• Nenhum resultado encontrado

Rev. bras. farmacogn. vol.26 número3

N/A
N/A
Protected

Academic year: 2018

Share "Rev. bras. farmacogn. vol.26 número3"

Copied!
8
0
0

Texto

(1)

RevistaBrasileiradeFarmacognosia26(2016)392–399

w ww.e l s e v i e r . c o m / l o c a t e / b j p

Review

Article

Eryngium

creticum

ethnopharmacology,

phytochemistry

and

pharmacological

activity.

A

review

Małgorzata

Kikowska

a,∗

,

Marzena

Dworacka

b

,

Izabela

K ˛edziora

a

,

Barbara

Thiem

a aDepartmentofPharmaceuticalBotanyandPlantBiotechnology,PoznanUniversityofMedicalSciences,Poznan,Poland

bDepartmentofPharmacology,PoznanUniversityofMedicalSciences,Poznan,Poland

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received28September2015

Accepted14January2016

Availableonline28March2016

Keywords: Eryngiumcreticum

Eryngo

Ethnopharmacology Phytochemistry

Pharmacologicalactivity

a

b

s

t

r

a

c

t

EryngiumcreticumLam.(E.cyaneumSibth.&Sm.,E.syriacumLam.),Saniculoideae,Apiaceaeisofgreat importanceinthetraditionalGreco–Arabmedicine.Thisstudywascarriedoutinordertocontributeto theethnopharmacologicalknowledgeofthismedicinalspecies.Thisreviewdescribesthebotanical char-acterizationanddistribution,aswellascriticallyassessesthephytochemicalpropertiesandbiological activitiesofE.creticum,aspeciesthathasbeenusedintraditionalmedicineformanydecades.Possible trendsandperspectivesforfutureresearchofthisplantarediscussed,aswell.E.creticumhasbeenfound tocontainseveralchemicalconstituents,mostlysesquiterpenes,monoterpenes,aldehydes,coumarins, sitosterolsandsugars.Eryngowithitsbioactivecompoundspossessesawildrangeofbiological activi-ties.ItwasreportedthatintraditionalmedicineE.creticumwasappliedmainlyastheremedyforsnake andscorpionbites.Somepublishedstudieshaveshownabroadspectrumofbiologicaland pharmaco-logicalactivities,includinganti-snakeandanti-scorpionvenom,aswellasantibacterial,antifungaland antileishmanialeffects.Otherhaveindicatedantihyperglycemic,hypoglycemicandantioxidantactivities ofthisspecies.Theinvitrostudiesandinvivomodelshaveprovidedasimplebioscientificexplanation foritsvariousethnopharmacologicaluses.

©2016SociedadeBrasileiradeFarmacognosia.PublishedbyElsevierEditoraLtda.Thisisanopen accessarticleundertheCCBY-NC-NDlicense(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

Topromotetraditionalmedicineandherbaltherapeutics,there shouldbeprovidedtheknowledgeofplantbioactivecompounds playinganimportantroleinhumanhealthcareandthescientific confirmationoftheirtraditionaluse.EryngiumcreticumLam., Api-aceaeisanexampleofaspeciesthathasremainedawildedible plantanditisknownmostlytogatherers.Thisarticleprovidesan overviewofE.creticum,atraditionalherbalremedyusedmostly forsnakeandscorpionbites:thedistributionpatternandbotanical descriptionofthespecies,thestatusofethnopharmacology, phy-tochemistryandthelaboratorydataonthebioactivity.Thecurrent statusofliteratureoneryngohasbeenreviewed.

Inbrief,thisreviewpresentstheresultsoftheinvestigations onE.creticum that have beenconducted sofarand points out thegaps inknowledge,which disclosureisnecessaryto under-standthemechanismofactionoftheextractsusedinatraditional medicine.Alsoitindicatesthenecessitytoconductin-depth exam-inationofthecorrelationbetweenthepharmacologicaleffectand

∗ Correspondingauthor.

E-mail:kikowska@ump.edu.pl(M.Kikowska).

thepresenceofthebioactivecompoundsresponsiblefortheaction. Thereviewsummarizesthephytochemicalanalysisand biologi-calstudiesthatmaybehelpfulforresearchestoundertakefurther studiessupportingtheexistingknowledgenecessarytounderstand theactionandmaycontributetothediscoveryofnewusesofthis interestingspecies.

Botanicalcharacteristicsanddistribution

Genus Eryngium L. comprises about 250species and is dis-tributed throughout temperate regions of every continent. The EryngiumspeciesgrowinEurasia,NorthAfrica,NorthandSouth America, andAustralia. It isthe mostspecies-richgenusofthe Apiaceae (Wolff, 1913; Wörz, 1999, 2004, 2005,2006; Calvino

etal.,2008;WörzandDiekmann,2010).Wolff(1913)groupedthe

speciesinto34sectionsandnumeroussubsections.Healso recog-nizedtwomajorinformalgroups:SpeciesgerontogeaeandSpecies americanaeandaustraliensis,theformerrepresentingtwelve sec-tionsfrom theOld World, and thelatter 22 sections fromthe AmericasandAustralia.E.creticumwithE.planumandE.caeruleum belongstoPlanasection(Wolff,1913).Anewsubgeneric classifica-tionofthegenuswaspresentedbyWörz(2005).Itrecognizesfive subgenera.Theclassificationwasbasedonmorphologyand did

http://dx.doi.org/10.1016/j.bjp.2016.01.008

0102-695X/© 2016 Sociedade Brasileira de Farmacognosia. Published by Elsevier Editora Ltda. This is an open accessarticle under the CCBY-NC-ND license

(2)

notreflectphylogenyorsolveproblemsofinfrageneric relation-ships(Wörz,2005).TheotherpaperdealtwiththeBalkanspecies. The classification of theBalkanspecies of Eryngium wasbased onconventional morphological characteristics.The basal leaves providedthemaincharacteristics.Specialization,thehighrateof endemism,sectionaldiversity,anddistributionpatternssuggest relativelyoldageofmostBalkanEryngiumspecies.The topograph-icalandclimaticdiversityresultedinisolationandsomeecological adaptations.Exceptions totheoldagespecies areprobablythe 3widespreadspeciesincludingE.creticumwhicharemigratory. Within the Circum-Mediterranean Plana section, E. creticum is the only Balkan species. The closest relative is the Caucasian E.caeruleum(Wörz,2006).ThestudycarriedoutbyCalvinoetal.

(2008),basedonphylogeneticanalysesof DNAsequencesfrom

threenon-codingchloroplastDNAlociandthenuclearribosomal DNAinternaltranscribedspacerregion,wasusefulincorroborating themonophylyofEryngium,dividingitintoredefinedand mono-phyleticsubgenera(E.subgenusEryngiumandE.subgenus Mono-cotyloidea),andidentifyingcladesthatsharedseveral morpholog-ical,biogeographicaland/orecologicaltraits(Calvinoetal.,2008). E.creticumLam. (E.cyaneumSibth.& Sm.,E.syriacum Lam., eryngo,flatholly,blueseaholly)wasdescribedbyJean-Baptiste PierreAntoinedeMonetdeLamarckin1798.Itisknownbyseveral localnames,butthemostrecognizableare:QorsAannehusedin LebanonandQarsa’na(Palestine).Eryngoisaspeciesthatbelongs toApiaceaefamily(Umbellifereae)anditcanbefoundinthe East-ernMediterraneanregion,mostlyinLebanon,Palestine,Jordanand Syria.It growsatlow altitudes,in sunnyplaces.Itiscommonly foundinfallowfields,roadsides,wasteplaces,and,occasionally, evenin theunderstoryofolivegroves.InSyriaitwasfoundin variousenvironments,whichindicatesitsadaptabilityandabiotic stresstolerance(Jawdatetal.,2010).Thespeciesisalsofoundinthe Alpineandsub-Alpinecalcareousgrasslandsinthehighmountains ofnorthernandcentralGreece.Thesoilsareusuallydeepand rel-ativelyrichinnutrients(Tutinetal.,1968;Wörz,2006;Caballero

etal.,2009).

TheHebrew nameof E.creticum –Charchevina–Makchila, is basedonthefacttheplantgrowsindryweather;therootname isH-R-Vwhichmeansdry,whilethesecondwordmeans“turning blue”.Despiteitsname,Charchevinaisactuallylistedinthe Mish-nah,the2ndC.ADbooksofJewishpractices,asoneofthePassover bitterherbs(Passachim2:6).

E.creticumisaspinyperennial,orsometimesbiennialorannual, glaucousandglobrousherb,reachingupto50cminheightandit haserectbranchedstems.Stemleavesaresessileandpalmately dividedinto3–8pricklylobes.Winterrosetteleavesarequickly withering,bluish,longpetioled,notprickly,entiretodentate,or lobed.Inflorescences arerepeatedlyforked;umbelsof0.7–1cm, head-like,withaninvolucreof5long,blue,spinybracts2–5times aslongasthehead,spreading,linear,boat-shaped,pricklyatbase oralongthelongmargin.Fruitsarescaly-bristly,obscurelyribbed

(Konigand Sims,1806;Don,1831;Muschler,1912;Tutinetal.,

1968;Mayer-ChissickandLev,2014).

Itiscultivatedforuseasavegetable,mainlyinsalads.Itsyoung leavesareeatenfreshand thickroots areeatenraw orcooked

(Mayer-ChissickandLev,2014).Anethnobotanicalsurveyofwild

edibleplantsofCyprus(PaphosvinezoneandLarnacamixed farm-ingzone)revealedthatyoungstemsandleavesoferyngopreserved invinegarwereeatenasappetizerswithseveralkindsoffood(Della etal.,2006).Thefreshlyharvested,simpleleavesonlongstalksof E.creticumanddeeplylobedleavesofE.glomeratumaremadeinto picklesbyGreekOrthodoxmonasteriesinCyprus(Lardos,2012). InLebanon,eryngoisconsumedmainlywhenfreshlygatheredand preparedmainlyrawasasalad.Mostinformationshowsthatthe plantisappetizinganditisdescribedasbitterintaste.According toanethnobotanicalsurveyofedibleplantsinnortheastLebanon,

eryngois consumed aboutthree times a week(Jeambey etal.,

2009).

Phytochemistry

Unfortunately,theliteratureonphytochemistryofE.creticumis stillscarce.Therearesomestudiesonthechemicalcompositionof theessentialoil.However,theknowledgeabouttheirnon-volatile chemicalconstituentsislimited.

The phytochemical screenings of aqueous, ethanolic, and methanolicextractsofE.creticumindicatedthepresenceof differ-entbioactivecompounds,mainlysesquiterpenes,monoterpenes, aldehydes,coumarins,sitosterols,tannins,resinsandsugars.Onthe otherhand,screeningformetalbymeansofspectroscopyshowed thatthisplantcontainsmetalssuchsilver,zirconium,nickel, sele-nium,niobiumand molybdenum,iron, calcium,manganeseand copper(Al-Khalil,1994;Ayoubetal.,2003;Celiketal.,2011;Farhan

etal.,2012;Dammousetal.,2014;Diranietal.,2014;Rammaletal.,

2015;Erdemetal.,2015).

Oneof thefirstphytochemicalinvestigations oftheroots of E. creticum, which grows wildly in Jordan, ledto the isolation and characterizationof ninecompounds: twocoumarins – del-tion(1)andmarmesin(2),cyclicalcohol–quercitol,monoterpene glycoside 3-(␤-d

-glucopyranosyloxymethyl)-2,4,4-trimethyl-2,5-cyclohexadien-1-one (3), phloroglucinol glycoside (1-(␤-d

-glu-copyranosyloxy-3-methoxy-5-hydroxybenzene))(4),␤-sitosterol anditsglycoside(␤-sitosterol-␤-d-glucopyranose),andtwosugars

–mannitolanddulcitol(Al-Khalil,1994).

The unique 1-n-propyl-perhydronaphthaline 1,2,4a,5,6,7, 8,8a-octahydro-4-methyl-1-propyl-naphthalene-7-carbaldehyde (eryng-9-en-15-al)(5),acompoundwhichpossessesanunusual sesquiterpene carbon skeleton, was isolated and identified, together with the new natural methyl ketone eicos-8,11-dien-18-ol-2-one(6),fromthehexane:ether(1:1)extractoftheaerial parts of E. creticum growing in Egypt. The structures of those compoundswereestablishedbyconventionalmethodsofanalysis andconfirmedbyDEPT,COSY,HMQCandHMBCspectralanalysis

(3)

394 M.Kikowskaetal./RevistaBrasileiradeFarmacognosia26(2016)392–399

AreportbyMahommadhosseini(2013)dealswiththe chemi-calcompositionofthevolatileoilfromstemsofE.creticumfrom Iran.TheoilwasobtainedusingamodifiedClevenger-type appa-ratusandtherespectiveanalyseswereperformedbymeansofGC andGC–MS.Itwasobtainedasaclearyellowishliquidcontaining 0.18%(w/w).Therewereidentifiedseventeencomponents con-stituting91.4%oftheoilcomposition.Themajorcomponentsof theoilwerefoundtobebornylacetate(28.4%),camphor(17.8%),

␣-pinene (12.1%), germacrene D (9.4%), borneol (8.6%) and ␣ -thujene (4.2%). Based upon the chemical profile, the essential oil was mainly characterized by the presence of increased amounts of oxygenated monoterpenes (Mahommadhosseini,

2013).

Thechemicalcompositionoftheessentialoilwasdetermined bydirect thermal desorption (DTD)-GC/MSanalyses.The result for essential oil yields of E. creticum growing in the Aegean region of Turkey was 0.21% (v/w). The oil was colorless, with a weak perfumery odor. The essential oil contains a mixture ofseveralcompounds,predominantlyaldehydesandoxygenated monoterpenes.Hexanal(52.90±2.70%),heptanal(13.90±3.82%) andoctane (8.95±2.32%)werethemajorcompounds. The per-centage of other compounds ranged from 0.14 to 3.57% (Celik etal.,2011).Tothebestofourknowledge,itisnotpossibleto calculateRIvalues lowerthan800usingthemixtureofC8–C32 alkanes.Moreover,theorder of compoundslistedin Table1 is notcorrectbecauseitisbasedonRIvaluesandtheseare unreli-able,e.g.neitherofthefirstcompoundscanhaveRIbelow600; RIofcompoundswiththesameformula,e.g.monoterpene hydro-carbons(limonene,cymenes,pinene,camphene),cannotdifferas greatlyas reported; RI(retentionindices) of a pairof homolo-gouscompoundssuchashexanal(givenRI=816,properRI=800) andheptanal(givenRI=1140,properRI=900)shoulddifferbyca. 100,andfornonanal(givenRI=1128)RI=1100etc.Itisnot pos-sibletoidentifyenantiomers usingGCor GC–MSonnon-chiral phase.Themethodologyandresultsreportedinthisarticlearenot reliable.

The total phenolic (TPC; Folin-Ciocalteau method) and total flavonoid(TFC;aluminumchloridemethod)contentintheleaves andstemsofE.creticumwasevaluatedandexpressedinmgofgallic acidorrutinequivalentpergramofdryweight.TheamountsofTPC andTFCintheleaveswerehigherthaninthestems.Theethanolic extractsofbothleaves(TPC253±0.031mg;TFC729±0.023mg) and stems (TPC 230±0.043mg; TFC 258.9±0.041mg) of this plant were found to contain higher amounts of TPC and TFC thantheaqueous extract(Farhan etal., 2012;Dammous et al., 2014). The latest studies this group of authors also showed a high content of phenolics and flavonoids in the methano-lic extracts,which wasmuch greater thanin aqueousextracts, and the same of slightly lower than in ethanolic extracts, both in the leaves and stems of E. creticum (Rammal et al.,

2015).

As it turns out, E. creticum contains various concentrations of elementsand heavy metals. It was found that this taxon is aplant which didnot showheavy metaltolerance. Theresults obtainedusingmicrowavedigestion(X-rayfluorescence spectrom-etry) demonstrated also that the amount of elements differed betweentheleavesandstemsofthestudiedplant.Thelevelof theseelementswashigherinleavesthaninstemsandcalcium wasfoundathigherconcentration(321.06mgkg−1)intheleaves

thaninstems(46.43mgkg−1),comparedtootherelements.These

resultsshowthateryngohasgoodnutritionalvalue(Farhanetal.,

2012;Dammousetal.,2014).

Manyfactorssuchasthegeographicaloriginmayberesponsible forthevariationofthecontentofbioactivecompoundsintheplant material,andforthis reasontheplaceofE.creticumoriginwas pointed.

Traditionalmedicine

Theplantisrecognizedasoneofthevarietieswhichcanbe usedasthebitterherbrequiredforthePassovermeal.TheArabsof Israel,whoareaccustomedtoeatingvariouskindsofseaholly,used E.creticumintheirtraditionalmedicine.Becauseofitstraditional use, the plant is of much scientific interest nowadays. It was reportedthat eryngowasappliedastheremedy forsnake and scorpionbites.TheArabseattheleavesorsmearthegroundroot tocurescorpionstings.Rootsandseedsimmersedinwaterhave beendrunkinordertotreatkidneystonesandinfections,skin dis-easesandtumors.Theseedsservetocurestomachsores,cataract intheeyes,andtoexpelworms.Thejuiceoftheleavesisalsoused totreatdiabetes.InIslamicmedicine,E.creticumisusedtotreat awiderange ofailments;particularlyitsrootsareusedagainst edema,sinusitis,urinaryinfections,andinflammations.Ithasalso beenusedtotreatliverdiseases,poisoning,anemiaandinfertility–a standard decoction was prepared from 50g of whole plant in 1l water and taken orally, three times per day until improve-mentoccurs(Palevitchetal.,1985;Yanivetal.,1987;Marlesand

Farnsworth,1995;Abu-Rabia,2005;ThiemandWiatrowska,2007;

Aburjaietal.,2007;Saadetal.,2008;Jeambeyetal.,2009;Saadand

Said,2011;Mayer-ChissickandLev,2014).

These traditional uses of eryngoneed scientific in vitro and invivoconfirmationofitseffects.

Biologicalandpharmacologicalactivities

Theresultsofanumberofpublishedstudiesshowabroad spec-trumof biological and pharmacological activitiesof E.creticum which are attributed to different parts and extracts of this plant,includinganti-snake andanti-scorpionvenom, antibacte-rialandantifungal,and antileishmanialeffects (Table1).Others includeantihyperglycemic,hypoglycemicandantioxidant

activi-ties(Table1).

Anti-snakeandanti-scorpionvenomsproperties

Snakebitesandscorpionstingsaremajorhealthhazardsthat leadtosufferingandhighmortalityofthevictims.Thousandsof injuriesassociatedwithsuchbitesandstingsofvenomousanimals havebeenthecauseofinnumerablecases ofdeathsworldwide

(Oukkacheetal.,2014).Theplantremediesmaybebeneficialin

thetreatmentofsnakebitesandscorpionstingsandtheymaybe regardedasanalternativetoanti-venom.Theplantmentionedin theliteratureoftheMediterraneanregionthatusedtotreatsnake andscorpionvenomswasE.creticum.Itwasreportedthatan aque-ousextractoftherootwasappliedastheremedyforscorpionstings intheruralareasofJordan(Yanivetal.,1987).

WhentestingtheefficiencyofE.creticumaqueousextract,itwas foundtosignificantlyprolongthelifeofguineapigsfrom20minto 8hwhencombinedwithLeiurusquinquestriutusscorpionvenom

(Jaghabiretal.,1989).ThesameextractcombinedwithCerastes

snakevenom prolongedthelifespanfrom12 to72h(El-Saket,

1990).

Inanotherstudy,theanti-venomactivityofE.creticum aque-ousextractwastestedusingisolatedrabbitandguineapigjejunum andtrachea.Theextractcausedadose-dependentinhibitionof tra-chealandjejunacontractioninducedbyL.quinquestriatusscorpion venomandinhibitedspontaneousmovementsofthejejunum(Afifi

etal.,1990).

Theaqueousand ethanol extracts(1.0␮gml−1)of freshand

(4)

M.

Kikowska

et

al.

/

Revista

Brasileira

de

Farmacognosia

26

(2016)

392–399

395

PharmacologicalactivityofEryngiumcreticum.

Activity Partofplant Typeofextract/compound Experimentalmodel Effect References

Anti-snakeand anti-scorpion venomsproperties

Roots Aqueousextract Guineapigstreatedwithextractcombined withLeiurusquinquestriutusvenom

Prolongsthelifeofanimalsfrom20minto8h Jaghabiretal.(1989)

Roots Aqueousextract Guineapigstreatedwithextractcombined

withCerastescerastesvenom

Prolongsthelifeofanimalsfrom12to72h El-Saket(1990)

Rootsandleaves Aqueousextract Isolatedrabbitandguineapigjejunumand

tracheatreatedwithextractcombinedwith

Leiurusquinquestriutusvenom

Inhibitstrachealandjejunacontractionand

inhibitsspontaneousmovementsofthe

jejunum

Afifietal.(1990)

Rootsandleaves Aqueousandmethanolic

extract

SheepredbloodcellstreatedwithCerastes

cerastesandLeiurusquinquesteiartusvenoms

Inhibitshaemolyticactivityofsnakeand

scorpionvenoms

Alkofahietal.(1997)

Antibacterialand

antifungalactivity

Aerialparts Aqueousandethanolicextract Staphylococcusaureus,Escherichiacoli,

Klebsiellapneumonia,Proteusvulgarisand

Pseudomonasaeruginosa

Antibacterialactivitywaslowormoderate

dependingontestedstrain

Ali-Shtayehetal.(1998)

Leaves,stemsandroots Aqueousandethanolicextract Staphylococcusaureus,S.epidermidis,

Escherichiacoli,Pseudomonasaeruginosaand

Enterococcusfaecalis

Antibacterialactivitywaslow,moderateor

significantdependingontestedstrain

Makkietal.(2015)

Floweringplant Essentialoil Methicillin-resistantStaphylococcusaureus Antibacterialactivitywaslowerwiththoseof

thereference

Celiketal.(2011)

Aqueousandethanolicextract Candidaalbicans Ali-Shtayehetal.(1998)

Leaves,rootsandfruits Aqueousextract Microsporumcanis,Trichophyton

mentagrophytesandT.violaceum

Antibacterialactivitywasmoderatein

comparisonwithreferenceantibiotic

Ali-ShtayehandAbu Ghdeib(1999)

Leaves Petroleumandmethanolic

extract

Botrytiscinerea,Alternariasolani,Penicillium

sp.,Cladosporiumsp.,Fusariumoxysporumf.sp.

melonis,Rhizoctoniasolani,Verticilliumdahlia

andPhytophthorainfestans

Lowmyceliainhibitoryefficacy,inhibitionof

sporegermination

Abou-Jawdahetal.(2002)

Antimalarialand

antileishmanial activity

Aerialparts Methanolicand

dichloromethanolicextract

PlasmodiumfalciparumandLeishmania donovanipromastigotes

ActivityagainstpromastigoteculturesofL.

donovani.Noantimalarialactivity

Fokialakisetal.(2007)

Antioxidantactivity Leavesandstems Aqueousandethanolicextract DPPHassay Asignificantantioxidantactivity Dammousetal.(2014)

Leavesandstems Aqueousandethanolicextract H2O2test Asignificantantioxidantactivity Farhanetal.(2012)

Dammousetal.(2014)

Leavesandstems Aqueousandethanolicextracts Ferrozinetest Asignificantantioxidantactivity Farhanetal.(2012)

Dammousetal.(2014)

Leavesandstems Aqueous,methanolicandethyl

acetateextract

DPPHassay

Ferrozinetest

Asignificantantioxidantactivity Rammaletal.(2013)

Wholeplant Ethanolicextract DPPHassay

Ferrozinetest

Asignificantantioxidantactivity Hijazietal.(2015)

Leavesandstems Aqueousandethanolicextract VCEAC Asignificantantioxidantactivity Farhanetal.(2012)

Dammousetal.(2014)

Leavesandstems Aqueousandethanolicextract Iron-inducedlipidperoxidationinratliver

homogenates

ItmoderatelysuppressesFe2+-inducedlipid

peroxidation

Ljubuncicetal.(2005)

Cytotoxicities Aerialparts Methanolicand

dichlorometanolicextract

Monkeykidneyfibroblast(Vero)cellline Notcytotoxicuptoconc.of47.6␮gml−1 Fokialakisetal.(2007)

Leavesandstems Aqueous,methanolicandethyl

acetate

MCF7breastcancercelllinebytheXTT Inhibitsgrowthofcellsbyand68–72% Rammaletal.(2013)

Leaves,stems,roots

andwholeplants

Aqueousandethanolicextract HeLacancercellsbyNaturalRedAssay Inhibitscellviabilityupto97% Diranietal.(2014)

Antimutagenicactivity Ethanolicextract Rathepatocyteprimaryculturestreatmented

withN-methyl-N′-nitro-N-nitrosoguanidine

Adirectantimutagenicactivityandan

increasedrecovery

Khaderetal.,2010

Antihyperglycemicand

hypoglycemiceffects

Aerialparts Aqueousdecoction Streptozotocin-induceddiabeticrats Significantreductionsinbloodglucose

concentrationwhengivenorally

Jaghabir(1991)

Aerialparts Aqueousextract Invitro(accordingtoGranfeldmethod)and

invivoenzymaticstarchdigestion

Lackofinvitroinhibitoryactivity Kasabrietal.(2011)

Aerialparts Aqueousextract Bioassaysof␤-cellproliferationandinsulin

secretionaswellasglucosediffusion

Highlysignificantproliferativeefficacies;lack

ofanystatisticallysubstantialglucose

diffusionalhindrancesintoexternalsolution

acrossdialysismembrane

(5)

396 M.Kikowskaetal./RevistaBrasileiradeFarmacognosia26(2016)392–399

percentageinhibition ofthehaemolyticactivityof thescorpion venom Leiurus quinquesteiartus, as compared to the dried leaf extract.Extractsofbothfreshanddriedrootsgave100% inhibi-tionofthesnakeandscorpionvenom.However,ethanolextracts oftheleavesandrootsenhancedRBChaemolysisratherthaninhibit venomactivitiesonredbloodcells(Alkofahietal.,1997).

Unfortunately, theauthors do didnot perform phytochemi-cal analysis of the tested extracts and did not respondto the questionaboutwhich groupofsecondary metabolitesor which particularcompoundis responsiblefortheactivity.However,it isknowfromtheliteraturethattheplantreputedactiveagainst snakebitevenomisanotherspeciesbelongingtoEryngiumgenus: E. yuccifolium Michx, known in North America as ‘rattlesnake master’. Dimethyl ether (veratrum aldehyde) present in this species,which wasofficially publishedin theUS Pharmacopeia of1820–1860,wasindentifiedtoneutralizetheeffectsofsnake venoms(Morsetal.,2000).

Antibacterialandantifungalactivities

Therehasbeenlaunchedextensiveresearchaimedat obtain-ingnewantimicrobialmedicinesfromdifferentsources.Despite progressinthedevelopmentofantibacterialagentsandantifungal, theneedtofindnewantimicrobialagentsisstillparticularlyurgent duetothedevelopmentofmultidrugresistantbacteriaandfungi. TheextractsandessentialoilfromE.creticumhavebeentested againstdifferentstrainsofbacteriaandfungi(Ali-Shtayehetal.,

1998;Ali-ShtayehandAbuGhdeib,1999;Abou-Jawdahetal.,2002;

Celiketal.,2011;Makkietal.,2015;Erdemetal.,2015).

TheinvitroantibacterialactivityofE.creticumwasinvestigated againstfivebacterialspecies(Staphylococcusaureus,Escherichiacoli, Klebsiellapneumoniae,ProteusvulgarisandPseudomonas aerugin-osa)bythediscdiffusionmethod.Theaqueousextract(inhibition zonewithdiameter7.0mm)provedtobemoreeffectiveagainst K. pneumoniae than the ethanolic extract (6.0mm), while the ethanolic extract (8.0mm)proved tobe most effective against P.vulgaris. Therewerenodifferencesbetweentheeffectofthe aqueousandethanolicextractsagainstS.aureus(9.1mm),E.coli (6.0mm)andP.aeruginosa(6.0mm)(Ali-Shtayehetal.,1998).

Theantibacterialactivityagainstthesethreementionedspecies ofbacteria(S.aureus,E.coli,P.aeruginosa)andthetwonewspecies (Staphylococcus epidermidis,Enterococcusfaecalis)wasalso mea-suredbybrothmicrodilutionmethod.Accordingtotheresearch theaqueous extractswere stronger than ethanolic extracts for thegrowthinhibitionofbothGram-positiveandGram-negative strains.Gram-positivestrainsweregenerallymoresensitivetothe testedextracts(MIC=MBC=5.0mgml−1).Theauthorsconcluded

thattheirstudieshavedemonstratedthattheextractsE.creticum haveapromisingantibacterialeffectandthefurther phytochemi-calanalysisonbioactivecompoundsresponsibleforthiseffectwill beperformed(Makkietal.,2015).

The in vitro anti-MRSA activity of the essential oil from E.creticum was assessed by the discdiffusion method using a panelofGram-positiveclinicalisolatesofninemethicillin-resistant Staphylococcus aureus strains. The antibacterial activity of the essentialoilwaslower(inhibitionzoneswithdiametersfrom0to 11±1mm)thanthatofthereferenceantibioticvancomycin(from

15±1to16±1mm)(Celiketal.,2011).

Theinvitroantifungalactivityofplantextractswasinvestigated againstCandidawiththediscdiffusionmethod.Aqueousand eth-anolicextractsofE.creticumdidnotdifferintheiractivityagainst thetestedmicroorganism(6.0mm)(Ali-Shtayehetal.,1998).

Theaqueousextractsreducedcolonygrowthofthree dermato-phytes: Microsporum canis, Trichophyton mentagrophytes and T. violaceum when tested by meansof the agar dilution method. However, the inhibitory effect of extracts calculated as the

percentagemyceliainhibitionoftineacapitisdermathopyteswas moderatelyorlowandvariedfromabout12.4±4.26%(M.canis)to 56.6±7.42%(T.mentagrophytes)inhibition,incomparisonwiththe controltreatment–referenceantibiotic–Griseofulvin(Ali-Shtayeh

andAbuGhdeib,1999).

Moreover,thepetroleumandmethanolicextractsweretested in vitro against eight plant pathogenic fungi: Botrytis cinerea, Alternariasolani,Penicilliumsp.,Cladosporiumsp.,Fusarium oxys-porum f. sp. melonis, Rhizoctonia solani, Verticillium dahlia and Phytophthorainfestans.Theextractshadlowefficacyofmycelial growthinhibition,whereastheyshowedinhibitionofspore germi-nation.E.creticumshowed>95%inhibitionofsporegerminationin atleasttwofungi:B.cinereaandF.oxysporumf.sp.melonis.Thelevel ofantimycoticactivitydeterminedbymyceliagrowthinhibition testvaried,dependingonthefungusandextracttested,from33% to98%forpetroleum,andfrom3%to75%formethanolicextracts

(Abou-Jawdahetal.,2002).

Toconclude,littleisknownabouttheantimicrobialactivityof E.creticum,buttheexperimentsasreferredtoaboveshowedavery widespectrumofactivityagainstmanyanimal,human,andplant pathogens,includingfungi,yeast,andbacteria.

Antimalarialandantileishmanialactivities

Malariaandleishmaniasisaretwoofthemostcommonparasitic diseasesthatinfectalargehumanpopulationoverfivecontinents. Thereisarapidincreaseintheresistanceofmalariaparasitesto antimalarialdrugs.Mostofthetreatmentsavailableforparasitic diseasesshowlimitedefficacyandundesirablesideeffects.

TheextractsofaerialpartsofE.creticumfromWestCretehave beeninvestigatedforinvitroantiprotozoalactivity.Therewas per-formedanevaluationoftheiractivityagainstchloroquine-sensitive and chloroquine-resistantstrains of Plasmodiumfalciparum and Leishmania donovani promastigotes. The extracts were tested againstpromastigoteculturesofL.donovani.IC50(the

concentra-tioncausing50%ofcelldeaths)was35␮gml−1and38gml−1for

methanolicextractanddichloromethanolicextract,respectively. Plantextractswerealsotestedforantimalarialactivity.However, theextractsofE.creticum(4,20,and100␮gml−1),aswellasthe

otherspeciesfromthesamegenustestedinthesameexperiment, namelyEryngiumcampestre,werenotactiveagainstP.falciparum

(Fokialakisetal.,2007).

Antioxidantactivity

Thebeneficialeffectofmanyherbalplantsonhumanhealth maybeduetotheirantioxidantproperties.Theabilityofthe bioac-tivecompoundspresent inE.creticum(including phenolicacids andflavonoids)toactasefficientfreeradicalscavengers,aswell astheirnaturaloriginincontrasttosyntheticantioxidants,isthe mainadvantage.

There was a number of studies carried out in order to evaluate the antioxidant power of the extracts (aqueous, eth-anolic/methanolic and ethyl acetate) from different parts of E. creticum(leaves,stems)usingseveralmethods(Ljubuncicetal.,

2005;Farhanetal.,2012;Rammaletal.,2013;Dammousetal.,

2014;Diranietal.,2014;Hijazietal.,2015).

Threeinvitroantioxidantmethods,namelyDPPHradical scav-enging method (DPPH assay), scavenging activity of hydrogen peroxideradical(H2O2test)andchelatingeffectsonferrousions

(theFerrozinetest),wereusedbyFarhanetal.(2012)andDammous

etal.(2014)tochecktheantioxidantactivityoffreshleavesand

stemsofLebaneseE.creticum.Moreover,ABTSradicalscavenging capacityassaywasusedtodeterminetheirtotalantioxidant

activ-ity(Farhanetal.,2012).Theresultsshowedsignificantantioxidant

(6)

E.creticum isa rich source ofdifferent antioxidantcompounds

(Farhanetal.,2012;Dammousetal.,2014).InDPPHassay,ethanolic

extractsfrombothleavesandstemshavehigherantioxidant activ-itythanaqueousextractsatdifferentconcentrations.Theleaves possess higher free radical scavenging activity than the stems

(Dammousetal.,2014).Thefreeradicalscavengingactivity(H2O2

test)wasenhancedwiththeincreaseintheconcentrationofthe extract.Theextractsfromboththeleavesandstemsandfromboth theaqueousandethanolicextractsofE.creticumwereableto scav-engeH2O2 inaconcentration-dependent manner(Farhanetal.,

2012;Dammousetal.,2014).

Thechelatingcapacity(Ferrozine-test)oftheextractsincreases withconcentration.Bothextracts,theaqueousandethanolicone, providealmostthesamechelatingactivity(Dammousetal.,2014). The antioxidant capacity of different extracts of E. creticum hasbeenevaluatedusingtwo invitrotests, theDPPHand iron chelating(spectrophotometricanalysis).In thefirstexperiment, themethanolicand aqueousextractsfrom both theleavesand stemshaveexertedanantioxidantpowerinDPPHradical scav-engingactivity,dependingontheconcentration.Toconfirmthe resultsfromDPPHmethod,theIron-Ferrosinemethodwasused. The resultsshowed that the antioxidantactivity of leaveswas higher thanthat of stems,regardless of theconcentration.The authorssuggested that this activitywasdue toleaves contain-ingmore phenolic compounds,ascompared tostems(Rammal et al., 2013). In the second experiment, the antioxidant activ-ity wasinvestigated dependingon thedifferentpercentages of ethanol in the extracts(40%, 80%,100%), extractiontimes (2h, 4h,12h)andextractionmethods(maceration,reflux,microwave assistedextraction). Themicrowaveassistedextractionwasthe most effective extraction technique. Generally, 80% ethanolic extracts possessed the highest DPPH scavenging activity and 40% ethanolic extracts had the highest iron chelating activity

(Hijazietal.,2015).

Thetotal antioxidantcapacity,expressedasvitaminC equiv-alent antioxidant capacity of fresh leaves and stems, was 79.00±0.80mgand50.42±0.50VCE/100gfreshweight, respec-tively(Farhanetal.,2012;Dammousetal.,2014).

Theantioxidantpotentialoftheextractsatdifferent concentra-tionswastestedbyquantifyingtheirabilitytosuppresstheextent ofiron-inducedlipidperoxidationinratliverhomogenates.The extractefficacyIC50wasverylowandthevalueofthemaximum

inhibitionwasmoderatecomparedtootherextracts.Toconclude, theextractsofE.creticumcanmoderatelysuppressFe2+-induced

lipidperoxidation(Ljubuncicetal.,2005).

AlloftheseresultsshowedthatalthoughE.creticumdoesnot showstrongantioxidantactivity,itmightbeconsideredagood sourceofnaturalsubstancesthatmaybeemployedinthetreatment ofdifferentdiseasesassociatedwithoxidativestress.

Cytotoxicity

ThecytotoxicityofE.creticumextractobtainedfromaplantfrom WestCretewastestedonamammalian/monkeykidneyfibroblast cellline.Theaerialpartextractattheconcentrationof47.6␮gml−1

wasnotcytotoxictomammaliancells(Fokialakisetal.,2007). The cytotoxicity of three extracts (aqueous, methanolic and ethylacetate)fromleavesandstemsoffreshplantsontheMCF7 breastcancercelllinebytheXTTcellviabilitytechniquewas stud-ied.Theresultsshowedthattheaqueousandethylacetateextracts of both leavesand stems (attheconcentration of 2.5mgml−1)

didnotshowanycytotoxicityafter48hoftreatmentonthiscell line,whilethemethanolicextractofbothstudiedpartsinhibited thegrowthofMCF7by72%and68%,respectively(Rammaletal.,

2013).

TheMTTandLDHassaysarewell-establishedmethods(Bunel etal.,2014)toassessmitochondrialcompetenceandcell mem-braneintegrity,respectively.Usingtheseassays,theauthorsfound thattheaqueousextract(1.0␮gml−1–1.0mgml−1)ofE.creticum

didnotsuppressmitochondrialrespirationorincreaseLDHleakage inPC12andHepG2cellcultures(Ljubuncicetal.,2005).

Intherecentstudies,thecellviabilityandcytotoxicityeffect ofaqueousandethanolicextracts(leaves,stems,roots,andwhole plant)ofE.creticuminHeLacancercellswereevaluatedusingthe Natural RedAssay. Theeffectof inhibition wasdoseand time-dependent. The resultsshowedthat the aqueousextracts from leaves(150, 200and 250␮gml−1)acting for 48 and 72h (90%

inhibitiononHeLacells)andfromroots(250␮gml−1,72h,90%

inhibition)exertedanti-proliferativeactivity.Ontheotherhand, theethanolicextractsshowedasignificanteffectatdifferent con-centrations and times of exposition (up to 97%) (Dirani et al.,

2014).

Antimutagenicactivity

Inthestudy,theantimutagenicactivityofethanolicextract(the highestconcentrationappliedwas120␮gml−1)ofE.creticumwas

testedinrathepatocyteprimaryculturetreatedwithN -methyl-N′-nitro-N-nitrosoguanidine(MNNG), a directly acting mutagen

whichmethylatesDNA.ItwasshownthatMNNGinducedamassive chromosomal damage to hepatocytes. Antimutagenicity testing wasperformedinthree modes:pre-treatment,combined treat-mentandpost-treatmentoftheprimarycultureswithplantextract andMNNG.Therefore,boththeinductionofmetabolizingenzymes, direct interaction of plant constituents with the mutagen and increased recovery, i.e. enhanced repair of induced DNA dam-age,couldbeevaluated.The resultsoftheinvestigationclearly indicated the inhibitory effect of the plant extract on MNNG-dependent mutagenicity,and this effect couldbe attributed to directantimutagenicactivityandincreasedrecovery(Khaderetal.,

2010).

Antihyperglycemicandhypoglycemiceffects

AnaqueousdecoctionofE.creticumleavesisusedintraditional medicineinPalestineandJordanasanti-diabetictherapy(Yaniv

etal.,1987;Kasabrietal.,2011,2012).

Jaghabiretal.(1991)carriedoutaninvestigationofthe hypo-glycemic effectof E.creticum.The hypoglycemicactivityof the aqueousdecoctionofaerialpartswastestedinnormoglycemicand hyperglycemicratswithstreptozocin-induceddiabetes.Drinking waterfortheanimalswasreplacedwiththeplantextractandblood glucoseconcentrationwasmeasuredafter1,4,and 24h.It was found,admittedly,thattheextractoferyngodecreasedglucose lev-elsinbothdiabeticandnon-diabeticanimalsandthischangewas statisticallysignificantforthehyperglycaemicratsonly. Neverthe-less,itisnotknowniftheratshadfreeaccesstofoodorwerefasting within24hofthe experiment whichinfluencesthe interpreta-tionoftheseresults. Moreover,replacingwater withthetested extractisnotamethodwhichgivesuscertaintythattheactive sub-stancewasreallytakeninbyeachanimal.Theauthorssuggested thatE.creticummayhaveincreasedtheperipheralutilizationof glucose,butthisinterpretationseemstobeuncertainregarding theveryshortperiodofobservation(24h)andthesingledoseof theextractusedinthestudy(Jaghabir,1991).However,wemust notethatreplacingwaterwiththetestedextractisquestionable, andtoobtainreliableresultsofthisexperimenttheextractsshould havebeenappliedintragastrically.

Kasabrietal.(2011)evaluatedtheeffectoftheaqueousextract

(upto50mgml−1)fromfreshaerialpartsofJordanianE.creticum

(7)

398 M.Kikowskaetal./RevistaBrasileiradeFarmacognosia26(2016)392–399

starchdigestion.Invitroenzymaticstarchdigestionwithacarbose, an␣-glucosidase-inhibitor,usedasacontrolorwithplantaqueous extract was assayedusing ␣-amylase and ␣-amyloglucosidase; whileinvivothere wereobservedchangesin glycaemiainrats treatedwithplantextractorwithacarbosethatwerecompared totheeffectsofstarchfeeding.Theresultsdemonstratedthelack oftheeffectofE.creticumextractonenzymaticstarchdigestionin comparisontotheeffectinducedbyacarbose,areducingagentused widelyinpostprandialhyperglycaemia.Nevertheless,theaqueous extractfromE.creticumsignificantlydecreasedglucoselevelduring starchtolerancetest.AlthoughtheE.creticum-treatedratsdidnot demonstrateanydecreaseinoverallglycemicexcursionversusthe controland thedrug-treatedanimals,substantialimprovements ofglucosehandlingwereevidentatalatertime–90and135min aftercornstarchingestion.Unfortunately,oraladministrationof E.creticum extracthadnomarkedimprovement inglucose tol-eranceintherats.Moreover,whenglucoseloadwasingestedby E.creticumrats,thecorrespondingglycemicincremental curves werenot affectedduring the165min time courseof theacute experiment.Theauthorssuggestthatthelackofinvitroinhibitory activitydoesnotrelatetotheinvivoactivity,becausetheintestinal luminalactivationofeffectiveentitiesprecursorsoffersavalid jus-tificationfortheacuteinvivooutcomes.Thecontradictingeffects ascribedtoE.creticumdonotnecessarilyroleoutanyother poten-tialpancreaticorextrapancreaticmodeofaction(Kasabrietal.,

2011).

Nextyear,thesamegroupofauthorsaimedat investigating thepancreaticandextrapancreaticeffectsoftheaqueousextract fromfresh aerial parts of Jordanian E.creticum. Theyrecruited bioassaysof␤-cellproliferationandinsulinsecretion,aswellas glucosediffusion,aspossiblemodelsofaction.Themouse insuli-nomaMIN6 ␤-cell linewas thecellular model toexamine the invitroeffects ofE.creticumextract onpancreatic␤-cell prolif-erationandinsulinsecretion.E.creticumextractwasfoundtobe significantlypotentiatingMIN6glucosestimulatedinsulin secre-tion(GSIS).E.creticumevokingGSISinMIN6cellswasshownto takeplaceby modulating Ca2+regulated exocytosismachinery.

Moreover,E.creticumsubstantiallyaugmentedthe␤-cell prolifera-tioninadose-dependentmanner(0.001–1.0mgml−1).E.creticum

aqueousextractsmayofferapromisingavenueforthepotential treatmentof␤-cellsdemiseindiabetes.Hence,intensivechronic testingofplantsinducingthepancreatic␤-cellexpansionwillallow theemergenceofsafeandefficientcellreplacementtherapies.The authorsconcluded that future directivesmayassess the useof E.creticumasanewpotentialsourceoffunctionalfoodor nutraceu-ticalsoractiveleadsintodiabetestype2pharmacotherapy(Kasabri

etal.,2012).

Taking into consideration both papers publishedby Kasabri

etal.(2011,2012),theinvivohypoglycaemicactivityofE.creticum

extractisuncertain,butfurtherstudiesshouldbefocusedon anti-hyperglycemiceffectdocumentedinvivoandinvitrobyglucose diffusionalretardationeffects.Theresultsofpresentinvestigative studyofTwaijandAl-Dujaili(2014)didnotultimatelyelucidate themainmodeofactionofE.creticumextract.Itwasfoundthat theoral administrationof aqueousextract fromtheaerialparts ofE.creticumproducedsignificanteffectinrats,namelyreduced postprandial(post-load)hyperglycaemia.Interestingly,the hypo-glycemiceffects of the aqueousextracts fromE.creticum were confirmed only in normal and not in alloxan-induced diabetic animalswhichsuggestsitsinsulinotropicactivity(Twaijand

Al-Dujaili,2014).

ThetraditionaluseofE.creticuminthetreatmentofdiabetesis supportedbylaboratoryresultsfromthesestudies,suggestingthe needtoisolateandevaluateactiveconstituentsresponsibleforthe exhibitedbiologicalactivity.

Otheractivities

ThemethanolicextractofE.creticumwasevaluatedfortheir hormonesensitivelipaseinhibitorypotential,quantifiedbya col-orimetricassaythatmeasuredthereleaseofp-nitrophenolasHSL substrateandexpressedas%inhibitionofXOactivity. Hormone-sensitivelipase(HSL),aneutrallipase,isavitalenzymeinlipid metabolismandgeneralenergyhomeostasisinmammals.HSLis acomponentofthemetabolicswitchbetweenglucoseandFFAs as energy sources. The pivotalrole of elevated plasma FFAs in thedevelopmentof insulinresistanceandtype 2diabeteshave renderedHSLasapotentialtherapeutictargetforthisdisease; low-eringplasmaFAlevelsand,thereby,reducinginsulinresistance. ThepercentageofresidualactivityofHSLwasdeterminedforeach extractbycomparingthelipaseactivityofHSLwithandwithout theextract.However,theextractshowedweakactivity(Bustanji

etal.,2011).

Conclusion

Thispresentreviewoffersbasicinformationoncurrent knowl-edge forfurtherstudies of E.creticum.The invitrostudies and invivomodelshaveprovidedasimplebioscientificexplanationfor itsvariousethnopharmacologicaluses.Unfortunately,someofthe studiesappearedtobeonlypartialanddidnotanswerquestions fromselectedresearcharea.Otherstudies,particularlyinthefield ofphytochemicalanalysis,remainunimplementedortheirresults areunreliable duetoimproperly constructedresearch method-ology.Besides,themajorityofthepharmacologicalstudieswere carriedoutusingcrudeandpoorlycharacterizedextracts. There-fore,theauthorsofthisarticletookinvitroculturesofE.creticumto amplifytheplantmaterialneededforin-depthstudiesofselected phytochemicalsandselectedbiologicalactivities.

Authors’contributions

MK contributed in the review of the scientific bibliography usingthefollowingpublisherswebsitesandelectronicdatabases tocollectinformationonthesubject:Elsevier,Springer,PubMed, Medline,GoogleScholarandWebofScience.Additionally,she ana-lyzedpublishedmonographstheses,andproceedingsofscientific congresses.JKdrewallthechemicalformulas.JK,MDandBT par-ticipatedinthecriticalreadingandfinaleditingofthemanuscript.

Conflictsofinterest

Theauthorsdeclarenoconflictsofinterest.

References

Abou-Jawdah,Y.,Sobh,H.,Salameh,A.,2002.Antimycoticactivitiesofselectedplant

flora,growingwildinLebanon,againstphytopathogenicfungi.J.Agric.Food Chem.50,3208–3213.

Abu-Rabia,A.,2005.HerbsasafoodandmedicinesourceinIsrael.AsianPac.J.Cancer

Prev.6,101–107.

Aburjai,T.,Hudaib,M.,Tayyem,R.,Yousef,M.,Qishawi,M.,2007.

Ethnopharma-cologicalsurveyofmedicinalherbsinJordan,theAjlounHeightsregion.J. Ethnopharmacol.110,294–304.

Afifi,F.U.,Al-Khalil,M.,Aqel,M.,Al-Muhteseb,M.H.,Jaghabir,M.,Saket,M.,Muheid,

A.,1990.AntagonisticeffectofEryngiumcreticumextractonscorpionvenom

invitro.J.Ethnopharmacol.29,43–49.

Al-Khalil,S.,1994.PhytochemistryofEryngiumcreticum.Alex.J.Pharm.Sci.8,73–75.

Alkofahi,A.,Sallal,A.J.,Disi,A.M.,1997.EffectofEryngiumcreticumonhaemolytic

activitiesofsnakeandscorpionvenoms.Phytother.Res.11,540–542.

Ali-Shtayeh,M.S.,AbuGhdeib,S.I.,1999.Antifungalactivityofplantextractsagainst

dermatophytes.Mycoses42,665–672.

Ali-Shtayeh,M.S.,Yaghmour,R.M.-R.,Faidi,Y.R.,Salem,K.,Al-Nuri,M.A.,1998.

(8)

Ayoub,N.A.,Kubeczka,K.-H.,Nawwar,M.A.M.,2003.Anuniquen-propyl sesquiter-penefromEryngiumcreticumL.(Apiaceae).Pharmazie58,674–676.

Bunel,V.,Ovedraogo,M.,Nguyen,A.T.,Stevigny,C.,Duez,P.,2014.Methodsapplied

totheinvitroprimarytoxicologytestingofnaturalproducts:stateoftheart, strengthsandlimits.PlantaMed.80,1210–1226.

Bustanji,Y.,Issa,A.,Moulay,A.,Hudaib,M.,Tawaha,K.,Mohammad,M.,Hamed,

S.,Masri,I.,Alali,F.Q.,2011.Hormonesensitivelipaseinhibitionbyselected

medicinalplants.J.Med.PlantsRes.5,4405–4410.

Caballero,R.,Fernandez-Gonzalez,F.,Badia,R.P.,Molle,G.,Roggero,P.P.,Bagella,

S.,D’Ottavio,P.,Papanastasis,V.P.,Fotiadis,G.,Sidiropoulou,A.,Ispikoudis,I.,

2009.GrazingsystemsandbiodiversityinMediterraneanareas:Spain,Italyand

Greece.PastosXXXIX,1–152.

Calvino,C.I.,Martinez,S.G.,Downie,S.R.,2008.Theevolutionaryhistoryof

Eryn-gium(Apiaceae,Saniculoideae):rapidradiations,longdistancedisperals,and hybridizations.Mol.Phylogenet.Evol.46,1129–1150.

Celik,A.,Ayddinlik,N.,Arslan,I.,2011.Phytochemicalconstituentsandinhibitory

activitytowardsmethicillin-resistantStaphylococcusaureusstrainsofEryngium species(Apiaceae).Chem.Biodivers.8,454–459.

Dammous,M.,Farhan,H.,Rammal,H.,Hijazji,A.,Bassal,A.,Fayyad-Kazan,H.,

Makhour,Y.,Badran,B.,2014.ChemicalcompositionofLebaneseEryngium

creticumL.Int.J.Sci.3,40–53.

Della,A.,Paraskeva-Hadjichambi,D.,Hadjichambis,A.Ch.,2006.Anethnobotanical

surveyofwildplantsofPaphosandLarnacacountrysideofCyprus.J.Ethnobiol.

Ethnomed.,http://dx.doi.org/10.1186/1746-4269-2-34.

Dirani,Z.,Makki,R.,Rammal,H.,Naserddine,S.,Hijazi,A.,Kazan,H.F.,Nasser,M.,

Daher,A.,Badran,B.,2014.Theantioxidantandanti-tumoractivitiesofthe

LebaneseEryngiumcreticumL.IJBPAS3,2199–2222.

Don,G.,1831.Ageneralsystemofgardeningandbotany:containingacomplete

enumerationanddescriptionofallplantshithertoknownwiththeirgeneric andspecificcharacters,placesofgrowth,timeofflowering,modeofcultureand theirusesinmedicineanddomesticeconomy:precededbyintroductionstothe LinnaeanandNaturalSystemsandaglossaryofthetermsused;foundedupon Miller’sGardener’sDictionaryandarrangedaccordingtotheNaturalSystem;in fourvolumes,Tom3(e-BookGoogle).,pp.176–177.

El-Saket,M.,1990.PotencyofJordanianCerastescerastessnakevenomandtheeffect

ofE.creticumonthispotency.Bull.Fac.Pharm.CairoUniv.28,53–55.

Erdem,S.A.,Nabavi,S.F.,Orhan,I.E.,Daglia,M.,Izadi,M.,Nabavi,S.M.,2015.Blessings

indisguise:areviewofphytochemicalcompositionandantimicrobialactivity ofplantsbelongingtothegenusEryngium.DARUJ.Pharm.Sci.23(53),1–22.

Farhan,H.,Malli,F.,Rammal,H.,Hijazi,A.,Bassal,A.,Ajouz,N.,Badran,B.,2012.

PhytochemicalscreeningandantioxidantactivityofLebaneseEryngiumcreticum L.AsianPac.J.Trop.Biomed.2,S1217–S1220.

Fokialakis,N.,Kalpoutzakis,E.,Tekwani,B.L.,Khan,S.I.,Kobaisy,M.,Saltsounis,A.L.,

Duke,S.O.,2007.Evaluationoftheantimalarialandantileishmanialactivityof

plantsfromtheGreekislandofCrete.J.Nat.Med.61,38–45.

Hijazi,A.,AlMasri,D.S.,Farhan,H.,Nasser,M.,Rammal,H.,Annan,H.,2015.Effectof

differentethanolconcentrations,usingdifferentextractiontechniques,onthe antioxidantcapacityofLebaneseEryngiumcreticum.J.Pharm.Chem.Biol.Sci.3, 262–271.

Jaghabir,M.,1991.HypoglycemiceffectsofEryngiumcreticum.Arch.Pharm.Res.14,

295–297.

Jaghabir,M.,Saket,M.,Afifi,F.,Khalis,S.,Muheid,A.,1989.PotencyofJordan

Leiu-rusquinguestriatusscorpionvenomandtheeffectofEryngiumcreticumonthis potency.Dirasat4,172–178,JordanUniversityVI.

Jawdat,D.,Al-Faoury,H.,Ayyoubi,Z.,Al-Safadi,B.,2010.Molecularandecological

studyofEryngiumspeciesinSyria.Biologia65,796–804.

Jeambey,Z.,Johns,T.,Talhouk,S.,Batal,M.,2009.Perceivedhealthand

medici-nalpropertiesofsixspeciesofwildedibleplantsinnorth-eastLebanon.Public HealthNutr.12,1902–1911.

Kasabri,V.,Afifi,F.U.,Hamdan,I.,2011.Evaluationoftheacuteantihyperglycenic

effectsof fourselectedindigenousplantsfrom Jordanusedin traditional medicine.Pharm.Biol.49,687–695.

Kasabri,V.,Abu-Dahab,R.,Afifi,F.U.,Naffa,R.,Majdalawi,L.,2012.Modulation

ofpancreaticMIN6insulin secretionandproliferationandextrapancreatic glucose absorption with Achillea santolina, Eryngium creticum andPistacia atlanticaextracts:invitroevaluation.J.Exp.Integr.Med.2,245–254.

Khader,M.,Bresgen,N.,Eckl,P.M.,2010.Antimutageniceffectsofethanolicextracts

fromselectedPalestinianmedicinalplants.J.Ethnopharmacol.127,319–324.

Konig,Ch.,Sims,J.,1806.Vegetableproductionsofthecountriessituatedbetween

theTerekandKur.Ann.Bot.,426–428.

Lardos,A.,2012,May.Historicaliatrasophiatextsandmodernplantusagein

monas-teriesonCyprus.Athesis.CentreforPharmacognosyandPhytotherapy,The SchoolofPharmacy,UniversityofLondon.

Ljubuncic,P.,Azaizeh,H.,Portnaya,I.,Cogan,U.,Said,O.,AbuSaleh,K.,Bomzon,A.,

2005.Antioxidantactivityandcytotoxicityofeightplantsusedintraditional

ArabmedicineinIsrael.J.Ethnopharmacol.99,43–47.

Makki,R.,Dirani,Z.E.,Rammal,H.,Sweidan,A., AlBazzal,A.,Chokr,A.,2015.

AntibacterialactivityoftwoLebaneseplants:EryngiumcreticumandCentranthus

longiflorus. J. Nanomed.Nanotechnol., http://dx.doi.org/10.4172/2157-7439. 1000315.

Marles,R.J.,Farnsworth,N.R.,1995.Antidiabeticplantsandtheiractiveconstituents.

Phytomedicine2,137–189.

Mayer-Chissick,U.,Lev,E.,2014.WildedibleplantsinIsraeltraditionversus

cul-tivation.In:Yaniv,Z.,Dunat,N.(Eds.),MedicinalandAromaticPlantsofthe

Middle-East.MedicinalandAromaticPlantsoftheWorld2.Springer,

Dor-drecht/Heidelberg/New York/London,

http://dx.doi.org/10.1007/978-94-017-9276-9.

Mahommadhosseini,M.,2013.HydrodistilledvolatileoilfromstemsofEryngium

creticumLam.intheMarginalBrackishRegionsofSemnanProvincebyusing gaschromatographycombinedwithmassspectrometry.AsianJ.Chem.25, 390.

Mors,W.B.,doNascimento,M.C.,RuppeltPereira,B.M.,AlvaresPereira,N.,2000.

Plantnaturalproductsactiveagainstsnakebite–themolecularapproach. Phy-tochemistry55,627–642.

Muschler,R.,1912.AManualFloraofEgypt.FriedlaenderRandSohn,pp.44–45.

Oukkache,N.,ElJaoudi,R.,Ghalim,N.,Chgoury,F.,Bouhaouala,B.,Mdaghri,N.E.,

Sabatier,J.M.,2014.Evaluationofthelethalpotencyofscorpionandsnake

ven-omsandcomparisonbetweenintraperitonealandintravenousinjectionroutes. Toxins(Basel)12(6),1873–1881.

Palevitch,D.,Yaniv,Z.,Dafni,A.,Friedman,J.,1985.EthnobotanicalSurveyofthe

FloraofIsraelasaSourceforDrugs.MinistryofScience,Jerusalem(Hebrew).

Rammal,H.,Fahran,H.,Jamaleddine,N.,ElMestrah,M.,Nasser,M.,Hijazi,A.,

2015. Effects of altitudeonthe chemical composition andon some

bio-logicalpropertiesofLebaneseEryngiumcreticumL.J.Chem.Pharm.Res.7, 887–893.

Rammal,H.,Farhan,H.,Mohsen,H.,Hijazi,A.,Kobeissy,A.,Daher,A.,Badran,B.,2013.

Antioxidant,cytotoxicpropertiesandphytochemicalscreeningoftwoLebanese medicinalplants.Int.Res.J.Pharm.4,132–136.

Saad,B.,Azaizeh,H.,Said,O.,2008.Arabherbalmedicines.In:Preedy,V.R.,Watson,

R.R.(Eds.),BotanicalMedicineinClinicalPractice.CABInternational.

Saad,B.,Said,O.,2011.Greco-ArabandIslamicherbalmedicine.In:Traditional

System,Ethics,Safety,Efficacy,andRegulatoryIssues.JohnWiley&Sons,Inc. Publication.

Thiem,B.,Wiatrowska,I.,2007.EryngiumcampestreL.(fielderyngo)andother

speciesofEryngiumL.–littleknowmedicinalplants.HerbaPol.53,93–102.

Tutin, T.G., Burges, D.H., Valentine, S.M., Walters, S.M., Webb, D.A., 1968.

Flora Europaea: Rosaceae to Umbelliferae. Cambridge University Press, pp.321–322.

Twaij,H.A.,Al-Dujaili,E.A.S.,2014.EvaluationoftheAnti-diabeticandAnti-ulcer

PropertiesofSomeJordanianandIraqiMedicinalPlants:AScreeningStudy.

IBIMAPublishing.JMED,http://dx.doi.org/10.5171/2014.539605.

Wolff,H.,1913.Umbelliferae–Saniculoideae.In:Engler,A.(Ed.),DasPflanzenreich,

IV.228(heft61).EngelmannW.,Berlin,pp.106–271.

Wörz,A.,1999.AtaxonomicindexofthespeciesofEryngiumL.StuttgarterBeiträge

zurNaturkundeA596,1–48.

Wörz,A.,2004.OnthedistributionandrelationshipsoftheSouth-WestAsianspecies

ofEryngiumL.(Apiaceae–Saniculoideae).Turk.J.Bot.28,85–92.

Wörz,A.,2005.AnewsubgenericclassificationofthegenusEryngiumL.(Apiaceae

–Saniculoideae).Bot.Jahrb.Syst.126,253–259.

Wörz,A.,2006.SystematicsanddistributionpatternsoftheBalkanspeciesof

Eryn-gium(Apiaceae,Saniculoideae).Phytol.Balc.12,221–230.

Wörz,A.,Diekmann,H.,2010.ClassificationandevolutionofthegenusEryngiumL.

(Apiaceae–Saniculoideae):resultsoffruitanatomicalandpetalmorphologies studies.PlantDivers.Evol.128,387–408.

Yaniv,Z.,Dafni,A.,Friedman,J.,Plevitch,D.,1987.Plantsusedforthetreatmentof

Referências

Documentos relacionados

Uma regra fundamental na pediculose é nunca iniciar o tratamento sem haver um diagnóstico inequívoco da presença de piolhos vivos no cabelo. O tratamento ideal

Pantoprazol – é um benzimidazol substituído que inibe a secreção de ácido clorídrico no estômago por ação específica sobre as bombas de protões das células parietais usado

DevOps Practices in Incident Management Process xv Abbreviations AM – Application Management CI – Continuous Integration CS – Case Study IM – Incident Management IT

MNEs' international experience offsets barriers imposed by institutional distance between home and host countries on MNEs' entry strategy such that for both low and high levels

high CO 2 , provides lower respiration activity and higher values of total phenolic compounds and total antioxidant activity (DPPH assay), but does not interfere with the

Foram elaborados três bolos com concentrações (A=16%, B=14% e C=12%) diferentes de pó alimentício da casca de manga, para verificação da melhor concentração que agrada ao

força de trabalho não contribuía intelectualmente para melhorar a produção,O. somente executava as tarefas a ela