andtumormaintenance. CancerCell9,425–434.

Formentini,L.,Martínez-Reyes,I.,Cuezva,J.,2010.Themitochondrialbioenergetic capacityofcarcinomas.IUBMBLife62,554–560.

Garcia-Barriga,H.,1974.FloraMedicinaldeColombia.InstitutodeCiencias Natu-rales.UniversidadNacional,Bogotá,Colombia.

Gledhill,J.,Montgomery,M.,Leslie, A.,Walker,J.,2007.Mechanismof inhibi-tionofbovineF1-ATPasebyresveratrolandrelatedpolyphenols.PNAS104, 13632–13637.

Gong,C.,Bauvy,C.,Tonelli,G.,Yue,W.,Delomenie,C.,Nicolas,V.,Zhu,Y.,Domergue, V.,Marin-Esteban,V.,Tharinger,H.,Delbos,L.,Gary-Gouy,H.,Morel,A.,Ghavami, S.,Song,E.,Codogno,P.,Mehrpour,M.,2013.Beclin1andautophagyarerequired forthetumorigenicityofbreastcancerstem-like/progenitorcells.Oncogene32, 2261–2272.

Govindarajan,B.,Sligh,J.,Vincent,B.,Li,M.,Canter,J.,Nickoloff,B.,Rodenburg,R., Smeitink,J.,Oberley,L.,Zhang,Y.,Slingerland,J.,Arnold,R.,Lambeth,J.,Cohen,C., Hilenski,L.,Griendling,K.,Martinez-Diez,M.,Cuezva,J.,Arbiser,J.,2007. Overex-pressionofAktconvertsradialgrowthmelanomatoverticalgrowthmelanoma. J.Clin.Invest.117,719–729.

Gupta,M.,1995.270PlantasmedicinalesIberoamericanas.ConvenioAndrésBello. ConvenioAndresBelloySubprogramaXdelCYTED,Bogotá,Colombia.

Hernandez,J.,Urue˜na,C.,Cifuentes,C.,Sandoval,T.,Pombo,L.,Castaneda,D.,Asea, A.,Fiorentino,S.,2014.APetiveriaalliaceastandardizedfractioninducesbreast adenocarcinomacelldeathbymodulatingglycolyticmetabolism.J. Ethnophar-macol.153,641–649.

Jose,C.,Rossignol,R.,2013.Rationaleformitochondria-targetingstrategiesincancer bioenergetictherapies.Int.J.Biochem.CellBiol.45,123–129.

Koukourakis,M.,Kontomanolis,E.,Giatromanolaki,A.,Sivridis,E.,Liberis,V.,2008.

SerumandtissueLDHlevelsinpatientswithbreast/gynaecologicalcancerand benigndiseases.Gynecol.Obstet.Invest.67,162–168.

Leist,M., Single, B.,Castoldi, A.S., Kuhnle,S., Nicotera, P., 1997. Intracellular adenosinetriphosphate(ATP)concentration:aswitchinthedecisionbetween apoptosisandnecrosis.J.Exp.Med.185,1481–1486.

Morales,C.,Gomez-Serranillos,M.,Iglesias,I.,Villar,A.,Caceres,A.,2001.Preliminary screeningoffiveethnomedicinalplantsofGuatemala.Farmaco56,523–526.

Nanni,P.,deGiovanni,C.,Lollini,P.,Nicoletti,G.,Prodi,G.,1983.TS/A:anew metas-tasizingcelllinefromaBALB/cspontaneousmammaryadenocarcinoma.Clin. Exp.Metastasis1,373–380.

Pampaloni,F.,Reynaud,E.,Stelzer,E.,2007.Thethirddimensionbridgesthegap betweencellcultureandlivetissue.Nat.Rev.Mol.CellBiol.8,839–845.

Papandreou, I., Goliasova, T., Denko, N., 2011. Anticancer drugs that tar-getmetabolism: isdichloroacetate thenewparadigm? Int.J. Cancer 128, 1001–1008.

Rossi,V.,1990.AntiproliferativeeffectsofPetiveriaalliaceaonseveraltumorallines. Pharmacol.Res.22,434.

Rossi,V.,Marini,S.,Jovicevic,L.,D’Atri,S.,Turri,M.,Giardina,B.,1993.Effects ofPetiveriaalliaceaL.oncellimmunity.Pharmacol.Res.27(Supplement1), 111–112.

Stock,D.,Leslie,A.,Walker,J.,1999.Moleculararchitectureoftherotarymotorin ATPsynthase.Science286,1700–1705.

Suolinna,E.,Buchsbaum,R.,Racker,E.,1975.Theeffectofflavonoidsonaerobic glycolysisandgrowthoftumorcells.CancerRes.35,1865–1872.

Urue˜na,C.,Cifuentes,C.,Castaneda,D.,Arango,A.,Kaur,P.,Asea,A.,Fiorentino, S., 2008. Petiveria alliacea extracts uses multiple mechanisms to inhibit growthofhumanandmousetumoralcells.BMCComplement.Altern.Med.8,

http://dx.doi.org/10.1186/1472-6882-8-60.

Urue˜na, C., Mancipe, J., Hernandez, J., Castaneda, D., Pombo, L., Gomez, Asea,A., Fiorentino,S., 2013. Gallotannin-richCaesalpinia spinosa fraction decreases the primary tumor and factors associated with poor progno-sisin amurinebreast cancermodel. BMC Complement.Altern.Med.13,

http://dx.doi.org/10.1186/1472-6882-13-74.

Willers,I.,Cuezva,J.,2011.Post-transcriptionalregulationofthemitochondrial H+ATPsynthase:akeyregulatorofthemetabolicphenotypeincancer.Biochim. Biophys.Acta1807,543–551.

Zhang,X.,Fryknäs,M.,Hernlund,E.,Fayad,W.,DeMilito,A.,Olofsson,M.,Gogvadze, V.,Dang,L.,Påhlman,S.,Schughart,L.,2014.Inductionofmitochondrial dys-functionasastrategyfortargetingtumourcellsinmetabolicallycompromised microenvironments.Nat.Commun.5,http://dx.doi.org/10.1038/ncomms4295. Zheng, J., Ramirez, V., 2000. Inhibition of mitochondrial proton F0F1-ATPase/ATPsynthasebypolyphenolicphytochemicals.Br.J.Pharmacol.130, 1115–1123.

Imagem

Fig. 1. Petiveria alliacea dry extract show cytotoxic activity on breast cancer cell lines
Fig. 2. Petiveria alliacea extract decreases glycolytic flux in breast cancer cell lines
Fig. 4. Petiveria alliacea extract treatment reduces basal respiration, maximal respiration and oxygen consumption rate (OCR) associated to ATP production in 4T1 cells.
Fig. 6. Petiveria alliacea extract treatment decreases the spheres in number and area
+3

Referências

Documentos relacionados

Our findings indicate that Brb and Dox, alone and in combination, exhibit antiproliferative effects against human breast cancer T47D and MCF7 cell lines, and this

We examined PTPN12 mRNA expression in five breast cancer cell lines using semi- quantitative reverse-transcription PCR, and detected PTPN12 protein expression using

Function performance of upper limb and quality of life after sentinel lymph node biopsy of breast cancer.. Rev

After treatment with compounds 1 and 2 at 20 and 60 ␮ g/ml for 48 h, WST-1 assay revealed a decrease in cell proliferation in all four human lung cancer cell lines in a

In contrast to its reduced expression in primary tumor samples, SnoN have been shown previously to be elevated in esophageal, ovarian and breast cancer cell lines [7,16,19,20],

In fact, based on the high constitutive RANK expression in breast cancer specimens and cell lines, recent data suggest that RANK expression status of cancer cells determines

Increased expression of Rev3 in human breast epithelial cancer cell lines compared to non- neoplastic human breast epithelial cells MCF-12A, and in human breast tumors compared

To overcome this hurdle for studying the functional role of Vav1 in human breast cancer, we overexpressed Vav1 in two breast cancer cell lines, AU565 and MCF-7, achieving Vav1