• Nenhum resultado encontrado

Variations in culturable bacterial communities and biochemical properties in the foreland of the retreating Tianshan No. 1 glacier

N/A
N/A
Protected

Academic year: 2021

Share "Variations in culturable bacterial communities and biochemical properties in the foreland of the retreating Tianshan No. 1 glacier"

Copied!
9
0
0

Texto

(1)

h tt p : / / w w w . b j m i c r o b i o l . c o m . b r /

Environmental

Microbiology

Variations

in

culturable

bacterial

communities

and

biochemical

properties

in

the

foreland

of

the

retreating

Tianshan

No.

1

glacier

Xiukun

Wu

a,b

,

Gaosen

Zhang

a,b

,

Wei

Zhang

a,b

,

Guangxiu

Liu

a,b,∗

,

Tuo

Chen

b,c

,

Yun

Wang

a,b

,

Haozhi

Long

a

,

Xisheng

Tai

a

,

Baogui

Zhang

a,b

,

Zhongqin

Li

c

aChineseAcademyofSciences,NorthwestInstituteofEco-EnvironmentandResources,KeyLaboratoryofDesertandDesertification,

Lanzhou,China

bKeyLaboratoryofExtremeEnvironmentalMicrobialResourcesandEngineering,Lanzhou,GansuProvince,China

cChineseAcademyofSciences,NorthwestInstituteofEco-EnvironmentandResources,StateKeyLaboratoryofCryosphericSciences,

Lanzhou,China

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received4June2015 Accepted24October2016 Availableonline15February2018 AssociateEditor:IêdadeCarvalho Mendes

Keywords:

TianshanNo.1glacier Foreland

Culturablebacteria

Soilbiochemicalcharacteristics

a

b

s

t

r

a

c

t

Asaglacierretreats,barrenareasareexposed,andthesebarrenareasareidealsitestostudy microbialsuccession.Inthisstudy,wecharacterizedthesoilculturablebacterial commu-nitiesandbiochemicalparametersofearlysuccessionalsoilsfromarecedingglacierin theTianshanMountains.Thetotalnumberofculturablebacteriarangedfrom2.19×105to

1.30×106CFUg−1dwandfrom9.33×105to2.53×106CFUg−1dwat4Cand25C,

respec-tively.Thenumberofculturablebacteriainthesoilincreasedat25◦Cbutdecreasedat4◦C alongthechronosequence.Thetotalorganiccarbon,totalnitrogencontent,andenzymatic activitywererelativelylowintheglacierforeland.Thenumberofculturablebacteria iso-latedat25◦CwassignificantlypositivelycorrelatedwiththeTOCandTNaswellasthe soilurease,protease,polyphenoloxidase,sucrase,catalase,anddehydrogenaseactivities. Weobtained358isolatesfromtheglacierforelandsoilsthatclusteredinto35groupsusing amplifiedribosomalDNArestrictionanalysis.Thesegroupsareaffiliatedwith20generathat belongtosixtaxa,namely,Alphaproteobacteria,Betaproteobacteria,Gammaproteobacteria, Actinobacteria,Bacteroides,andDeinococcus-Thermus,withapredominanceofmembers ofActinobacteriaandProteobacteriainallofthesamples.Aredundancyanalysisshowed thatthebacterialsuccessionwasdividedintothreeperiods,anearlystage(10a),a mid-dlestage(25–74a),andalatestage(100–130a),withthetotalnumberofculturablebacteria mainlybeingaffectedbythesoilenzymaticactivity,suggestingthatthemicrobialsuccession correlatedwiththesoilagealongtheforeland.

©2018PublishedbyElsevierEditoraLtda.onbehalfofSociedadeBrasileirade Microbiologia.ThisisanopenaccessarticleundertheCCBY-NC-NDlicense(http://

creativecommons.org/licenses/by-nc-nd/4.0/).

Correspondingauthorat:KeyLaboratoryofDesertandDesertification,NorthwestInstituteofEco-EnvironmentandResources,Chinese

AcademyofSciences,DonggangWestRoadNo.320,Lanzhou730000,China. E-mail:liugx@lzb.ac.cn(G.Liu).

https://doi.org/10.1016/j.bjm.2018.01.001

1517-8382/©2018PublishedbyElsevierEditoraLtda.onbehalfofSociedadeBrasileiradeMicrobiologia.Thisisanopenaccessarticle undertheCCBY-NC-NDlicense(http://creativecommons.org/licenses/by-nc-nd/4.0/).

(2)

Introduction

Over the past 100 years, the average global tempera-ture has increased by 0.74◦C,1 and one consequence of

this temperature increase is that glaciers are retreating in many mountainous areas of the world. As the glaciers retreat, the newly exposed land is a new habitat for microorganisms2 derived from the air, clouds, snow, rain,

and runoff waters from the glacier body in addition to autochthonousmicroorganisms.3Bacterialcommunitiesmay

bekeydeterminantsofglacierforelandecosystemstability andfunctionbecauseoftheirimportantroles insoil devel-opment,biogeochemicalcyclesandheterotrophicactivities. Microbialcommunitieschangealongthesoilagegradientofa glacialforeland.Sigleretal.4foundthatthenumberof

dom-inant organism typesand community evenness decreased withsuccession,butothersfoundthatthephylotypenumber, diversity,andevennessincreasedovertime.2,5However,most

ofthosestudiesarefocusedonPolarandEuropeanmountain areas;therefore,studiesonthebacterialcommunity,soil bio-chemicalpropertiesandthecorrelationbetweenbacteriaand soilbiochemicalproperties along chronosequences insuch highAsianregionsastheTianshanMountainsarestillneeded. The Tianshan No. 1 glacier is located in the Eastern TianshanMountainsofCentralAsia,mountainsthatare sur-rounded by desert.6 Theclimate in this area isa classical

continentalclimate,andwindisanimportantclimatic fac-torintheupperelevationsofthemountains.7TheTianshan

No.1glacierhasbeenstudiedintensivelyfromaglaciological pointofviewsince1959,8–10 whentheTianshan

Glaciologi-calStationwasbuilt.Becauseoftheavailabilityofextensive glaciologicaldataanddetailedglacierretreatdata,thisarea is anideal location for the study of microbial distribution andgrowthrelatedtobothclimaticandother environmen-talfactors.11,12Althoughthestudyofmicroorganismsinthis

area is very important, few studies have been performed. Baietal.13 reportedthebacterialdiversityfrompermafrost

in the Tianshan Mountains, and Yang et al.14 studied the

permafrostbacterialand archaealcommunitystructuresin thesamearea.Shenget al.15 firstdescribedtheindigenous endophyticbacteriawithinsubnivalplantsofthe Tianshan Mountains.Wangetal.16reportedmicrobialbiomassandsoil

enzymeactivity variationsalongchronosequences,andWu etal.11usedpyrosequencingtoanalyzethebacterialdiversity

alongchronosequences.However,studiesregardingthe varia-tionoftheculturablebacterialcommunitiesandbiochemical characteristicsalongchronosequencesintheTianshan Moun-tainsarenotavailable,andthusfundamentalknowledgeon theculturablebacterialcommunitiesandbiochemical charac-teristicsintheTianshanNo.1glacierforelandsislacking.

Inthisstudy,wepresentdataregardingthesoil biochem-icalpropertiesanddiverse bacteriaculturedusing samples fromtheTianshanNo.1glacierforelands.Theresultscould leadtoabetterunderstandingoftheinitialcolonizationand successionpatternsofmicroorganismsandsoildevelopment and the correlation between bacteria and soilbiochemical propertiesalongchronosequencesinahighAsianregion.Our aimswere(1)toinvestigatethesoilbiochemicalpropertiesand culturablebacterialabundancevariationsalonga

chronose-1-34-7 8-11 12-16 17-21 22-25 1760 1675 1911 1962 Sample location Moraine

Fig.1–Mapofsamplingposition.

quence,(2)todeterminetheculturablebacterialcommunity variationsbyusingalow-nutrientmediumculturedat4◦C and 25◦C,and (3)toexaminethecorrelations betweenthe abundance of culturable bacteria and the soil biochemical propertieswithincreasingsoilage.

Materials

and

methods

Studysiteandsampling

TheTianshanMountainsextendthroughChina,Kyrgyzstan andKazakhstaninCentralAsiaandhave15,953glacierswith atotalareaof15,416km2.17Thesamplesiteswerelocatedat

TianshanNo.1glacier(N43◦06,E86◦48),120kmsouthwest ofUrumchi,China(Fig.1).Thetopelevationatthisglacieris 4486m.Thesampleswerecollectedattheeastbranchof Tian-shanNo.1glacierforelandalongthechronosequenceinfront oftheretreatingglaciers.Twenty-fivesoilsampleswere col-lectedinAugust2010.Thesesoilsamplesrepresent6periods: sites1to3,sites4to7,sites8to11,sites12to16,sites17to21, andsites22to25represent10a,25a,60a,74a,100a,and130a, respectively.Thesuccessiontimeofeverysamplingsitewas determinedusingtheannualglacierretreatobservationdata (from1959to2010) fromtheTianshanGlaciologicalStation (Chinese AcademyofSciences) and lichenometric chronol-ogy data(from 1958to1538).18 Each soilsampleconsisted

ofthree subsamplecores ata5cmdepth collected at ran-dominanareaapproximately 2m×2m;the sampleswere mixedafterthelargergravelhadbeenremoved.Pioneerplants appeared in the deglaciated soil within 10–100 years, and vegetationdevelopedafter100yearsofdeglaciation. Succes-sionalspeciesarrivingwithin10–100yearsincludedCancrinia tianschanica, Bryophytaspp., Poa tianshanica, Draba nemorosa, SaxifragahirculusL.,Melandriumapricum,Leontopodium lentopo-dioides,Saussureagnaphalodes,Crepisflexuosa,Rhodiolacoccinea, Oxyriadigyna,andSaussureainvolucrata,whereasSenecio thian-schanicus,Polygonumviviparum,andPedicularisspp.additionally appearedoutsidetheglacierforeland.Thesoilsampleswere placedinasterilesoilboxandkeptoniceduringtransportto thelaboratoryandthenanalyzedimmediately.

(3)

Biochemicalanalysesofthesoils

Thesoilwatercontentwasmeasuredbyaweightlossmethod after48hat80◦Cinadryingoven.ThesoilpHofsoil: double-distilledwater(1:1w/v)wasmeasuredusinganaciditymeter (SartoriusPT-10,Germany).19Afterair-dryingandgrindingto

allowpassagethrougha100meshsieve,thesoilorganicCand totalNweredeterminedusinganelementalanalyzer (Elemen-tarVario-EL,Germany).

All of the enzymatic preparations were performed at 0–4◦C.Thesoilenzymesurease,sucrase,protease, polyphe-nol oxidase, catalase, and dehydrogenase were measured. Theactivityofureasewasmeasuredaccordingtoamodified methoddescribedbyTayloretal.,20andtheureaseactivitywas

expressedas1mgammonia-N/gdryweight(dw)soilper24h. Thedehydrogenaseactivitywasdeterminedbythereduction of2-p-iodo-nitrophenyl-phenyltetrazoliumchloride (INT) to iodo-nitrophenylformazan(INTF)usingthemethodof Tay-loretal.,20andtheactivitywasexpressedas1␮gINTF/gdw

soilper24h.Thecatalaseactivitywasdeterminedby measur-ingtheO2absorbedbyKMnO4aftertheadditionofH2O2to

thereactionmixture.21 Theproteaseactivitywasmeasured

accordingtoNannipieri etal.22 and Garcıa-Gil et al.,21 and

theactivitywasexpressedas1mgN/gdwsoilper24h.The sucraseactivitywasdeterminedaccordingtothemethodby Schinner,23andtheactivitywasexpressedas1mgglucose/g

dwsoilper24h.Thepolyphenoloxidaseactivitywas mea-suredaccordingtoSaiya-Corket al.,24 andthe activitywas

expressedas1mgpyrogallol/gdwsoilper24h. Bacterialisolationandcultivation

Becauseacultivationstrategyusinganutrient-richmedium isratherselective,favoringfast-overslow-growingbacterial species,25alow-nutrientmedium,PYGV(DSMZmedium621,

http://www.dsmz.de),was usedtoisolatethe bacteria. The

bacterialcultivationandisolationwereperformedaccording tothemethodofZhangetal.19Soilsamples(5g)wereplaced

ina250mLflaskcontaining45mLofautoclaved0.85%NaCl solutionwithglassbeadsandshakenat150rpmat4◦Cfor 30min.Afterthistreatment,1mLofsuspendedcellandsoil particlesubsamplesweredilutedfrom 10-foldto10−4 with autoclaved0.85%NaClsolution.A100␮Laliquotofthe dilu-tionwasplatedonPYGVmediumandincubatedat25◦Cfor oneweekor4◦Cforthreeweeks.Theinoculationprocedure waspreparedintriplicateforeachdilution.Asterilizedsoil samplethathadbeenautoclaved(121◦Cfor2h)wasusedasa negativecontrol.Subsequently,thecolonyformingunits(CFU) werecalculatedastheaveragesofthetriplicateplates.Distinct coloniesontheplateswererestreakedontoPYGVagarplates andthenimmediatelypreservedat−70◦Cinliquidmedium

with15%glycerol.

AmplifiedribosomalDNArestrictionanalysis(ARDRA)

ARDRA was used to group the 358 isolates. The genomic DNA was extracted and purified using an AxyPrep Bacte-rialGenomic MiniprepKit (AXYGEN,USA)accordingtothe manufacturer’sinstructions.Approximately20ngofDNAwas amplified with 27F (5-AGAGTTTGATCCTGGCTCAG-3) and

1492R(5-GGTTACCTTGTTACGACTT-3),asdescribedbyZhang etal.,19inatotalvolumeof50␮L.Thereactioncontained2

unitsofTaqDNApolymerase(Fermentas),1×TaqBuffer,3mM MgCl2,0.2mMdNTP,and0.4␮Meachprimer.Afteraninitial

stepat94◦Cfor3min,30cyclesof94◦Cfor1min,58◦Cfor 1min,and72◦Cfor1.5minwereperformed,withaterminal 10minextensionat72◦C.

A10␮LaliquotofthePCRproductswasdoubledigested withrestrictionenzymesHaeIIIandAluI(MBIFermentas)by 1.5Uofeachrestrictionenzymeand1␮Lof10×TangoBuffer at37◦Cfor16h. Theenzymes were inactivatedbyheating thepreparationsat65◦Cfor20min,andtheproductswere separated using2.5%agarosegel(wt/vol)electrophoresisin TAEbuffercontaining0.5␮g/mLofethidiumbromide.A50bp ladderwasusedasamarker.

Sequenceandphylogeneticanalysis

Based on the amplified ribosomal DNA restriction

analysis (ARDRA) of the isolates, one representa-tive strain of each group was selected for sequence determination of the 16S rRNA gene. Three univer-sal primers, 27F (5-AGAGTTTGATCCTGGCTCAG-3), 517F (5-CCAGCAGCCGCGGTAAT-3), and 907F (5

-AAACTCAAATGAATTGACGGG-3), were utilized for

sequencing.19

The16SrRNAgenesequenceclassificationswere identi-fiedusingthe16SrRNAtrainingset 16referencedatabases withtheRDPClassifiermethod(http://rdp.cme.msu.edu/)and aligned against representative reference sequences of the mostclosely relatedmembersobtainedfrom the16S rRNA database inNCBI. CLUSTALW1.81 software wasthen used to perform the multiple alignment26 using the method of

Jukes and Cantor to calculate the evolutionary distances. Thephylogenetic dendrograms were constructedusing the neighbor-joiningmethod,27andthetreetopologieswere

eval-uatedbyperformingbootstrapanalysisof1000datasetsusing theMEGA4.1package.28

Dataanalysis

Thecorrelationcoefficients(R)andtheirpvalueswere cal-culated bythe Pearson methodusing SPSS 13.0 (SPSSInc., Chicago,IL, USA). Thesignificancelevels were within con-fidence limits of 0.05 or less. The data presented are the means ofat least threeindependent experiments and are expressedasthemean±SE.Comparisonsbetweenthemean valueswereperformedusingtheleastsignificantdifference (LSDtest)atp<0.05.Thenumber ofeach differenttypeof colonyappearingontheplateswascountedwhentheCFU werecalculated.CombiningtheARDRAandsequence anal-ysisresults,thebacterialtaxaabundancesweredetermined. Theanalysisofculturablebacterialtaxaabundancecombined withtheenvironmentparameters,suchaspH,C,N,andsoil enzymeactivity,wasperformedusingCANOCO(version4.5, MicrocomputerPower,Ithaca,NY,USA).Aninitialdetrended correspondence analysis (DCA) ofculturable bacterial taxa abundancerevealedthatthedataexhibitedalinear(Lengths ofgradient<3), ratherthan aunimodal,trend, which indi-catedthatredundancyanalysis(RDA)shouldbeused.29The

(4)

Table1–Thenumberofculturablebacteriaandsoilbiochemicalparametersofthesuccessionalsitesalongthe chronosequences.

Samples Soilageafter

deglaciation(years)

4C 25C pH OrganicC(%dw) TotalN(%dw) C/Nratio(w/w)

1–3 10a 13.05±11.66a 9.33±0.44b 8.41±0.084a 0.438±0.018a 0.047±0.005a 9.60±1.03b

4–7 25a 8.39±3.61a 12.39±0.54ab 7.69±0.046bc 0.503±0.092a 0.055±0.010a 9.11±0.11b

8–11 60a 2.43±0.92a 14.86±0.41ab 7.86±0.034b 0.523±0.040a 0.040±0.005a 13.45±1.31a

12–16 74a 3.21±0.85a 15.44±0.25ab 7.54±0.039bcd 0.809±0.190a 0.068±0.016a 12.07.±0.85ab

17–21 100a 2.19±1.15a 17.46±0.59ab 7.20±0.052d 0.751±0.197a 0.062±0.012a 12.02±1.42ab

22–25 130a 4.57±0.53a 25.32±0.38a 7.32±0.060cd 1.600±0.110a 0.127±0.089a 13.30±1.22a

Resultsaregivenasthemeans±SE.Differentsuffixlettersindicatevaluesthataresignificantlydifferentfromoneanother(ANOVA,p<0.05). 4Cand25Cdenotethenumberofculturablebacteriaat4◦Cand25◦C(×105),respectively.

differentagedsoilswereclusteredbyusingthehierarchical clustermethod(SPSS13.0).

Nucleotidesequenceaccessionnumbers

The16S rRNAgenesequencesofthe35representative

iso-latedstrainsweredepositedinGenBank.Thesequencesfrom thebacteriallibraries wereassigned toaccessionnumbers: JN662509-JN662543.

Results

Theabundanceofculturablebacteriainthesoils

The total number of the culturable bacteria ranged from

2.19×105 to 1.30×106CFUg−1dw and from 9.33×105 to 2.53×106CFUg−1dwat4Cand25C,respectively.Thetotal numberofculturablebacteriaisolatedat4◦Cdecreasedalong thechronosequence,butnotsignificantly(p=0.09),whereas thenumberofbacteriaisolatedat25◦Csignificantlyincreased alongthechronosequence(p=0.003).Thenumberof cultur-ablebacteriainthe10asoilisolateat4◦Cwas1.4timesthatat 25◦C;atlaterages,thenumberisolatedat4◦Cwaslowerthan at25◦C.Atthe130aage,thenumberisolatedat25◦Cwas5.5 timesthatisolatedat4◦C(Table1).

Biochemicalpropertiesofthesoils

ThesoilpHvaluesdecreasedsignificantly(p=0.04)from8.41 to7.32withthechronosequence.ThesoilorganicCandtotal Ncontentwereverylowatallagesoftheretreatingglacier, ranging from0.438% to1.600%and from0.040% to0.127%, respectively.ThesoilorganicCsignificantlyincreased(p=0.03) alongthechronosequence,andthesoiltotalNalsoincreased alongthechronosequence,butnotsignificantly(p=0.07).The soilC/Nratioshowedanincreasingtrendwiththesoilage (p=0.06).

Soilenzymeactivitiesintegrateinformationabout micro-bial status and soil physicochemical conditions30 and are

often used as an indicator of the functioning of soil ecosystems.31Thesoilenzymeactivitysignificantlyincreased

along the soil age gradient, including catalase, dehydro-genase, polyphenoloxidase, protease, sucrase and urease (p=0.015, 0.004, 0.017, 0.045, 0.027, and 0.023, respectively)

(Tables1and2).

ARDRAandphylogeneticanalyses

Using ARDRA, all 358 isolates cultured at 25◦C and 4◦C wereclusteredinto35groups.Aftercomparingthe16SrRNA sequence of a representative strain from each group, the recoveredbacteriaclusteredintosixgroups: Alphaproteobac-teria, Betaproteobacteria,Gammaproteobacteria, Actinobac-teria,Bacteroides,andDeinococcus-Thermus(Fig.2).

Table2–Thechangesinenzymeactivitiesinthesoilsofthesuccessionalsitesalongthechronosequences.

Samples Soilenzyme

activity Catalase(mg N/gsoilh) Dehydrogenase (␮gINTF/g soil24h) Polyphenoloxidase (mgpyrogallol/gsoil 24h) Protease(mg N/gsoil24h) Sucrase(mg glucose/gsoil 24h) Urease(mg N/gsoil24h) 1–3 2.07±0.108b 36.8±7.08cd 0.403±0.058c 0.233±0.035a 1.04±0.138bc 0.191±0.036b 4–7 1.88±0.501b 30.2±1.25d 0.558±0.045b 0.305±0.046a 0.786±0.187c 0.252±0.029ab 8–11 2.73±0.615b 42.8±1.37bc 0.546± ±0.059b 0.233±0.042a 1.76±0.150bc 0.283±0.019ab

12–16 2.92±0.274b 43.1±4.03bc 0.589±0.027b 0.346±0.030a 2.24±0.659ab 0.319±0.020ab

17–21 2.82±0.457b 51.5±5.82ab 0.598±0.031b 0.355±0.074a 1.57±0.513bc 0.273±0.022ab

22–25 4.71±0.320a 59.3±2.25a 0.815±0.068a 0.405±0.068a 3.26±0.299a 0.374±0.100a

(5)

Actinobacteria Deinococcus-thermus Gammaproteobacteria Betaproteobacteria Alphaproteobacteria Bacteroidetes alpine soil 0.02

Permafrost in Qinghai-Tibet Platuea Subnival plants in Tianshan Mountains

Arctic lichen sterocaulon ZhaDang Snow Pit glacier foreland Paddy Field Soil Arctic rhizosphere Arctic

Antarctica snow

Snowpack from the Tibetan Plateau Indian cold deserts high Arctic glacier Suraj Tal Lake Chandra Tal Lake

glacier foreland Friesland farmland soil Antarctica Sor Rondane Mountains

Qinghai-Tibet Plateau Origin 98 B1.7 (JN662533.1) Arthrobacter sp. c138 (AB167248.1) Arthrobacter sp. R-39621 (FR691392.1) Arthrobacter sp. RKS6-4 (GQ477171.1) Arthrobacter sp. Asd M3-2 (FM955860.1) Arthrobacter sp. V12 (JF313090.1) Arthrobacter sp. JSPB6 (JQ308619.1) Arthrobacter sp. JHBB9940 (KR085877.1) Arthrobacter sp. R-43110 (FR691390.1) Phycicocus sp. s23430 (D84624.2) Cryobacterium sp. hp36 (JN637331.1) Leifsonia sp. ZD5-4 (JKJ095109.1) Agresia sp. Enf63 (DQ33957.1) Microbacterium sp. R-36360 (FR682685.1) Microbacterium sp. IHBB 11136(KR085857.1) Microbacterium sp. 28 (KF923438.1) Deinococus sp. R-36590 (FR682759.1) Lysobacter sp. 3.2.11 (FR600120.1) Pseudoxanthomonas sp. C2603 (JX097007.1) Pseudomonas sp. IHBB 11130 (KR085942.1) Pseudomonas sp. PSAA4(4) (DQ628969.1) Sphingomonas sp. MSCB-3 (EF103200.1) Sphingomonas sp. Asd M4-14 (FM955867.1) Aurantimonas sp. R-36516 (FM682697.1) Rhizobium sp. MN6-12 (JQ396566.1) Bosea sp. GR060219 (EU448290.1)

Bradyrhizobium sp. S32010-a (AB64899.1)

Brevundimonas sp. TMT2-42-1 (JX950098.1) Brevundimonas sp. TP-snow-C31 (JHQ327140.1) Chryseobacterium sp. BBCT4 (DQ337556.1) Muciladinibacter sp. PAMC 26640 (JX847597.1) Pedobacter sp. Axs12 (JQ977410.1) Pedobacter sp. HRB3 (GQ294578.1) Pedobacter sp. S8-2 (GQ294578.1) Sphingomonas sp. TP-snow-C72 (KC987002.1) Janthinobacterium sp. IARI-R-50 (JX429043.1) A3.2 (JN662514.1) A1.2 (JN662510.1) B10.6 (JN662538.1) A4.3 (JN662516.1) A5.1 (JN662517.1) B10.3 (JN662537.1) B6.3 (JN662535.1) A2.2 (JN6625137.1) A6.3 (JN662519.1) A15.2 (JN662524.1) A9.2 (JN662520.1) A15.4 (JN662525.1) A12.2 (JN662522.1) A5.3 (JN662518.1) A23.3 (JN662530.1) A20.4 (JN662527.1) A1.4 (JN662512.1) A1.1 (JN662509.1) B1.2 (JN662532.1) B18.6 (JN662541.1) A21.1 (JN662528.1) A3.4 (JN662515.1) B16.14 (JN662539.1) A12.1 (JN662521.1) A27.4 (JN662531.1) A22.1 (JN662529.1) A1.3 (JN662511.1) A16.2 (JN662526.1) A12.4 (JN662523.1) B20.9 (JN662542.1) B17.2 (JN662540.1) B8.2 (JN662536.1) B5.3 (JN662534.1) B26.7 (JN66253.1) 57 44 49 98 65 96 51 57 57 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 99 54 51 98 94 94 100 100 67 47 100 100 100 100 96 99 99 99 96 89 99 98 62 51 52 Antarctica

Antarctica Sor Rondane Mountains alpine subnival plants Dongkemadi glacier forefield

Zhadang Glacier snow pit Antarctica

Roopkund Glacier in Himalayas Arctic glacier

Arctic permafrost

Suraj Tal Lake

Fig.2–Phylogeneticdendrogrambasedonacomparisonofthe16SrRNAgenesequencesofthebacterialisolatesfromthe TianshanNo.1glacierforelandandsomeoftheirclosestphylogeneticrelatives.Thenumbersonthetreeindicatethe percentagesofbootstrapsamplingderivedfrom1000replications.Theisolationsourcecolumnliststheenvironmentsfrom whichtheclosestphylogeneticrelativescome.

The 35 studied isolates belonged to the following 20 genera: Agreia,Arthrobacter,Aurantimonas, Bosea, Bradyrhizo-bium,Brevundimonas,Chryseobacterium,Cryobacterium, Deinococ-cus, Janthinobacterium, Leifsonia, Lysobacter, Microbacterium, Mucilaginibacter,Pedobacter,Phycicoccus,Pseudomonas, Pseudox-anthomonas, Rhizobium, and Sphingomonas. A total of eight isolatesbelongedtoArthrobacter,andthreeisolatesbelonged eachtoMicrobacterium,Pedobacter,andSphingomonas. Brevundi-monasandPseudomonaseachhadtwoisolates,andtheother

generawererepresentedbyoneisolateeach.Asrevealedby thephylogenetictreeconstruction,thesebacteriawereclosely relatedtoothercold-environmentbacteria(Fig.2).

Actinobacteriawasthe dominanttaxonforthesamples incubated at 4◦C, and the abundance remained constant along the chronosequence, whereas the abundance of Alphaproteobacteria and Bacteroides were relatively lower than Actinobacteria. The Deinococcus-Thermus group was only found in the 100a soil, and Betaproteobacteria and

(6)

100 80 60 40 20 0 100 80 60 40 20 0

10a 25a 60a

Years since glacier retreat

Years since glacier retreat

74a 100a 130a

10a 25a 60a 74a 100a 130a

Relativ e a vundance ph ylum (%) Relativ e a vundance ph ylum (%)

a

b

Deinococcus-thermus Bacteroides Alphaproteobacteria Actinobacteria Bacteriodes Actinobacteria Gammaproteobacteria Betaproteobacteria Alphaproteobacteria

Fig.3–Variationsofthetaxaabundancesoftheculturablebacteriainsoilsamplesalongthechronosequences((a) incubatedat4◦C,(b)incubatedat25◦C).

Gammaproteobacteriawerenotfoundinallofthesamples (Fig.3a).However,thespeciesrichness at25◦C washigher thanat4◦C,includingActinobacteria,Bacteroides,and Alpha-, Beta- and Gammaproteobacteria.The Actinobacteria and Proteobacteriawerethedominanttaxainthesoilscultured at25◦C,withtheabundanceofProteobacteria significantly decreasingalongthechronosequence(p=0.02)andthe abun-dance of Actinobacteria significantly increasing along the chronosequence(p=0.01).TheabundanceofBacteroideswas relativelystableinallofthesoilsamples.The Betaproteobac-teriawereonlyfoundintheoldestsoils,andtheabundance wasverylowcomparedtotheothertaxa(Fig.3b).

Thecorrelationsbetweentheabundanceofsoilculturable bacteriaandsoilbiochemicalparameters

The total number of culturable bacteria in the soils cul-tured at25◦C were significantly positively correlated with the soiltotalN(p<0.05),organic C (p<0.01), and soil cata-lase (p<0.01), dehydrogenase (p<0.05), polyphenoloxidase (p<0.01), protease (p<0.05), sucrase (p<0.05), and urease (p<0.05) activities. The soilpH value negatively correlated withthenumberofculturablebacteriabutwasnotsignificant. Thisresultindicatedthatthebacterialabundanceincreased with increasing soil N and organic C and increasing soil

enzymeactivitiesandwithdecreasingsoilpHvaluesalong thesoilagegradient(Table3).RDAaxes1and2werefoundto explain91.5%and7.2%,respectively,oftheoverallvariance, withthebacterialabundanceanddiversitydatacorrelating withtheenvironmentaldata.Thenumberofculturable bac-teriahadapositiverelationshipwiththesoilenzymeactivity, whichwasingoodagreementwiththeSPSScorrelation anal-ysis.Inaddition,thebacterialcommunitiesofthe 10asoils and100–130asoilswereseparatedfrom25–74a,indicatingthat thebacterialsuccessionintheTianshanNo.1glacierforeland shouldbedividedintothreestages:anearlystage(10a),a mid-dlestage(25–74a)andalatestage(100–130a)(Fig.4).Thisresult isconsistentwiththeclusteranalysisresults(Fig.5).

Discussion

ThesoilorganicC,totalNand enzymeactivitiesincreased along the exposure time gradient, while the soil pH decreased in the foreland of Tianshan No. 1 glacier. Sim-ilar results were reported at Dongkemadi glacier and Damma glacier.32,33 The total number of culturable

bac-teria recovered from the Tianshan No. 1 glacier foreland was higher than that of the permafrost in the same area (2.5–6.0×105CFUg−1)13butsimilartothenumberrecovered

(7)

Table3–Thecorrelationsbetweenthenumbersofculturablebacteriaat25Candthesoilbiochemicalparametersalong

thechronosequences.

pH TotalN OrganicC Protease Polyphenoloxidase Catalase Urease Dehydrogenase Sucrase

25C −0.769 0.889b 0.947a 0.820b 0.972a 0.956a 0.914b 0.900b 0.895b pH −0.571 −0.620 −0.864b −0.794 −0.579 −0.746 −0.646b −0.537 TotalN 0.983a 0.845b 0.901b 0.907b 0.802 0.754 0.842b OrganicC 0.834b 0.933a 0.967a 0.869b 0.845b 0.917b Protease 0.859b 0.724 0.779 0.688 0.681 Polyphenoloxidase 0.900b 0.937a 0.776 0.845b Catalase 0.884b 0.913b 0.969b Urease 0.734 0.914b Dehydrogenase 0.861b

25Cdenotesthenumberofculturablebacteriaat25◦C.

a Thecorrelationissignificantatthe0.01level. b Thecorrelationissignificantat0.05(2-tailed).

100a PR PO CFU N UR C DE 74a 10a 60a pH 130a SU CA Actin Bact 25a prot -1.0 -1.0 1.0 1.0

Fig.4–RDAbiplotofthecorrelationbetweenthetaxa abundanceofbacteriaculturedat25◦Candsoil

biochemicalparameters.Thetaxaabundanceofbacteria culturedat25◦C(seeFig.3b);soilbiochemicalparameters (seeTable2).Dashlinearrowsindicatetheenvironmental variables(N,TN(%);C,OC(%);UR,urease;DE,

dehydrogenase;SU,sucrase;CA,catalase;PO,polyphenol oxidase,PR,protease).Solidlinearrowsindicatethe abundanceofbacteria(Bact,bacteroides(%);Prot, proteobacteria(%);Actin,actinobacteria(%)).

Rescaled distance CA S E Label Num 0 100a 130a 25a 60a 74a 10a 5 10 15 20 25

Fig.5–Hierarchicalclusteranalysisofculturablebacterial abundanceandcommunitiesinsoilsofdifferentages.

fromtheDongkemadiglacierforelandintheCentralTanggula Mountains(1.29×105–2.54×106CFUg−1).32ThesoilorganicC

andtotalNhavepositiverelationshipswiththesoilenzyme

activities and microbial abundance in the Tianshan No. 1 glacier foreland. Zumsteg et al.33 had findings similar to

ours,reportingthatthemicrobialcommunitystructureand enzymatic activitypatterns arestronglyconditionedbythe successional stage in addition tothe C and Ncontents of theglacierforelandsoils.Furthermore,theincubation tem-peratures alsoaffected theabundance anddiversity ofthe bacteria.ThisfindingisinaccordancewiththeLapanjeetal.25

studyattheDammaglacierandLiuetal.32attheDongkemadi

glacier.Thereasonforthedifferencemaybethat,although theywerenotthedominantbacteriaattheearlyage(10a), psychrotolerant bacteriabecome dominantwithincreasing soilage.34

Thebacterialtaxaanddominantphylaisolatedfromthe TianshanNo.1glacierforelandweresimilartothe Qinghai-Tibet PlateauJadang glacierforeland,35 Dongkemadiglacier

foreland in the Central Tanggula Mountains,32 Himalayan

Pindariglacier foreland,36 high Articpermafrost soil,37 and

Antarcticpermafrost soil.38 Thisresultindicatedthat

simi-larcoldenvironmentsaccommodatesimilarmicrobes,which couldbeevidencetosupportthe“environmentselect”theory. SomeofthebacterialisolatesfromtheTianshanNo.1glacier forelandmayoriginatefromtheglacierandglaciersediment, whileothersmayderivefromtheatmosphericdustfromother environments.39ThebacterialisolatesfromTianshanNo.1

glacier foreland belong to sixphyla. Bai et al.13 examined

thephylogeneticdiversityofbacteriafrompermafrostinthe TianshanMountainsusingaculture-dependentmethodand found 4 phyla: Actinobacteria, Bacteroides, Firmicutes and Proteobacteria. Yang et al.14 studiedthe permafrost

bacte-rial communitystructuresanddiversityusingadenaturing gradientgelelectrophoresismethodandfound7phylaof bac-teria, including the Acidobacteria,Gemmatimonadetes and ChloroflexiphylawhichwerenotfoundbyBaietal.13

Com-paredwiththepreviousreportsinthisstudyarea,thepresent study isthe firstto recoverbacterialstrains fromthe phy-lum Deinococcus-Thermus. Deinococcus-Thermus consists mainlyofthermophiles,40andfindingDeinococcus-Thermus

inthiscoldandhigherUVexposureenvironmentis interest-ingand shouldbefurtherstudiedforitscold-adaptionand UV-resistancemechanisms.

The dominate actinobacteria isolates in this study belonged to the genus Arthrobacter, which was the most

(8)

highlydiversegroupamongourisolatesandaretypicallythe predominantgenus incold environments.19,25,32,37,38,41

Pro-teobacteriaareafavoredtaxoninthisinitialecosystemwith alownutrientcontent,becausemanyofthemhavearange ofmetabolism.42Someofthegenerainourstudyhavebeen

reportedbyotherstohaveparticularweatheringcapabilities, suchasSphingomonassp.,43Pseudomonassp.44and Janthinobac-teriumsp.25 Thesegenerashouldbefurtherinvestigatedfor

thesecapabilities.Studiesshowapositivecorrelationbetween Proteobacteriaand thesoilpH; incontrast,anegative rela-tionshipbetweenActinobacteriaandsoilpHwasreportedby Philippotetal.45

Apreviousstudyfoundthatbacterialnumbersdepended mostlyonthesoilageafterdeglaciationintheDammaglacier foreland46andintheLymanglacierforeland.47Liuetal.32also

foundsimilarresults.Theseresultssuggestthatthenumber andactivityofmicrobialpopulationsincreasewithsoil devel-opment after glacial retreat.46 Other studies also reported

thatmicrobialabundancehassignificantcorrelationswithsoil enzymeactivitiesinthemountainvalleywetland,48reclaimed

soilonasurfacecoalmine,49andpaddysoil.50TheRDAand

hierarchical cluster analysis showed the same result, that thebacterialsuccessionintheTianshanNo.1glaciercanbe dividedintothreesuccessionalperiods:anearlystage(10a), amiddlestage(25–74a),andalatestage(100–130a).Similar resultswerereportedbyHuangetal.51forcoppermine

tail-ings.Theseresultsindicatethatsoilmicrobesplayarolein thedevelopmentofthebaresoilintheglacierforeland, sug-gestingthatmicrobialsuccessioncorrelateswiththesoilage alongtheforeland.

Conflicts

of

interest

Theauthorsdeclarenoconflictsofinterest.

Acknowledgements

ThisworkwasfundedbytheNaturalScienceFoundationof China(Nos.31500429,31170465),theNationalBasicResearch Program(973)ofChina(No.2012CB026105),the China Post-doctoralScience Fund(2014M562477), and the Scienceand TechnologyProjectsinGansuProvince(1506RJZA291)China.

r

e

f

e

r

e

n

c

e

s

1. IPCC.ClimateChange2007:SynthesisReport.Contributionof

WorkingGroupsI,IIandIIItotheFourthAssessmentReportofthe IntergovernmentalPanelonClimateChange.CoreWritingTeam, PachauriRK,ReisingerA.Geneva:IPCC;2007.

2. SchütteUME,AbdoZ,FosterJ,etal.Bacterialdiversityina

glacierforelandofthehighArctic.MolEcol.2010;19:54–66.

3. BauerH,Kasper-GieblA,LöflundM,etal.Thecontributionof

bacteriaandfungalsporestotheorganiccarboncontentof

cloudwater,precipitationandaerosols.AtmRe.

2002;64:109–119.

4. SiglerWV,CriviiS,ZeyerJ.Bacterialsuccessioninglacial

forefieldsoilscharacterizedbycommunitystructure,activity

andopportunisticgrowthdynamics.MicrobEcol.

2002;44:306–316.

5.NemergutDR,AndersonSP,ClevelandCC,etal.Microbial

communitysuccessioninanunvegetated,recently

deglaciatedsoil.MicrobEcol.2007;53:110–122.

6.LeeX,QinD,JiangG,DuanK,ZhouH.Atmosphericpollution

ofaremoteareaofTianshanMountain:icecorerecord.J

GeophysRes.2003;108:4406.

7.WilliamsMW,TonnessenKA,MelackJM,DaqingY.Sources

andspatialvariationofthechemicalcompositionofsnowin

theTienShan,China.ChinaAnnGlaciol.1992;16:25–32.

8.BolchT.ClimatechangeandglacierretreatinnorthernTien

Shan(Kazakhstan/Kyrgyzstan)usingremotesensingdata.

GlobPlanetChange.2007;56:1–12.

9.LiB,ZhuA,YiC.Glacierchangeoverthepastfourdecades

inthemiddleChineseTienShan.JGlaciol.2006;52:425–432.

10.NaramaC,KääbA,DuishonakunovM,AbdrakhmatovK.

SpatialvariabilityofrecentglacierareachangesintheTien

ShanMountains,CentralAsia,usingCorona(1970),Landsat

(2000),andALOS(2007)satellitedata.GlobPlanetChange.

2010;71:42–54.

11.WuX,ZhangW,LiuG,etal.Bacterialdiversityinthe

forelandoftheTianshanNo.1glacier,China.EnvironResLett.

2012;7:014038.

12.ZhangW,ZhangG,LiuG,LiZ,ChenT,AnL.Diversityof

bacterialcommunitiesinthesnowcoveratTianshan

Number1Glacieranditsrelationtoclimateand

environment.GeomicrobiolJ.2012;29:459–469.

13.BaiY,YangD,WangJ,XuS,WangX,AnL.Phylogenetic

diversityofculturablebacteriafromalpinepermafrostinthe

TianshanMountains,northwesternChina.ResMicrobiol.

2006;157:741–751.

14.YangD,WangJ,BaiY,XuS,AnL.Diversityanddistribution

oftheprokaryoticcommunityinnear-surfacepermafrost

sedimentsintheTianshanMountains,China.CanJMicrobiol.

2008;54:270–280.

15.ShengH,GaoH,XueL,etal.Analysisofthecompositionand

characteristicsofculturableendophyticbacteriawithin

subnivalplantsoftheTianshanMountains,Northwestern

China.CurrMicrobiol.2011;62:923–932.

16.WangX,ZhangT,SunJ,ZhangX,LiZ,LouK.Ecological

characterizationofsoilmicroflorainprimarysuccession

acrossglacierforefield:acasestudyofGlacierNo.1atthe

HeadwatersofUrumqiRiver.ActaEcolSin.2010;30:6563–6570

(inChinesewithEnglishabstract).

17.WangS,ZhangM,LiZ,etal.Glacierareavariationand

climatechangeintheChineseTianshanMountainssince

1960.JGeogrSci.2011;21:263–273.

18.ChenJ.Preliminaryresearchesonlichenometricchronology

ofHoloceneglacialfluctuationsandonothertopicsinthe

headwaterofUrumqiRiver,TianshanMountains.SciChina

SerB.1989;32:1487–1500.

19.ZhangG,MaX,NiuF,etal.Diversityanddistributionof

alkaliphilicpsychrotolerantbacteriaintheQinghai–Tibet

Plateaupermafrostregion.Extremophiles.2007;11:415–424.

20.TaylorJP,WilsonB,MillsMS,BurnsRG.Comparisonof

microbialnumbersandenzymaticactivitiesinsurfacesoils

andsubsoilsusingvarioustechniques.SoilBiolBiochem.

2002;34:387–401.

21.Garcıa-GilJC,PlazaC,Soler-RoviraP,PoloA.Long-term

effectsofmunicipalsolidwastecompostapplicationonsoil

enzymeactivitiesandmicrobialbiomass.SoilBiolBiochem.

2000;32:1907–1913.

22.NannipieriP,PedrazziniF,ArcaraPG,PiovanelliC.Changes

inaminoacids,enzymeactivities,andbiomassesduringsoil

microbialgrowth.SoilSci.1979;127:26–34.

23.SchinnerF,vonMersiW.Xylanase-,CM-cellulase-and

invertaseactivityinsoil:animprovedmethod.SoilBiol

Biochem.1990;22:511–515.

24.Saiya-CorkKR,SinsabaughRL,ZakDR.Theeffectsoflong

(9)

anAcersaccharumforestsoil.SoilBiolBiochem.

2002;34:1309–1315.

25.LapanjeA,WimmersbergerC,FurrerG,BrunnerI,FreyB.

Patternofelementalreleaseduringthegranitedissolution

canbechangedbyaerobicheterotrophicbacterialstrains

isolatedfromDammaGlacier(centralAlps)deglaciated

granitesand.MicrobEcol.2012;63:865–882.

26.ThompsonJD,GibsonTJ,PlewniakF,JeanmouginF,Higgins

DG.TheCLUSTALXwindowsinterface:flexiblestrategiesfor

multiplesequencealignmentaidedbyqualityanalysistools.

NucleicAcidsRes.1997;25:4876–4882.

27.SaitouN,NeiM.Theneighbor-joiningmethod:anew

methodforreconstructingphylogenetictrees.MolBiolEvol.

1987;4:406–425.

28.TamuraK,DudleyJ,NeiM,KumarS.MEGA4:molecular

evolutionarygeneticsanalysis(MEGA)softwareversion4.0.

MolBiolEvol.2007;24:1596–1599.

29.BraakCJFt,SmilauerP.CANOCOReferenceManualand CanoDrawforWindowsUser’sGuide:SoftwareforCanonical CommunityOrdination(Version4.5);2002.www.canoco.

com.

30.SinsabaughRL,HillBH,ShahJJF.Ecoenzymatic

stoichiometryofmicrobialorganicnutrientacquisitionin

soilandsediment.Nature.2009;462:795–798.

31.CiarkowskaK,Sołek-PodwikaK,WieczorekJ.Enzyme

activityasanindicatorofsoil-rehabilitationprocessesata

zincandleadoreminingandprocessingarea.JEnviron

Manag.2014;132:250–256.

32.LiuG,HuP,ZhangW,etal.Variationsinsoilculturable

bacteriacommunitiesandbiochemicalcharacteristicsinthe

Dongkemadiglacierforefieldalongachronosequence.Folia

Microbiol.2012;57:485–494.

33.ZumstegA,LusterJ,GöranssonH,etal.Bacterial,archaeal

andfungalsuccessionintheforefieldofarecedingglacier.

MicrobEcol.2012;63:552–564.

34.ZhangG,ZhangW,LiuG,AnL,ChenT,LiZ.Distributionof

aerobicheterotrophicbacteriamanagedbyenvironmental

factorsinglacierforeland.JGlaciolGeocryol.2012;34:965–971

(inChinesewithEnglishabstract).

35.YueJ,LiuG,ZhangG,ZhangW,XuS.Changesinsoil

propertiesandculturablebacteriadiversityinZhadang

glacierforeland.JGlaciolGeocryol.2010;32:1180–1185(in

ChinesewithEnglishabstract).

36.ShivajiS,PratibhaMS,SailajaB,etal.Bacterialdiversityof

soilinthevicinityofPindariglacier,Himalayanmountain

ranges,India,usingculturablebacteriaandsoil16SrRNA

geneclones.Extremophiles.2011;15:1–22.

37.HansenAA,HerbertRA,MikkelsenK,etal.Viability,

diversityandcompositionofthebacterialcommunityina

highArcticpermafrostsoilfromSpitsbergen,Northern

Norway.EnvironMicrobiol.2007;9:2870–2884.

38.AislabieJM,ChhourK-L,SaulDJ,etal.Dominantbacteriain

soilsofMarblePointandWrightValley,VictoriaLand,

Antarctica.SoilBiolBiochem.2006;38:3041–3056.

39.HodsonA,AnesioAM,TranterM,etal.Glacialecosystems.

EcolMonogr.2008;78:41–67.

40.GriffithsE,GuptaRS.Identificationofsignatureproteinsthat

aredistinctiveoftheDeinococcus-Thermusphylum.Int

Microbiol.2007;10:201–208.

41.Hinsa-LeasureSM,BhavarajuL,RodriguesJLM,Bakermans

C,GilichinskyDA,TiedjeJM.Characterizationofabacterial

communityfromaNortheastSiberianseacoastpermafrost

sample.FEMSMicrobiolEcol.2010;74:103–113.

42.HodkinsonID,WebbNR,CoulsonSJ.Primarycommunity

assemblyonland–themissingstages:whyarethe

heterotrophicorganismsalwaystherefirst?JEcol.

2002;90:569–577.

43.UrozS,CalvarusoC,TurpaultMP,PierratJC,MustinC,

Frey-KlettP.Effectofthemycorrhizosphereonthegenotypic

andmetabolicdiversityofthebacterialcommunities

involvedinmineralweatheringinaforestsoil.ApplEnviron

Microbiol.2007;73:3019–3027.

44.GorbushinaAA.Lifeontherocks.EnvironMicrobiol.

2007;9:1613–1631.

45.PhilippotL,TscherkoD,BruD,KandelerE.Distributionof

highbacterialtaxaacrossthechronosequenceoftwoalpine

glacierforelands.MicrobEcol.2011;61:303–312.

46.SiglerWV,ZeyerJ.Microbialdiversityandactivityalongthe

forefieldsoftworecedingglaciers.MicrobEcol.

2002;43:397–407.

47.OhtonenR,FritzeH,PennanenT,JumpponenA,TrappeJ.

Ecosystempropertiesandmicrobialcommunitychangesin

primarysuccessiononaglacierforefront.Oecologia.

1999;119:239–246.

48.BaiJ,XuH,XiaoR,GaoH,ZhangK,DingQ.Pathanalysisfor

soilureaseactivitiesandnutrientcontentsinaMountain

ValleyWetland,China.CleanSoilAirWater.2014;42:324–330.

49.LiJ,ZhouX,YanJ,LiH,HeJ.Effectsofregenerating

vegetationonsoilenzymeactivityandmicrobialstructurein

reclaimedsoilsonasurfacecoalminesite.ApplSoilEcol.

2015;87:56–62.

50.SuJ,DingL,XueK,etal.Long-termbalancedfertilization

increasesthesoilmicrobialfunctionaldiversityina

phosphorus-limitedpaddysoil.MolEcol.2015;24:136–150.

51.HuangL,TangF,SongY,etal.Biodiversity,abundance,and

activityofnitrogen-fixingbacteriaduringprimary

successiononacopperminetailings.FEMSMicrobiolEcol.

Referências

Documentos relacionados

respiratória e freqüência cardíaca, ao termino da emissão do fonema estarei efetuando a marcação do tempo, da freqüência respiratória final e da freqüência

A metodologia de investigação-ação foi a pedra basilar da prática educativa tanto na valência Pré-Escolar, no âmbito da qual se procurou dar resposta à questão: “Como

Nos casos em que os animais são devolvidos, é também uma oportunidade de educação ambiental e de divulgação do trabalho do CERVAS, tendo também aqui absorvido conhecimentos

3.3 Coleta dos dados Inicialmente, os dados foram levantados através de pesquisa documental realizada junto aos sites de compras do governo federal compras net e o do Banco do

It was possible to identify the skills listed by the nurses for the care of patients with hypertensive crisis, where all the skills cited by nurses participating in the survey are

Neste trabalho o objetivo central foi a ampliação e adequação do procedimento e programa computacional baseado no programa comercial MSC.PATRAN, para a geração automática de modelos

Along with this penchant for a certain visual style, I maintain that, aside from its definite narrative prerequisites, noir has a distinctive iconography with which the

The first stage separated the efficient mills in transforming the total recovered sugar (TRS) of the processed sugarcane into sugar and ethanol, and the second stage