• Nenhum resultado encontrado

Prevalence and molecular analysis of multidrug-resistant Acinetobacter baumannii in the extra-hospital environment in Mthatha, South Africa

N/A
N/A
Protected

Academic year: 2021

Share "Prevalence and molecular analysis of multidrug-resistant Acinetobacter baumannii in the extra-hospital environment in Mthatha, South Africa"

Copied!
10
0
0

Texto

(1)

w w w . e l s e v i e r . c o m / l o c a t e / b j i d

The

Brazilian

Journal

of

INFECTIOUS

DISEASES

Original

article

Prevalence

and

molecular

analysis

of

multidrug-resistant

Acinetobacter

baumannii

in

the

extra-hospital

environment

in

Mthatha,

South

Africa

Yaw

Anane

A

a

,

Teke

Apalata

b,∗

,

Sandeep

Vasaikar

a,b

,

Grace

Emily

Okuthe

c

,

Sandile

Songca

d

aWalterSisuluUniversity,FacultyofHealthSciences,DepartmentofLaboratoryMedicine&Pathology,EasternCapeProvince,South Africa

bNelsonMandelaCentralHospital,NationalHealthLaboratoryServices(NHLS),DivisionofMedicalMicrobiology,Mthatha,SouthAfrica cWalterSisuluUniversity,DepartmentofBiological&EnvironmentalSciences,EasternCapeProvince,SouthAfrica

dUniversityofKwaZulu-Natal,CollegeofAgricultureEngineeringandScience,SchoolofChemistryandPhysics,Durban,SouthAfrica

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received10March2019 Accepted4September2019 Availableonline7November2019

Keywords: Acinetobacterbaumannii Carbapenemase-encodinggenes Extra-hospital Multidrug-resistance ISAba1 intI1

a

b

s

t

r

a

c

t

Introduction:ThepresenceofAcinetobacterbaumanniioutsidehospitalsremainsunclear.This studyaimedtodeterminetheprevalenceofmultidrug-resistance(MDR)A.baumanniiinthe extra-hospitalenvironmentinMthatha,SouthAfricaandtoinvestigatethefrequencyof carbapenemase-encodinggenes.

MaterialandMethods:FromAugust2016toJuly2017atotalof598abattoirsamplesand689 aquaticsampleswerecollectedandanalyzedpresumptivelybyculturalmethodsforthe presenceofA.baumanniiusingCHROMagarTMAcinetobactermedium.Speciesidentification wasperformedbyautoSCAN-4(DadeBehringInc.,IL)andconfirmedbythedetectionof theirintrinsicblaOXA-51gene.ConfirmedMDRA.baumanniiisolateswerescreenedforthe presenceofcarbapenemase-encodinggenes,ISAba1insertionsequenceandintegraseintI1. Results:Intotal,248(19.3%)Acinetobacterspecieswereisolated.Acinetobacter.baumanniiwas detectedin183(73.8%)ofwhich85(46.4%)and98(53.6%)wererecoveredfromabattoirand aquaticrespectively.MDRA.baumanniiwasdetectedin56.5%(48/85)abattoirisolatesand 53.1%(52/98)aquaticisolates.Isolatesshowedhighresistancetoantimicrobialsmost fre-quentlyusedtotreatAcinetobacterinfectionssuchaspiperacillin/tazobactam;abattoir(98% ofisolatesresistant),aquatic(94%ofisolatesresistant),ceftazidime(84%,83%),ciprofloxacin (71%,70%),amikacin(41%,42%),imipenem(75%,73%),andmeropenem(74%,71%).Allthe isolatesweresusceptibletotigecyclineandcolistin.AlltheisolatescarriedblaOXA-51-like.The blaOXA-23wasdetectedin32(66.7%)abattoirisolatesand11(21.2%)aquaticisolates.The

Correspondingauthor.

E-mailaddress:tapalata@wsu.ac.za(T.Apalata). https://doi.org/10.1016/j.bjid.2019.09.004

1413-8670/©2019PublishedbyElsevierEspa ˜na,S.L.U.onbehalfofSociedadeBrasileiradeInfectologia.Thisisanopenaccessarticle undertheCCBY-NC-NDlicense(http://creativecommons.org/licenses/by-nc-nd/4.0/).

(2)

blaOXA-58-likewaspositivein7(14.6%)and4(7.7%)abattoirandaquaticisolates,respectively. BothgroupsofisolateslackedblaOXA-24-like,blaIMP-type,blaVIM-type,blaNDM-1,blaSIM,blaAmpC, ISAba1andinI1.IsolatesshowedhighlevelofMultipleAntibioticResistanceIndex(MARI) rangingfrom0.20-0.52.

Conclusion: Extra-hospitalsourcessuchasabattoirandaquaticenvironmentsmaybea vehicleofspreadofMDRA.baumanniistrainsinthecommunityandhospitalsettings.

©2019PublishedbyElsevierEspa ˜na,S.L.U.onbehalfofSociedadeBrasileirade Infectologia.ThisisanopenaccessarticleundertheCCBY-NC-NDlicense(http:// creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

Acinetobacterbaumanniihasemergedoverthefewlastdecades asacauseofhealthcare-associatedinfectionswiththis organ-ismassociatedwithincreasedpatient morbidity, mortality, and treatment costs.1–3 Its clinical significance has been

propelledbyits remarkableabilitytoupregulateor acquire resistancedeterminantmakingitoneoftheorganisms threat-ening the current antibiotic era.4,5 The possession of this

arrayofresistancemechanismshavemadethisorganismto beable toresistalmost all availableantibiotics inhospital environmentandhaspositiontheorganismasimportant can-didatefortheevaluationofreservoirsofantibioticresistance intheenvironmentoreveninhumansubjects.6

Acinetobac-ter.baumanniihavetheabilitytosurviveinbothmoistand dryconditionsformanyweeksorevenmonths,hencethis organism is widely distributed in natural and nosocomial environments,humanskin,aswellasmucosalsurfaces facil-itatingitsspread.7–9Thecross-transmissionofthisorganism

frompatienttopatientandthepossibilityofoutbreak exten-sionbypatienttransferhavebeen demonstrated.10 Despite

hospitalecology being intensively studied, its ecology out-sidethehospitalremainsunclearorpoorlydefinedimpeding effective prevention of transmission.2,11 Several

investiga-torshavesuspectedthatthesurvivalofA.baumanniiinthe environment(inparticularinwater)couldcontributetothe transmissionoftheorganism duringoutbreaks.12 Itiswell

establishedthatmembersofthegenusAcinetobacteris ubiq-uitousbut difficultyinunequivocallyidentifythisorganism hasmadetheubiquityinnatureofA.baumanniiawidespread misconception.1,9Thereforetheexistenceofanextra-hospital

reservoirofA.baumanniiandtheimplicationofthispotential reservoirintheoccurrenceofcertaininfections duetothis organismarestillcontroversial.1,2Additionally,theprevalence

andantimicrobialresistanceofA.baumanniioutsidethe hos-pitalsettinghasbeenpoorlyinvestigated.13Thereseemsto

beacontinuousinfluxofnovelstrainsintotheclinicalsetting withthepotentialofnewinfectiousfeatures.11Studieshave

shownthatinfectionscausedbyextra-hospitalstrainsofA. baumanniiareresponsibleforcommunity-acquiredinfections mainlyintropicalandsubtropicalareas.5,14 Thissuggestsa

sourceofthispathogenoutsideofthehospitalandtherefore thesignificanceofenvironmentalisolatesinthe epidemiol-ogyofA. baumanniiisofagreatconcernworldwide.There is no clear evidence about the way of introduction of A. baumannii into hospital environment, its propagation from hospitalsettingstothenaturalenvironmentanditsnatural

habitatoutsidehospitals.15Alsounlikeclinicalstrains,there

are limited reportsusingmolecularanalysis toexplorethe extra-hospitalepidemiologyofA.baumannii.11,16Thepresence

ofA.baumanniiintheaquaticenvironmentraisestheissueof publichealthrisksincepeopleareinconstantcontactwith theaquaticenvironment.17Hospitalwastewaterisdischarged

intomunicipalsewagesystemwithoutpriortreatment, con-tributingtowidespreadcontaminationofnaturalwaterswith emergingpathogenicbacteriathatcancarryMDRgenes.18In theaquaticenvironment,bacteriainteractwithvarious organ-isms,someofwhicharefishusedforconsumptionaswellas commercialorrecreationalpurposes.19Mostoftheantibiotics

usedinthehospitalsendupcontaminatingourlocaldams. Theindiscriminateuseofantibioticsinlivestockproduction asgrowthpromotersortocontrolinfectiousdiseasesandthe treatmentshavebeenlinkedwiththedisseminationof resis-tant bacteria which can be transferredto people via food, directcontactwithinfectedanimalorthroughtheabattoir.In astudyconductedinScotland,pigsandcattleslaughteredfor humanconsumptionandcomingfromdifferentfarmswere sampled(faeces,skin,nostrilandear)forA.baumannii isola-tion.TheprevalenceofA.baumanniicarriagewas1.2%.The16 A.baumanniiisolatedweregroupedintothreedifferent clus-ters,buthaddifferentpulsed-fieldgelelectrophoresis(PFGE) patterns comparedwithhumanisolatesofthethreemajor EuropeanclonesEci,ECII,andECIII.20Recentreportshavealso

described thepresenceofcarbapenem-resistantA. bauman-niiinanimals.TheOXA-23carbapenemasehasbeenfound inAcinetobacterfromcattle,horses,andcats.21–23TheNDM-1

hasalsobeenreportedinAcinetobacterspp.fromfoodanimals (chicken and pigfarms) in China.24,25 However,knowledge

aboutcarbapenemase-producingA.baumanniiof environmen-talorigin(aquaticandabattoirincaseofthisstudy)remains verylimited,makingitdifficulttoassessitsimpactonpublic health.InSouthAfrica,A.baumanniihasbeenisolatedfrom hospital environments; nevertheless onlyfew studies have reportedthepresenceofA.baumanniiintheaquatic environ-ment,meatoffoodanimalsandtheenvironmentwherethese meatscomefrom.Theseareasareasourceofwaterandfood andthereforecanbeoftransmissionofthisorganisminto hos-pitalsettingsormayhorizontallytransferresistancegenesto otherorganisms.

Studyobjectives

Basedonthesepremises,thepresentstudywascarriedoutto determinetheprevalenceofMDRA.baumanniiinaquaticand

(3)

abattoirenvironments,theirsusceptibilitytoantimicrobials andtodeterminethefrequencyofcarbapenemase-encoding genes.

Material

and

methods

Studydesignandsettings

ThiswasaCross-sectionalprospectivedescriptivestudy con-ductedbetweentheperiodofAugust2016andJuly2017at: 1 TheUmzikanturedmeatabattoir,aprivateabattoirlocated

in SouthRidge Park, O.R.Tambo districtmunicipality in Mthatha,EasternCape.ThisredmeatabattoirisatypeE5 abattoir.Itoperates asanabattoirandmeatwholesalers anditistheonlyoperationalabattoirinMthatha.Abattoirs differgreatlyinthescaleoftheiroperations.UsingtheEU definitionoflivestockunits,thescaleisgradedaccording tothenumberofbeasttheyaredesignedtohandle (with-outsomehealthrisk)perweekasfollows:E:-toslaughter fiveunits, D:-toslaughter 15units, C:-toslaughter50 units,B:-toslaughter200units,andA:-toslaughter1000 units(exportingtype).InitsbasicformoneEULivestock Unit(ELU)equals:onecowbeast,twocalves,fivepigsor10 sheep.26

2 TheMthatha dam(coordinates: 31◦332S28◦4424E), an earth-filltypedamwhichimpoundstheMthathariverat alocationabouteightkilometersupstreamofthecity of MthathaintheORTamboDistrictMunicipalityofthe East-ernCapeProvince.Thedamwasestablishedin1977and serves mainlyfor municipal and industrialpurposes. Its hazardpotentialhasbeenrankedhigh.Thestoragecapacity oftheDamis253,674,000cubicmeters.Itservesasthemain sourceofrawwatersupply(65.9mL/day)fortheThomhil WTWwhichtreatsandsupplieswatertothecityandits environswithatotalpopulationofabout750,000.

Samplecollectionfromabattoirenvironment

Fivehundredandninety-eightsampleswererecoveredfrom the hides, from structural and work surfaces (equipment, floors,doors,knives,saws,handlingpanelsfromthe slaugh-ter area)within theabattoir and from carcassesand meat atallstagesofprocessing(fromflayingtoevisceration, split-tingandcooling).Ateachsite,anareaof10cm2wassampled usingasterileswabmoistenedwithphysiologicalsaline. Ani-malsampleswerealsocollected from recentlyslaughtered animals destinedforhuman consumption. Carcasseswere sampledbysystematicrandomsampling technique.Swabs weretakenaccordingtothemethoddescribedbythe inter-national organization for standardization.27 The abdomen

(flank),thorax(lateral),crutch,breast(lateral),werethe sam-plingsites.Swabbingwasperformedapproximatelysixhours aftercleaninganddisinfectionandpriortoslaughter activi-tiesintheabattoir.Thesampleswerecooledandtransported tothe laboratoryforplatingwithin10haftersampling.For meat samples, 25g of meat were cut aseptically into very small pieces and homogenized by using a stomacher bag

(Interscience,SaintNom,France)andthensuspendedin ster-ilewater.

Samplecollectionfromaquaticenvironment

Overall,689sampleswerecollectedfromtheMthathadam. Thedamwassampledfivetimeswithinthestudyperiodand sampleswerecollectedusingaseptictechniquesinthe morn-ings(between08:00and10:00hlocaltime).Duplicatewater sampleswerecollectedatmarginsandinthemiddleofthe dam,about 15cmdownthe watersurface in100ml steril-ized bottles. Thecollectedwatersampleswere placedina coolerboxwithtemperaturemaintainedbetween4and10◦C usingicepacks.Thesesampleswereimmediatelytransported tothe WalterSisuluUniversity laboratoryand subjectedto serialten-folddilutionsinsteriledistilled water.Forty-nine fishesbelongingtodifferentspecieswerecollectedaseptically and immediatelytransportedinathermalbag tothe labo-ratory wheretheyweresacrificed.Samplesfromskin, gills, intestines,andeyeswerecollected.Thebodysurfaceandgills werecarefullywashed,atfirstunderthestreamoftapwater and then using70% ethylalcoholtoremovenormal exter-nalbacterialflora.Then,thefishweredisinfectedwith70% ethanolandafteropeningthebodycavity,samplesfromthe kidneysandintestineweretaken.Thesampleswerediluted 1:1inPBSandhomogenized.

Bacterialcultivationandidentification

Samples were presumptively identifiedbydirect plating onChromogenicCHROMagarTMAcinetobacter(CHROMagarTM; Paris, France) with supplement Ref. CR102 which allows thegrowthofcarbapenem-resistantisolatesofAcinetobacter species,incubatedat37◦Cinaerobicconditionsandexamined after24hforthegrowthoftypicalredcoloniesofAcinetobacter species.CHROMagarTM Acinetobacterwaspreparedaccording to the manufacturer’s description. Cefsulodin sodium salt hydrate (Sigma-Aldrich) was added at 15mg/L to suppress the growth of Pseudomonas and Aeromonas species. Gram-positive bacteria and yeastsare inhibited. Confirmation of presumptivecolonieswasperformedbyinspectionofcolony morphologyon theseparateplates.Theplateswere exam-ined forthe growth oftypicalred colonies ofAcinetobacter species. One typicalcolony representative of each type of morphology and shape was further sub-cultured on tripti-casesoyagar (TSA)andcharacterizedbasedonphenotypic tests:Gram-stain,catalaseandoxidasetests.Gram-negative coccobacilli,oxidase-negative, andcatalase-positiveisolates were presumptively identified to the genus Acinetobacter. SpeciesidentificationwerecarriedoutusingGram-negative IDtype2panel(REF.B1017-27)oftheMicroScan autoSCAN-4 automated System (Dade Behring Inc., Deerfield, IL). A high percentage(≥95%)was utilizedasthe acceptance cri-terion for identification by MicroScan. Suspected colonies were also further verified using the Acinetobacter specific primer set Ac436F and Ac676r to amplify the 16S rRNA gene.ConfirmationofA.baumanniiisolateswascarriedout by polymerase chain reaction analysis of the presence of inherentBlaOXA-51-likegenes.IsolateslackingtheBlaOXA-51-like gene wereinvestigatedfurtherbysequence analysisofthe 16S rRNA gene. Primers were ordered from TIB Molbiol, Germany. All the strains were freshly suspended in skim

(4)

milk (Merck, Germany) containing 15% glycerol in sterile glass,screw-cappedvials and storedat-80◦Cuntil further use.

Antimicrobialsusceptibilitytesting

Antimicrobial susceptibility testing was performed by MicroScanautoSCAN-4 System.Theantibioticstestedwere amikacin (AMK), amoxicillin/clavulanic acid (AMC), ampi-cillin/sulbactam (AMS), ampicillin (AMP), cefazolin (CEP), cefepime(FEP), cefotaxime (CTX), ceftazidime(CAZ), ceftri-axone(CRO),cefuroxime(CXM),cefoxitin(FOX),cephalothin (CEPH), ciprofloxacin (CIP), gentamicin (GEN), imipenem (IMP),meropenem (MEM),levofloxacin(LVX), nitrofurantoin (NIT), tetracycline (TEC), tobramycin (TOB), trimetho-prim/sulfamethoxazole(SXT),piperacillin/tazobactam(TZP), piperacillin(PRL),colistin(CST),andtigecycline(TGC) accord-ing to the CLSI guidelines v27.28 Non-susceptibility was

defined as the combination of resistance and intermedi-ate resistance. MDR A. baumannii isolates were defined as acquirednon-susceptibilitytoatleastoneagentinthreeor moreantimicrobialcategories.29Escherichiacoli(ATCC#25922)

andPseudomonasaeruginosa(ATCC#27853)wereincludedas qualitycontrolstrains.

Multipleantibioticresistanceindex(MARI)

The MARI was calculated and interpreted according to Krumperman(1983)astheratioofthenumberofantibiotics to which the isolateswere resistant (a) to the total num-berofantibioticstowhichtheisolateswereexposed(b),i.e: MARI=a/b.

TheMARIofindividualA.baumanniifromthetwodifferent sourceswascalculated.BacteriahavingMARI(>0.2)originate fromahighrisksourceofcontaminationwhereseveral antibi-oticsareused.MARIvalueof≤0.2indicatesstrainoriginated fromsourceswhereantibioticsareseldomorneverused.30

Investigationofcarbapenemase-encodinggenes,ISAba1 andintI1byPCR

Genomic DNA from an overnight culture on tryptic soy broth ofA. baumanniiwas extracted using the MagNaPure Compact® nucleic acid isolation kit I (REF. 03730964001, Roche diagnostics, Mannheim, Germany) according to the manufacturer’s protocol.Thepresenceofthe genes encod-ing Ambler class D Serine-Carbapenemase (blaOXA-51-like, blaOXA-23-like, blaOXA-24-like, andblaOXA-58-like),Ambler classB Metallo-␤-lactamases (blaIMP-1, blaVIM, blaSIM and blaNDM-1) and Ambler classC blaAmpC were analyzed byPCR. ISAba1 andintI1werealsodetermined.ThepresenceoftheISAba1 upstreamblaOXA-23-likeandblaOXA-51-likegenestopromotegene expressionwereperformedusingISAba1forward/blaOXA-23-like reverseorblaOXA-51-likereverseprimers.31Thedetailsofprimer sequencesusedforPCRamplificationoftheresistantgenes arelistedinTable1.

Ethical

considerations

Ethical approval for this project was obtained from the Walter Sisulu University Research Ethics and Biosafety Committee [Reference number: 019/2016]. Also written permission was sought from the authorities of the two studysites.For theprotectionofanimalsusedforscientific purposes the experiments described complied with the guidelines of the EuropeanUnionCouncil http://ec.europa. eu/environment/chemicals/labanimals/legislationen.htm (Directive2010/63/EU).

Statistical

analysis

The data were analyzed using the Statistical Package for Social Sciences (SPSS, IBM, version 23.0 Armonk, NY). The frequency of some parameters including A. bauman-nii susceptibility and also resistant genes were compared between abattoir and aquatic A. baumannii by Chi-square or Fisher’s exact test. P-values <0.05 were considered as significant.

Results

AntimicrobialsusceptibilitytestingandMARI

A total of 1287 samples were collected from the abattoir and aquatic sources from which 248 (19.3%) Acinetobacter species were isolated. A. baumannii was the predominant species (n=183, 73.8%) of which 85 (46.4%)and 98 (53.6%) were recovered from abattoir and aquatic, respectively. Of these a total of 100 MDR A. baumannii isolates, includ-ing 56.5% (48/85) abattoir and 53.1% (52/98) aquatic, were selected foranalysis. Table2shows thedistribution ofthe identified Acinetobacterspecies according tothe sourcesof samples.AllMDRisolatesshowedasusceptiblephenotypein responsetocolistinandtigecycline.Amongabattoirisolates, all(100%)wereresistanttotrimethoprim-sulfamethoxazole, and >70% were resistant to cephalosporins (ceftazidime, cefazolin, cephalothin, cefotaxime, ceftriaxone, cefepime, cefuroxime, and cefoxitin), gentamycin and ciprofloxacin. Carbapenem resistantwas 75%againstimipenem and 74% againstmeropenem.However,therewereconsiderable differ-ences inresistanceratesandpatternsbetweentheisolates recoveredfromthetwostudyareas.Chi-squaretestrevealed thattherewerenosignificantdifferencesinresistancerates among different sources of isolates (p<0.253). The resis-tanceratesagainstimipenem,meropenem,ciprofloxacin,and gentamycin were 73%, 71%,70%, and 75%, respectively, in isolates recovered from aquaticsource,whereas resistance rateswere57–94%againstotherantimicrobialagentsexcept foramikacin (42%).Fig.1showstheresistance characteris-ticsoftheseisolates.TheA.baumanniiexhibited25antibiotic resistantpatternswithhighlevelofMARI(>0.2)rangingfrom 0.20–0.52.

Mean MARIofisolatesfrom bothsourcesare shown in Fig.2.ThemajorityoftheA.baumanniifromtheabattoirsource (31isolates,64.6%)wereresistanttoatleasteightantibiotics

(5)

Table1–ListofprimersusedforPCRamplificationofresistantgenes.

Gene Oligonucleotidesequence Fragmentsize(bp) Location References

16SrRNA F:5’TTTAAGCGAGGAGGA GG3’

R:5’ATTCTACCATCCTCT CCC3’ 240 16SrRNA 32 OXA-23-like F: 5’GATCGGATTGGA-GAACCAGA3’ R: 5’ATTTCTGACCGCATTTCCAT3’ 501 blaOXA-23 33

OXA-24-like F:5’GGTTAGTTGGCCCCCTTA

AA3’

R: 5’AGTTGAGC-GAAAAGGGGATT3’

246 blaOXA-24 33

OXA-51-like F:5’TAATGCTTTGATCGGCCT

TG3’ R:5’TGGATTGCACTTCATCTT GG3’ 353 blaOXA-51 33 OXA-58-like F: 5’AAGTATTGGGGCTTGTGCTG-3’ R: 5’CCCCTCTGCGCTCTACATAC3’ 599 blaOXA-58 33 IMP-1 F: 5’GATGGTATGGTGGCTCTTGT3’ R: 5’TTAATTTGCCGGACTTAGGC3’ 448 BlaIMP 34 NDM-1 F:5’ATTAGCCGCTGCATTGAT3’ R: 5’CATGTCGAGATAGGAAGTG3’ 154 blaNDM 35 VIM-like F: 5’ACTCACCCCCATGGAGTTTT3’ R: 5’ACGACTGAGCGATTTGT-GTG3’ 815 blaVIM 36

SIM-1-like F:5’TAATGCTTTGATCGGCCT

TG3’ R:5’TGGATTGCACTTCATCTT GG3’ 353 blaSIM 33 AmpC F:ACAGAGGAGCTAATCATGCG R:GTTCTTTTAAACCATATACC 1243 blaampC 37 ISAba1 F:5-CACGAATGCAGAAGTTG-3 R:5-CGACGAATACTATGACAC-3 599 ISAba1 38

ISAba1/blaOXA-23-like F:AATGATTGGTGACAATGAAG R:ATTTCTGACCGCATTTCCAT

1433 ISAba1/blaOXA-23 38

ISAba1/blaOXA-51-like F:AATGATTGGTGACAATGAAG R:TGGATTGCACTTCATCTTGG

1252 ISAba1/blaOXA-51 31

intI1 F:5’CAGTGGACATAAGCC TGTTC3’

R:5’CCCGACGCATAGACT GTA3’

160 Integrasegene(intI1) 39

whilstthemajorityofA.baumanniifromtheaquaticsource(21 isolates,40.4%)wereresistanttosixantibiotics(Table3). Moleculardetectionofcarbapenemase-encodinggenesin A.baumannii

The two groups of MDR isolates were analyzed for carbapenemase-encoding resistance genes (blaOXA-23-like, blaOXA-24-like,blaOXA-51-like,blaOXA-58-like,blaIMP-1,blaSIM,blaVIM, blaampC andblaNDM-1).TheblaOXA-51 isintrinsicallyfoundin A. baumannii and was detected in all abattoir and aquatic isolates which is consistent with the blaOXA-51-like gene as anintrinsiccarbapenemase. Atotal of32(66.7%) ofthe 48 abattoirisolatescarriedblaOXA-23,whereas11(21.2%)ofthe52

aquaticisolateswereblaOXA-23positive.TheblaOXA-58-likewas detectedinseven(14.6%)andfour(7.7%)abattoirandaquatic isolatesrespectively.There werenoblaOXA-24-like, blaIMP-type, blaVIM-type, blaNDM-1, blaSIM, and blaampC genes amongboth groupsofisolates.AllisolateslackedISAba1andntI1. Accord-ing toChi-squaretest, thereweresignificant differencesin the detectionofresistantgenesamongdifferentsourcesof isolates(p<0.001).

Discussion

Overthepasttwodecades,Acinetobacterspecieshavebecome virulent pathogens, responsible for nosocomial infections

(6)

Table2–DistributionoftheidentifiedAcinetobacterspeciesaccordingtothesourcesofsamples.

Acinetobacterspecies isolated

Totalno.of isolates

Abattoirisolates Aquaticisolates

Source Numberof

isolatesfound

Source Numberof isolatesfound

A.baumannii 100 Floors 5 Sediment 17

Doors 1 Watersample 15

Knives 9 Gills 5

Saws 7 Intestines 3

Handlingpanels 2 Eyes 5

Slaughterarea 4 Skin 7

Abdomen(Flank) 7 Thorax(Lateral) 3

Crutch 2

Breast(Lateral) 8

Total 48(56.5%) Total 52(53.1%)

Acinetobacterlwoffii 36 Floors 2 Sediment 5

Doors 3 Watersample 4

Knives 3 Gills 2

Saws 2 Intestines 3

Handlingpanels 2 Eyes 1

Slaughterarea 4 Skin 4

Abdomen(Flank) 1

Total 17(20%) Total 19(19.4%)

Acinetobactercalcoaceticus 25 Floors 3 Sediment 4

Doors 4 Watersample 3

Saws 2 Gills 1

Handlingpanels 1 Intestines 2

Slaughterarea 1 Eyes 1

Skin 3

Total 11(12.9%) Total 14(14.3%)

Acinetobacterpittii 22 Floors 3 Sediment 4

Doors 1 Watersample 3

Handlingpanels 3 Intestines 4

Slaughterarea 1 Skin 2

Breast(Lateral) 1 Total 9(10.6%) Total 13(13.3%) Total 183 85 98 41 98 94 91 94 97 81 84 74 72 91 95 71 85 0 81 75 74 71 71 84 98 58 0 100 42 90 91 81 92 93 79 83 73 72 89 92 70 82 0 75 73 71 72 79 73 94 57 0 92 0 10 20 30 40 50 60 70 80 90 100 PE RCEN T A GE RE SI S T A NC E ANTIBIOTICS AMIKACIN AMPICILLIN AMOXICILLIN/CLUVALANIC ACID AMPICILLIN/SULBACTAM CEFAZOLIN CEFTRIAXONECEFTRIAXONE CIPROFLOXACINLEVOFLOXACIN COLISTIN

GENTAMICINIMIPENEMMEROPENEM NITROFURANTOINTETRACYCLINE

PIPERACILLIN

PIPERACILLIN/TAZOBACTAM TOBRAMYCINTIGECYCLINE

TRIMETHOPRIM/SULFAMETHOX... CEPHALOTHINCEFOTAXIMECEFTAZIDIME

CEFOXITINCEFEPIME

ABATTOIR AQUATIC

(7)

Table3–MultipleantibioticresistanceamongA.baumanniiisolatesfromsamplingsites(n=numberofisolates).

Samplingsites Fiveantibiotics(n)(%) Sixantibiotics(n)(%) Sevenantibiotics(n)(%) >Sevenantibiotics(n)(%)

Abattoir 2(4.2%) 10(20.8%) 5(10.4%) 31(64.6%) Aquatic 7(13.5%) 21(40.4%) 6(11.5%) 18(34.6%) 0.34 0.28 0 0.1 0.2 0.3 0.4 0.5 0.6 MA R I n d e x Sampling sites Abattior Aquatic

Fig.2–MeanMultipleAntibioticResistanceIndex(MARI) valuesinAbattoirandAquaticisolates.

andoutbreaks,particularlyinintensivecareunitsandhigh

dependency units (HDUs).2 Majority of published studies

have concentrated on the hospital epidemiology of these organisms2and animalhealthcaresettingsmakingit

diffi-culttodemonstratetheextra-hospitaloriginofA.baumannii. Theintensive use ofantibiotics over the last few decades in human and as growth promoting and as prophylactic agentsin livestockhave resultedin serious environmental andpublichealthproblems,sincethisenhances antimicro-bial selectivepressure. Alsoanthropological activities have greatimpactsonourlocaldams.Theantibioticresidues con-centrationincreasesinhospitalandindustrialeffluentsand theseendupinourlocaldamsleadingtothedevelopment ofantibiotic-resistantbacteria.Grosetal.,studiedthe antibi-oticconcentrationsinaquaticenvironmentsandthemedian concentrationsinsurfaceandgroundwaterwerereportedas 0.030and0.071␮gL−1,respectively.40Theseconcentrationsare

abovetheMIC/MBCforallantibiotics,accordingtotheBritish SocietyforAntimicrobialChemotherapy.41 A.baumannii

iso-latedfromvariousenvironmentallocationshasbeenlinked withnosocomial spread.42 Theresistant bacteria from the

extra-hospitalenvironmentsmaybetransmittedtohumans, inwhomtheycausediseasethatcannotbetreatedby con-ventionalantibiotics.Inaquaticenvironmenttwohypotheses canarise fromthe detectionofA.baumannii:(1) waterisa normal habitatof A. baumannii, or (2) the presence ofthe bacteriumresultsfromhumanoranimalcontamination.To ourknowledge,thisisthefirststudyinvestigatingthe molec-ular mechanisms accounting for the multidrug-resistance observedinA.baumanniirecoveredfromabattoirandaquatic samplesintheEasternCapeProvinceofSouthAfrica.

Inthecurrentstudy,the prevalenceofA. baumanniiwas 14.2%inabattoirand14.0%inaquaticsamplescollected.Of

these, MDR A.baumannii was recoveredfrom 56.5%(48/85) abattoirisolatesand53.1%(52/98)aquaticisolatesandwere analyzed.Therefore,ourstudyevidencedtheextra-hospital presenceofA.baumanniiinEasternCapeProvinceofSouth Africa.Thisisinagreementwithapreviousstudythatfound 51.2%(85/166)frommeatsamplestobeMDR,9i.e.acquired

resistancetoatleastoneagentinthreeormore antimicro-bialcategoriesamongtheeightdifferentclassesofantibiotics usedtodefineMDR.29Incontrast,astudyconductedby Sten-stromet al. inNkonkobeMunicipalityofthe Eastern Cape Province, SouthAfrica,found that theprevalence of Acine-tobacter calcoaceticuscomplex from soil and watersamples in Alice town was 41%.6 Also previous studies in Senegal,

Scotland, and La Reunion Island isolated A. baumannii as animalcolonizersin5.1%,1.2%,and6.5%,respectively.5,13,20

Thestudy alsorevealed thequantitativechangesin antibi-oticresistanceattwosamplingsites.Ingeneral,susceptibility testing showed that 98% in abattoir isolates and 90% in aquaticisolateswereresistanttoampicillinwhichisusually a non-effectiveantibioticfor thetreatment ofAcinetobacter infections.Ahighincidenceofampicillinresistanceinaquatic environments was reported.43 High resistanceto

trimetho-prim/sulfamethoxazoleinabattoir(100%)andaquaticisolates (92%) is a result of the inherent resistant of A. baumannii tothis compoundthroughthe targetprotein,dihydrofolate reductase, whichhasalowaffinity forthe drug44 andalso

toselectivepressure causedbythe useofthese antimicro-bialagentfortreatmentofinfectionsincattle.TheMARIis a good riskassessment tooland its value (nominally0.20) hasbeenappliedtodifferentiatelow-andhigh-riskregions whereantibioticsareoverused.45Thepresentstudyshowed

MARIrangingfrom0.20to0.52(meanMARI;aquatic,0.28and abattoir,0.34)whichindicatesthattheisolatesemergedfrom high-risksourcesofcontaminationandalsogivesanideaof thenumberofA.baumanniiisolatesshowingantibiotic resis-tanceintheriskzoneofthesusceptibilitystudy.Thisindicates that the study areas wheretheseisolatescame fromwere exposedtoanenvironmentofhigh-riskcontaminationfrom aregion orarea wherethereishigh antibioticuse,30

prob-ablyfrom hospitaland industrialeffluentswhichfindtheir wayinto aquaticenvironmentor the indiscriminateuseof antibioticsinthelivestockslaughteredatthe abattoir.This canleadtohighantibioticresistanceselectivepressure.46The

highresistanceratetociprofloxacin,gentamycin,and tetracy-clinewasnotexpected.Theseantimicrobialsmayhavebeen usedintheseanimalseitherasgrowthpromoter, prophylac-ticorfortreatmentincaseofabattoirisolatesandalsoending inaquaticenvironment.Thisresultreflectstheuseof antimi-crobialagentsinlivestockinSouthAfrica,astetracyclinehas longbeentheantimicrobialmostcommonlyusedinlivestock, accounting forover 30% ofthe total amount of antimicro-bial consumption.47 Furthermorethe high resistant rateto cephalosporinsmay bebecausethis antibioticisfrequently

(8)

usedinhospitalsand mighthavefoundtheirwayintothe aquaticenvironmentincaseoftheisolatesfromthedamor mighthavebeenintroducedasagrowthpromoter, prophylac-ticallyorfortreatmentoffoodanimalsthatwereslaughtered atthe abattoir. Thecurrent study showed that all isolates frombothsourcesweresusceptibletocolistinandtigecycline whicharelastlineantibiotics.Colistinandtigecyclineare nor-mallyusedasadrugoflastresortinhospitalswhichlimits thepossibilityofbacteriadevelopingresistanceagainstthese antibiotics.Also,theyarerarelyusedinanimalseitherasa growthpromoter,prophylacticallyorfortreatment.Itisalso noteworthytohighlight thefactthat therewasno statisti-caldifferenceintheresistanceratesofA.baumanniiisolates recoveredfromtheabattoirandfromtheaquaticenvironment (p<0.253). This wide range ofresistance, as demonstrated here,isacauseforconcern.

Inthisstudy,isolateswerealsotestedmolecularlyforgene similarities.Molecularanalysisofthe48and52MDRA. bau-mannii isolates showed that all isolates from both sources harboured blaOXA-51–like and 32 (66.7%) and 11 (21.2%) iso-lates harbouredblaOXA-23–like genes in abattoir and aquatic isolates, respectively. This indicates that blaOXA-23 was the mostprevalentcarbapenemhydrolyzingclassD␤-lactamase genefrequently foundincarbapenem-resistant A. bauman-niiisolatescollectedfrom extra-hospitalenvironments. Our studyshowedthatblaOXA-23producersinparticularand car-bapenemase producers in general, may be isolated from extra-hospital environments. Among the hypotheses that could explain the selection of this carbapenemase is the indiscriminate use of penicillins or penicillin–␤-lactamase inhibitorcombinations.Thiscouldcreateselectivepressure for␤-lactamasesbecause blaOXA-23 does confer,inaddition todecreased susceptibilitytocarbapenems, ahigh level of resistancetothosecompounds.Itiswellestablishedthat ani-malscanbereservoirsofantimicrobial-resistantbacteria.48

TheseidentifieddeterminantsarenotonlyofconcerninA. baumannii.Rather,thesegenescanbetransferredtoother bac-teriabyhorizontalgenetransferandareofgreatconcernto humanhealth.Therefore,thereistheneedtoemphasizeon strictadherence topersonalandgeneralhygienetoreduce theriskofopportunisticinfectionbyA.baumanniiwhichis difficulttocontrol.CasesofAcinetobacterinfectionhavebeen tracedtoenvironmentduetopoorhygiene,especiallyhand hygiene.1

Thecurrent study showed that all MDR isolates lacked significant antibioticresistance features,such class1 inte-gronsand ISAba1, indicating thatthe class 1integron and ISAba1associatedresistancetraitsarenotimplicatedinMDR ofenvironmentalA.baumannii.Thisisinagreementwitha studyconductedbyHamoudaetal.wherenoclass1integrons andISAba1werefoundinA.baumanniiisolatesfromrecently slaughtered animalsdestinedforhumanconsumptionand collected at major Scottish abattoirs.20 ISAab1 is

consid-eredthe firststepinresistanceevolutioninA.baumannii.31

Theabsenceoftheseresistance-driven mobileelements in these sourcessuggests that no or little antibiotic selective pressure wasappliedto thesepathogens,contrary totheir clinicalcounterpart.Thereforethehighresistancerateto car-bapenemswhichisthedrugofchoicetotreatA.baumannii infectionsinbothabattoirandaquaticisolatescanbepartly

linkedtotheincreasedexpressionlevelofblaOXA-51-like car-bapenemases.Inaddition,itisspeculatedthatISAba1attains fullexpressionunderconditionsofexcessiveselective pres-sure(presenceofcarbapenems);thus,onewouldnotexpect to find this mechanism ofresistance inan environmental isolate.14 However,threeisolates (AB4,AB28and AF3) that

expressed blaOXA-51-like in our study unexpectedly showed imipenem MICs that were lower than 4␮g/mL, which sug-geststhatimipenemresistanceinsomeA.baumanniistrains maybeprimarilymodulatedbygenesotherthanblaOXA-51-like. ThiscanalsobeduetotheblaOXA-51-likegenesbeingusually silentorpoorlyexpressed,49thusnotconferringaresistance phenotype. Also,the increaseduse ofcarbapenems antibi-oticstotreatfoodproducing animalsmayexplainthe high level of resistance to antibiotics of this class observed in thecurrentstudy.Thepresentresultsprovideevidencethat extra-hospital A. baumannii isolatesserve as a reservoirof multiple antibiotics resistant and hence as potential route fortheentryofMDRpathogensintohumanpopulation.Our results also suggest that the nosocomial pathogen A. bau-mannii iswell adapted todifferent environments, notonly to the hospital setting. This has very important implica-tions forhumanhealth, as infections byMDR are difficult totreatandoftenrequiresexpensiveantibiotics,long term therapy and evenmortality.Furtherstudies shouldbe per-formedascertaintheprevalenceofMDRA.baumanniiinother sources.

Conclusion

Thisstudyhasdemonstratedbymolecularidentificationthat MDRA.baumanniiisactuallypresentoutsidethehospital.The presenceofMDRA.baumanniiintheextra-hospital environ-mentmaybeathreattopublichealthconsideringthatthis may providea vectorforthe spread oftheseopportunistic pathogenintobothcommunityandhospitalsettings environ-ment.Coordinatedapproaches toreduceintegratedhuman healthrisksintheenvironmentaswellascarefulcompliance withthe WHOguidelines50on surveillance,rational

antibi-oticprescribing,andstandardtreatmentguidelinesforboth community-andhospital-acquiredinfectionswilllead appre-ciably towards reducing the ever-rising threat ofantibiotic resistance. However, further studies are needed for better understanding of the mechanism of interactions between thedifferentpotentialreservoirsandhumans.Also,possible impactonthehorizontaltransferofblaOXAgenes,surviving inselectedconditionoroccurrenceofinfectionoutside the hospitalsettingshouldbefurtherinvestigated.

Funding

Funding of the research through the National Research Foundation (NRF)Thuthukagrant UID:107619isgraciously appreciated.Beyondthis,itdidnottakepartintheresearch activitiesofknowledgecreationanddissemination.The Nel-sonMandelaAcademicHospital(NMAH)andtheMicrobiology LaboratoryattheNationalHealthLaboratoryServices(NHLS) attheNMAHarealsoacknowledged.

(9)

Availability

of

data

and

materials

Alldatageneratedoranalyzedduringthisstudyareincluded inthispublishedarticle(anditssupplementaryinformation file).

Authors’contributions

Conceivedanddesignedtheexperiments: S.S.P,T.A., S.D.V., A.Y.A. Performed the experiments: S.D.V., A.Y.A. Analysed the data: S.S.P, T.A., S.D.V, A.Y.A, O.G. E. Contributed reagents/materials/analysistools:S.S.P,O.G.E.,S.D.VAnalysed dataand wrotethe manuscript:S.S.P,T.A., S.D.V, A.Y.A.All authorsreadandapprovedthefinalmanuscript.

Ethical

approval

EthicalapprovalforthisprojectwasobtainedfromtheWalter SisuluUniversityResearchEthicsCommittee(Human) [Refer-encenumber:019/2016].

Conflict

of

interests

The authors declare that there is no conflict of interests regardingthepublicationofthispaper.

Acknowledgments

Theauthorswarmlyacknowledgethehost,WalterSisulu Uni-versityandtheco-host,UniversityofKwaZulu-Natal.

r

e

f

e

r

e

n

c

e

s

1. PelegAY,SeifertH,PatersonDL.Acinetobacterbaumannii: emergenceofasuccessfulpathogen.ClinMicrobiolRev. 2008;21:538–82.

2. EveillardM,KempfM,BelmonteO,PailhoriesH,Joly-Guillou ML.ReservoirsofAcinetobacterbaumanniioutsidethehospital andpotentialinvolvementinemerginghuman

community-acquiredinfections.IntJInfectDis. 2013;17:e802–5.

3. DaSilvaGJ,DominguesS.Insightsonthehorizontalgene transferofcarbapenemasedeterminantsintheopportunistic pathogenAcinetobacterbaumannii.Microorganisms.2016;4: 29.

4. HigginsPG,LehmannM,WisplinghoffH,SeifertH.gyrB multiplexPCRtodifferentiatebetweenAcinetobacter calcoaceticusandAcinetobactergenomicspecies3.JClin Microbiol.2010;48:4592–4.

5. BelmonteO,PailhoriesH,KempfM,etal.Highprevalenceof closely-relatedAcinetobacterbaumanniiinpetsaccordingtoa multicentrestudyinveterinaryclinics,ReunionIsland.Vet Microbiol.2014;170:446–50

https://doi.org/10.1016/j.vetmic.2014.01.042

6. StenströmTA,OkohAI,AdegokeAA.Antibiogramof environmentalisolatesofAcinetobactercalcoaceticusfrom NkonkobeMunicipality,SouthAfrica.FreseniusEnvironBull. 2016;25:3059–65.

7.FournierPE,RichetH.Theepidemiologyandcontrolof Acinetobacterbaumanniiinhealthcarefacilities.ClinInfect Dis.2006;42:692–9.

8.YingC,LiY,WangY,ZhengB,YangC.Investigationofthe molecularepidemiologyofAcinetobacterbaumanniiisolated frompatientsandenvironmentalcontamination.JAntibiot (Tokyo).2015;68:562–7.

9.CarvalheiraA,CasqueteR,SilvaJ,TeixeiraP.Prevalenceand antimicrobialsusceptibilityofAcinetobacterspp.isolatedfrom meat.IntJFoodMicrobiol.2017;243:58–63.

10.NaasT,CoignardB,CarbonneA,etal.VEB-1

extended-spectrum␤-lactamase-producingAcinetobacter baumannii,France.EmergInfectDis.2006;12:1214–22. 11.RafeiR,HamzeM,PailhorièsH,etal.Extra-human

epidemiologyofAcinetobacterbaumanniiinLebanon.Appl EnvironMicrobiol.2015;81:2359–67.

12.KempfM,RolainJM.Emergenceofresistancetocarbapenems inAcinetobacterbaumanniiinEurope:clinicalimpactand therapeuticoptions.IntJAntimicrobAgents.2012;39:105–14. 13.KempfM,RolainJ-M,DiattaG,etal.Carbapenemresistance

andAcinetobacterbaumanniiinSenegal:theparadigmofa commonphenomenoninnaturalreservoirs.PLoSOne. 2012;7:e39495https://doi.org/10.1371/journal.pone.0039495 14.CarvalheiraA,FerreiraV,SilvaJ,TeixeiraP.Enrichmentof

Acinetobacterspp.fromfoodsamples.FoodMicrobiol. 2016;55:123–7.

15.Hrenovi ´cJ,DurnG,Goi ´c-Bariˇsi ´cI,Kova ˇci ´cA.Occurrenceofan environmentalAcinetobacterbaumanniistrainsimilartoa clinicalisolateinpaleosolfromCroatia.ApplEnviron Microbiol.2014;80:2860–6.

16.ChoiJ-Y,KimY,KoEA,etal.Acinetobacterspeciesisolates fromarangeofenvironments:speciessurveyand observationsofantimicrobialresistance.DiagnMicrobiol InfectDis.2012;74:177–80.

17.Deki ´cSvjetlana,Klobu ˇcarGöran,Ivankovi ´cTomislav,etal. EmerginghumanpathogenAcinetobacterbaumanniiinthe naturalaquaticenvironment:apublichealthrisk?IntJ EnvironHealthRes.2018;28:315–22,

http://dx.doi.org/10.1080/09603123.2018.1472746.

18.Vaz-MoreiraI,NunesOC,ManaiaCM.Bacterialdiversityand antibioticresistanceinwaterhabitats:searchingthelinks withthehumanmicrobiome.FEMSMicrobiol.Rev. 2014;38:761–78.

19.BurgerJ.Consumptionpatternsandwhypeoplefish.Environ Res.2002;90:125–35(CAMS)CroatianAcademyofMedical Sciences.2017.AntibioticresistanceinCroatia,2016.The CroatianAcademyofMedicalSciences:Zagreb.

20.HamoudaA,FindlayJ,AlHassanL,AmyesSG.Epidemiology ofAcinetobacterbaumanniiofanimalorigin.IntJAntimicrob Agents.2011;38:314–8.

21.PoirelL,Berc¸otB,MillemannY,BonninRA,PannauxG, NordmannP.Carbapenemase-producingAcinetobacterspp.in cattle,France.EmergInfectDis.2012;18:523–5,

http://dx.doi.org/10.3201/eid1803.111330.

22.SmetA,BoyenF,PasmansF,etal.OXA-23-producing Acinetobacterspeciesfromhorses:apublichealthhazard?J AntimicrobChemother.2012;67:3009–10.

23.PombaC,EndimianiA,RossanoA,SaialD,CoutoN,Perreten V.FirstreportofOXA-23-mediatedcarbapenemresistancein sequencetype2multidrug-resistantAcinetobacterbaumannii associatedwithurinarytractinfectioninacat.Antimicrob AgentsChemother.2014;58:1267–8.

24.WangY,WuC,ZhangQ,etal.IdentificationofNewDelhi metallo-␤-lactamase1inAcinetobacterlwoffiioffoodanimal origin.PLoSOne.2012;7:e37152,

http://dx.doi.org/10.1371/journal.pone.0037152.

25.ZhangWJ,LuZ,SchwarzS,etal.Completesequenceofthe bla(NDM-1)-carryingplasmidpNDM-ABfromAcinetobacter

(10)

baumanniioffoodanimalorigin.JAntimicrobChemother. 2013;68:1681–2,http://dx.doi.org/10.1093/jac/dkt066. 26.MeatandLivestockCommission(MLC).Internationalmeat

marketreviewNo.26,MLC.MiltonKeynes;1999.

27.InternationalOrganizationforStandardization(ISO).17604. Microbiologyofthefoodchain-Carcasssamplingfor microbiologicalanalysis.Geneva:ISO;2015.

28.ClinicalandLaboratoryStandardsInstitute(CLSI). Performancestandardsforantimicrobialsusceptibility testing.27thedWayne,PA:CLSI;2017.CLSIDocument M100-27.

29.MagiorakosAP,SrinivasanA,CareyRB,etal. Multidrug-resistant,extensivelydrug-resistantand pandrug-resistantbacteria:aninternationalexpertproposal forinterimstandarddefinitionsforacquiredresistance.Clin. Microbiol.Infect.2012;18:268–81.

30.KrumpermanPH.Multipleantibioticresistanceindexingof Escherichiacolitoindentifyhigh-risksourcesoffecal contaminationoffoods.AppliedEnvironMicrobiol. 1983;46:165–70.

31.TurtonJF,WardME,WoodfordN,etal.TheroleofISAba1in expressionofOXAcarbapenemasegenesinAcinetobacter baumanniiFEMS.MicrobiolLett.2006;258:72–7.

32.VanbroekhovenK,RyngaertA,WattiauP,DeMotR,Springael D.Acinetobacterdiversityinenvironmentalsamples assessedby16SrRNAgenePCR-DGGEfingerprinting.FEMS MicrobiolEcol.2004;50:37–50.

33.CherkaouiA,EmonetS,RenziG,SchrenzelJ.Characteristics ofmultidrug-resistantAcinetobacterbaumanniistrainsisolated inGenevaduringcolonizationorinfection.AnnClin

MicrobiolAntimicrob.2015;14:1.

34.DaSilvaGJ,CorreiaM,VitalC,etal.Molecular characterizationofblaIMP-5,anewintegron-borne metallo-␤-lactamasegenefromanAcinetobacterbaumannii nosocomialisolateinPortugal.FEMSMicrobiolLett. 2002;215:33–9.

35.NaasT,ErganiA,CarrërA,NordmannP.Real-timePCRfor detectionofNDM-1carbapenemasegenesfromspikedstool samples.AntimicrobAgentsChemother.2011;55:4038–43. 36.CardosoO,LeitaoR,FigueiredoA,SousaJC,DuarteA,Peixe

LV.Metallo-beta-lactamaseVIM-2inclinicalisolatesof PseudomonasaeruginosafromPortugal.MicrobDrugResist. 2002;8:93–7.

37.HéritierC,PoirelL,NordmannP.Cephalosporinase over-expressionresultingfrominsertionofISAba1in Acinetobacterbaumannii.ClinMicrobiolInfect.2006;12:123–30. 38.WoodfordN,EllingtonMJ,CoelhoJM,etal.MultiplexPCRfor

genesencodingprevalentOXAcarbapenemasesin Acinetobacterspp.IntJAntimicrobAgents.2006;27:351–3, http://dx.doi.org/10.1016/j.ijantimicag.2006.01.004.

39.KoelemanJGM,StoofJ,vanderBijlMW,

Vandenbroucke-GraulsCMJE,SavelkoulPHM.Identificationof epidemicstrainsofAcinetobacterbaumanniibyintegrasegene PCR.JClinMicrobiol.2001;39:8–13.

40.GrosM,Petrovic ´M,BarcelóD.Multi-residueanalytical methodsusingLC-tandemMSforthedeterminationof pharmaceuticalsinenvironmentalandwastewatersamples: areview.AnalBioanalChem.2006;386:941–52.

41.BritishSocietyforAntimicrobialChemotherapy,Version14.0 Standingcommitteeonsusceptibilitytesting.Birmingham, UK:BritishSocietyforAntimicrobialChemotherapy;2015. 42.FranceyT,GaschenF,NicoletJ,BurnensAP.Theroleof

Acinetobacterbaumanniiasanosocomialpathogenfordogs andcatsinanintensivecareunit.JVetInternMed. 2000;14:177–83.

43.ChitanandMP,KadamTA,GyananathG,TotewadND,Balhal DK.Multipleantibioticresistanceindexingofcoliformsto identifyhighriskcontaminationsitesinaquatic

environment.IndianJmicrobiol.2010;50:216–20. 44.MakJK,KimM-J,PhamJ,TapsallJ,WhitePA.Antibiotic

resistancedeterminantsinnosocomialstrainsof multidrug-resistantAcinetobacterbaumannii.JAntimicrob Chemother.2009;63:47–54.

45.RiazS,FaisalM,HasnainS.Antibioticsusceptibilitypattern andmultipleantibioticresistances(MAR)calculationof extendedspectrumß-lactamase(ESBL)producing EscherichiacoliandKlebsiellaspeciesinPakistan.AfrJ Biotechnol.2011;10:6325–31.

46.SureshT,SrinivasanD,HathaAAM,Lakshmanaperumalsamy P.Theincidence,antibioticsresistanceandsurvivalof SalmonellaandEscherichiacoliisolatedfrombroilerchicken retailoutlets.MicrobesEnviron.2000;15:173–81.

47.GurungM,NamHM,TamangMD,etal.Prevalenceand antimicrobialsusceptibilityofAcinetobacterfromrawbulk tankmilkinKorea.JDairySci.2013;96,

http://dx.doi.org/10.3168/jds.2012-5965.

48.GuardabassiL,SchwarzS,LloydDH.Petanimalsasreservoirs ofantimicrobial-resistantbacteria.JAntimicrobChemother. 2004;54:321–32.

49.PoirelL,FigueiredoS,CattoirV,CarattoliA,NordmannP. Acinetobacterradioresistensasasilentsourceofcarbapenem resistanceforAcinetobacterspp.AntimicrobAgents Chemother.2008;52:1252–6.

50.WorldHealthOrganization.Step-by-stepapproachfor developmentandimplementationofhospitalantibiotic policyandstandardtreatmentguidelines2011.Geneva, Switzerland:WorldHealthOrganization;2011.

Referências

Documentos relacionados

Neste trabalho o objetivo central foi a ampliação e adequação do procedimento e programa computacional baseado no programa comercial MSC.PATRAN, para a geração automática de modelos

We used a 10-year lag for the aggregate data (approximate time between median pre- approval development costs and median post-approval costs), assumed that post-approval R&amp;D

Como na transferência de próton a seção de choque teórica ficou abaixo da seção de choque experimental, o valor utilizado para a amplitude espectroscópica foi 1.0, pois era o

Um fusível deve ser fornecido em cada ligação de alimentação para equipamentos de classe I ou classe II com uma conexão de aterramento funcional e em, pelo

TRISTEZA NUNCA MAIS Sérgio Marques &amp; Marquinhos - ISRC BR MKP 1200068 - MK Edições Músicos Participantes: Arranjos: Tadeu Chuff / Bateria Acústica: Albino Infantozzi

Os trˆes objetivos espec´ıficos s˜ao: (i) aplica¸c˜ao de modelos de c´opula variando no tempo na an´alise de s´eries financeiras, (ii) propor uma metodologia para

In this study, in 1998, multidrug-resistant isolates harboring SCC mec III were the only MRSA detected in the hospital, whereas in the latter study period (2008) new

The global resurgence of tuberculosis (TB) and the increase in multidrug resistant (MDRTB) strains has led to a concomitant increase in demand of susceptibility testing of isolates